第三章 变形监测方案设计
- 格式:ppt
- 大小:8.23 MB
- 文档页数:25
基坑变形监测工程方案一、监测的内容基坑变形监测的内容主要包括基坑周边的地表沉降、基坑支护结构的变形、地下水位的变化和基坑周边建筑物的变形等。
在监测时需要对这些内容进行全面的监测,以及对监测数据进行分析和评估,发现问题及时采取应对措施。
1. 地表沉降监测地表沉降可以通过水准仪、全站仪或GPS进行监测。
监测站点应根据基坑的布置情况,合理设置在基坑周边并延伸至一定范围的地表上。
监测的频次应根据基坑施工工况和地质情况进行调整,以保证监测的准确性和及时性。
2. 基坑支护结构的变形监测基坑支护结构主要包括钢支撑、深基坑墙、桩墙等结构,在施工过程中容易发生变形。
可以通过支撑位移仪、变形测斜仪、钢筋应变计等仪器设备进行监测。
3. 地下水位的变化监测地下水位的变化会直接影响基坑的稳定性,因此需要对地下水位进行监测。
监测可以采用水位计、水压计等仪器设备,实时监测地下水位的变化情况。
4. 基坑周边建筑物的变形监测基坑施工可能会对周边建筑物造成影响,因此需要对周边建筑物的变形进行监测。
可以使用倾斜仪、位移计等仪器设备进行监测。
二、监测方法基坑变形监测的方法主要包括传统监测方法和新技术监测方法。
传统监测方法主要包括水准测量、测斜测量、倾斜测量、测量等方法;新技术监测方法主要包括全站仪测量、GPS 监测、激光扫描监测、遥感监测等方法。
在实际监测中需要根据基坑的特点和地质情况选择合适的监测方法。
三、监测仪器设备基坑变形监测需要使用一系列仪器设备进行监测,包括水准仪、全站仪、GPS、支撑位移仪、变形测斜仪、水位计、水压计、倾斜仪、位移计等仪器设备。
在选用仪器设备时需要考虑其精度、稳定性和可靠性,并且需要对仪器设备进行定期校准和维护。
四、监测周期基坑变形监测的周期需要根据基坑的施工工况和地质情况进行合理设置。
一般来说,基坑变形监测的周期应该是连续不断的,并且需要根据监测数据的变化情况进行调整监测周期。
五、实施方案基坑变形监测的实施方案主要包括监测方案的制定、监测点的设置、监测数据的处理和分析以及监测报告的编制等内容。
变形测量方案设计一、测量目的变形测量的主要目的是监测对象在各种因素作用下的变形情况,包括但不限于以下几个方面:1、评估工程建设对周边环境的影响,如新建建筑物对相邻既有建筑物的影响。
2、验证工程设计的合理性,确保结构在施工和使用过程中的安全性。
3、为工程施工提供指导,及时调整施工工艺和参数,避免出现过大的变形。
4、监测地质灾害的发展趋势,如滑坡、崩塌等,提前预警,保障人民生命财产安全。
二、测量内容根据测量目的和对象的不同,变形测量的内容也有所差异。
一般来说,常见的变形测量内容包括以下几个方面:1、水平位移测量:监测对象在水平方向上的移动情况,通常采用全站仪、GPS 等测量仪器进行测量。
2、垂直位移测量:测量对象在垂直方向上的升降变化,常用水准仪、静力水准仪等仪器进行测量。
3、倾斜测量:测定建筑物或构筑物的倾斜程度,可使用倾斜仪、全站仪等设备。
4、裂缝测量:观测建筑物表面裂缝的宽度、长度和发展趋势,通过裂缝观测仪或钢尺进行测量。
5、挠度测量:对于桥梁、大跨度结构等,测量其在荷载作用下的挠度变形,使用挠度计或全站仪等进行测量。
三、测量方法1、传统测量方法水准测量:是一种经典的垂直位移测量方法,通过测量高差来确定点位的高程变化。
具有精度高、操作简单等优点,但测量效率较低。
全站仪测量:可以同时测量水平角、垂直角和距离,适用于水平位移和倾斜测量。
精度较高,但受通视条件限制。
三角高程测量:利用三角原理测量高差,适用于地形起伏较大的地区。
2、现代测量方法GPS 测量:具有全天候、高精度、自动化程度高等优点,适用于大范围的变形监测,但在建筑物内部等信号遮挡严重的区域精度会受到影响。
测量机器人:一种自动化程度很高的全站仪,能够实现自动观测、数据采集和处理,大大提高了测量效率和精度。
激光测量:如激光测距仪、激光扫描仪等,可快速获取物体的空间位置信息,适用于大型结构的变形测量。
四、测量精度要求测量精度的确定应根据测量目的、工程特点以及相关规范标准来确定。
××工程变形监测技术设计书一、引言1.1 项目背景××工程是一个重要的工程项目,其变形监测对于工程的稳定性和安全性至关重要。
本文档旨在设计一套可靠的变形监测技术,以确保工程的正常运行和安全。
1.2 目的本文档的目的是提供一个详细的变形监测技术设计,包括监测方法、监测仪器和监测方案,以满足工程变形监测的需求。
二、工程概述2.1 工程描述××工程是一个位于某地的大型建造工程,包括多个建造物和地下结构。
工程的主要目标是提供一个安全、舒适、功能完善的建造群。
2.2 工程需求工程变形监测的主要需求包括:- 实时监测工程的变形情况,包括沉降、倾斜、扭曲等;- 提供可靠的数据分析和报告,以便及时采取措施预防和处理潜在的问题;- 确保监测数据的准确性和可靠性。
三、监测方法3.1 监测点布置根据工程的特点和监测需求,我们将在工程的关键部位布置监测点。
监测点的数量和位置将根据工程的规模和复杂程度进行确定。
3.2 监测仪器为了实现对工程变形的准确监测,我们将使用以下监测仪器:- 倾斜计:用于测量工程的倾斜情况;- 沉降仪:用于测量工程的沉降情况;- 扭曲计:用于测量工程的扭曲情况;- 高精度测量仪器:用于对监测点进行精确测量。
3.3 监测方案我们将采用以下监测方案进行工程变形监测:- 定期监测:每隔一段时间对监测点进行测量,以获取工程的变形情况;- 实时监测:通过安装传感器和数据采集系统,实时监测工程的变形情况,并将数据传输到中央控制中心进行分析和处理;- 报警机制:当监测数据超过预设的阈值时,系统将自动发出警报,以便及时采取措施。
四、数据分析与报告4.1 数据采集与存储监测数据将通过数据采集系统进行实时采集,并存储在中央控制中心的数据库中。
数据的采集频率和存储周期将根据监测需求进行设置。
4.2 数据分析监测数据将通过专业的数据分析软件进行处理和分析。
我们将使用统计学方法和趋势分析等技术,以识别潜在的问题和趋势。
道路桥梁工程变形监测方案1.引言道路桥梁工程在使用过程中会受到车辆荷载、自然灾害等因素的影响,从而导致结构的变形和损坏。
因此,对道路桥梁工程的变形进行监测是非常必要的,可以及时发现结构问题,并采取相应的维护和修复措施,以保障工程的安全和稳定性。
本文将针对道路桥梁工程变形监测的方案进行详细介绍和分析。
2. 变形监测技术及方法2.1 常用的监测技术(1)位移监测技术利用GPS、全站仪、测斜仪等设备,对桥梁结构的水平和垂直位移进行实时监测,以判断结构是否存在变形。
(2)应变监测技术利用应变片、应变计等设备,对桥梁结构的应变进行监测,从而判断结构是否存在应力集中或裂缝的情况。
(3)振动监测技术利用加速度计、振动传感器等设备,对桥梁结构的振动情况进行监测,以判断结构的稳定性和安全性。
(4)声波监测技术利用声波传感器和声波分析仪,对桥梁结构的声波传播情况进行监测,以判断结构内部是否存在裂缝或空洞。
2.2 监测方法(1)现场监测定期派专业人员到桥梁现场,利用各种监测设备进行实时监测,并及时记录监测数据和情况。
(2)远程监测利用网络、卫星通信等技术,将监测设备连接至远程监测中心,实现对桥梁结构的远程实时监测和数据传输。
3. 变形监测方案3.1 监测目标根据桥梁结构的特点和使用环境,确定监测的主要目标和重点部位,包括主塔、主梁、支座、桥面和桥墩等结构元素。
3.2 监测方案(1)位移监测方案采用GPS、全站仪、激光测距仪等设备,对桥梁结构的水平和垂直位移进行实时监测,主要监测桥面变形情况和主梁的竖向变形情况。
(2)应变监测方案采用应变片和应变计等设备,对主梁、桥梁支座等关键部位进行应变监测,以判断结构是否存在应力集中或裂缝的情况。
(3)振动监测方案采用加速度计、振动传感器等设备,对桥梁结构的振动情况进行监测,以判断结构的稳定性和安全性。
(4)声波监测方案采用声波传感器和声波分析仪,对桥梁结构的声波传播情况进行监测,以判断结构内部是否存在裂缝或空洞。
变形监测施工方案1. 引言在工程施工中,对变形进行准确监测是确保工程质量,确保结构安全的重要任务之一。
变形监测旨在实时、全面地记录结构体的变形情况,并及时提供监测结果,以便及时发现结构变形的可能性,并采取相应的措施进行调整和修复。
本文就变形监测施工方案进行详细的介绍和概述。
2. 监测方法与技术2.1 监测方法变形监测可以采用多种方法进行,常用的方法包括:•全站仪法:使用全站仪进行精确的水平角、垂直角和斜距的测量,可以获取较为准确的变形数据。
•GPS法:利用全球定位系统(GPS)技术进行变形监测,可以实现实时监测和远程监控。
•激光法:使用激光测距仪进行测量,可以快速获取结构体的形变情况。
•应变计法:利用应变计进行应变测量,通过计算应变值来判断结构体的变形情况。
2.2 监测技术为了确保变形监测的准确性和精度,常常采用以下技术进行辅助:•数据采集系统:通过连接传感器、仪器和计算机等设备,实现数据的自动采集、存储和分析。
•数据传输与共享系统:通过网络技术,将监测数据传输到数据中心,实现多地点、多用户的数据共享与管理。
•数据处理与分析软件:利用专业的数据处理与分析软件,将采集到的监测数据进行处理和分析,生成监测图表和报告。
3. 变形监测方案3.1 前期准备工作在开始变形监测施工之前,需要进行以下准备工作:1.确定监测目标和区域:明确需要监测的结构体和相关区域。
2.确定监测方法和技术:根据工程特点和监测需求,选择合适的监测方法和技术。
3.配置监测设备和仪器:确定所需的监测设备和仪器,并进行校准和调试。
4.建立数据采集系统:搭建数据采集系统,并测试其正常运行。
5.制定监测计划和方案:根据施工进度和监测需求,制定详细的监测计划和方案。
3.2 施工过程中的监测在工程施工过程中,需按照监测计划和方案,进行监测工作。
具体步骤如下:1.安装监测设备和仪器:根据监测区域和结构体特点,将监测设备和仪器安装在合适的位置上。
2.采集监测数据:按照监测方案和要求,定期采集监测数据,并进行记录和存储。
变形监测课程设计一、教学目标本课程旨在通过学习变形监测的基本理论、方法和应用,使学生掌握变形监测的基本概念、原理和流程,培养学生运用变形监测技术解决实际问题的能力。
1.理解变形监测的定义、分类和作用;2.掌握变形监测的基本原理和方法;3.熟悉常用的变形监测技术和设备;4.了解变形监测数据的处理和分析方法。
5.能够正确选择和使用变形监测设备;6.能够独立完成变形监测方案的设计和实施;7.能够对变形监测数据进行处理和分析,并得出合理结论;8.能够运用变形监测技术解决实际问题。
情感态度价值观目标:1.培养学生对变形监测技术的兴趣和热情;2.培养学生严谨的科学态度和团队合作精神;3.使学生认识到变形监测技术在工程和社会中的应用价值。
二、教学内容本课程的教学内容主要包括变形监测的基本理论、方法和应用。
1.变形监测的基本概念、分类和作用;2.变形监测的原理和方法,包括地面测量、卫星遥感、雷达干涉等;3.常用的变形监测技术和设备,如全站仪、GPS、激光扫描仪等;4.变形监测数据的处理和分析方法,包括数据预处理、平差计算、结果分析等;5.变形监测在工程和社会中的应用案例。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式。
1.讲授法:通过讲解变形监测的基本概念、原理和方法,使学生掌握基本知识;2.案例分析法:通过分析实际案例,使学生了解变形监测在工程和社会中的应用;3.实验法:学生进行实地测量和数据处理,培养学生的实践能力;4.讨论法:分组讨论变形监测技术的发展趋势和应用前景,激发学生的思考和创新。
四、教学资源为了支持教学内容和教学方法的实施,本课程将准备以下教学资源:1.教材:选用国内知名专家编写的《变形监测》教材,系统介绍变形监测的基本理论、方法和应用;2.参考书:提供相关领域的经典著作和最新研究成果,供学生拓展阅读;3.多媒体资料:制作课件、演示视频等,形象生动地展示变形监测技术和应用案例;4.实验设备:配置全站仪、GPS等变形监测设备,为学生提供实地操作的机会。
毕业设计:建筑物的变形观测变形监测方案嘿,小伙伴,今天我要跟你聊聊一个相当有意思的课题——建筑物的变形观测变形监测方案。
别看这名字有点长,其实它就是一门研究如何监控建筑物变形的技术活儿。
下面我就用我那十年方案写作的经验,带你领略一下这个方案的精彩之处。
咱们得知道,建筑物变形是个啥玩意儿。
简单来说,就是建筑物在外力作用下,形状和尺寸发生变化。
这事儿听起来有点玄乎,但却是建筑安全的大敌。
所以,监测建筑物的变形,就成了咱们这个方案的核心任务。
一、方案背景话说这事儿起源于我国城市化进程的加速,高楼大厦拔地而起,但随之而来的就是建筑安全问题。
尤其是那些大型、超高层的建筑物,一旦出现变形,后果不堪设想。
于是,咱们这个方案应运而生,旨在为建筑物的变形监测提供一套可行的方案。
二、监测目的1.确保建筑物在施工和使用过程中,结构安全、稳定。
2.及时发现和处理建筑物的变形问题,防止事故发生。
3.为建筑物的维护、保养提供科学依据。
三、监测方法1.全站仪测量法:这是一种利用全站仪对建筑物进行三维测量,从而得到建筑物变形数据的方法。
优点是精度高,但成本较高,操作复杂。
2.光学测量法:通过光学仪器对建筑物进行拍照,然后分析照片中建筑物的变形情况。
这种方法成本较低,操作简单,但精度相对较低。
3.激光扫描法:利用激光扫描仪对建筑物进行扫描,得到建筑物的三维模型,进而分析变形情况。
这种方法精度较高,但成本较高,设备要求较高。
4.雷达监测法:通过雷达对建筑物进行监测,实时获取建筑物的变形数据。
优点是实时性强,但精度相对较低。
综合考虑,我们选择了全站仪测量法作为主要监测手段,辅以光学测量法进行验证。
四、监测步骤1.建立监测点:在建筑物上设置一定数量的监测点,用于采集变形数据。
2.数据采集:利用全站仪对监测点进行测量,获取建筑物的三维坐标。
3.数据处理:将采集到的数据输入计算机,进行数据处理,得到建筑物的变形数据。
4.变形分析:根据变形数据,分析建筑物的变形趋势,为处理变形问题提供依据。
变形监测方案设计书变形监测方案设计书为了确保工作或事情能有条不紊地开展,常常要根据具体情况预先制定方案,方案是书面计划,具有内容条理清楚、步骤清晰的特点。
那要怎么制定科学的方案呢?下面是小编为大家收集的变形监测方案设计书,希望对大家有所帮助。
变形监测方案设计书篇1一、工程概况济宁市城后路金都楼基坑支护工程位于莞城内,拟建六层建筑物,一层地下室,用地面积3177.76平方,现状场地较平整。
基坑开挖深度为3.25~6.90米,东、南、北三面均为道路,东侧为城后路,距基坑约15米,西侧为2~5层的住宅楼群,天然基础,与基坑最近距离约6米。
环境条件:场地附近属残丘台地地貌单元,地表均已填土,地面较平地质情况:根据钻探揭示,场地内第四纪地层主要有坡积层和厚度较大的残积层,下部基岩为花岗岩类。
场地内地下水为滞水类型,储存于粘性土层中,地下水以大气降水补给为主,勘察期间水位埋深为2.30~3.10米。
基坑西侧采用复合型加强土钉墙支护,其余各层比较空旷故采用放坡+土钉的支护方式。
该基坑安全等级为二级。
二、监测目的在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起土体的变形,即使采取了支护措施,一定数量的变形总是难以避免的。
这些变形包括:基坑坑内土体的隆起;基坑支护结构以及周围建筑物的变形。
无论那种位移的量超出了某个容许的范围,都将对基坑支护结构和周围结构与道路造成危害。
为了解施工期间基坑位移、沉降及周边建筑物变形的变化情况,保证基坑自身稳定和安全以及周围建筑物、地下管线的安全,同时给设计、施工部门提出准确的、可靠的、科学的数据,必须进行基坑围护结构沉降、基坑位移及周边建筑物沉降观测、基坑周边地下水位观测。
对基坑施工过程进行监测的目的如下:⑴ 根据现场监测数据与设计值(或预测值)进行比较,如超过某个限值,就采取工程措施,防止支护结构破坏和环境事故的发生。
保证支护结构和相邻道路、建筑物的安全;⑵验证支护结构设计,指导基坑开挖和支护结构的信息化施工;⑶总结工程经验,为完善设计分析提供依据。
公路工程变形监测方案1. 背景介绍公路工程是现代交通运输体系中至关重要的一部分,其建设和维护对于社会经济的发展和人民生活的改善都具有重要意义。
然而,由于公路工程受到地质、气候等自然因素的影响,以及车辆、人流等外部因素的作用,公路工程在使用过程中往往会出现一些变形问题,如路面起砂、裂缝、坑洼等,严重影响了道路的通行安全和舒适性。
因此,对公路工程的变形进行有效监测和预警,是保障道路安全和延长其使用寿命的重要措施。
2. 变形监测的目的和意义公路工程变形监测的目的是及时发现和记录公路工程的变形情况,为工程的维护和修建提供科学依据。
通过对公路工程变形的监测,可以及时采取预防和修复措施,避免变形问题加剧,从而保障道路的使用安全和舒适性。
同时,变形监测还可以为公路工程的设计、改建和维护提供重要的数据支持,为公路工程的规划和管理提供科学依据。
3. 变形监测的方法和技术公路工程的变形监测主要采用现场调查和监测技术相结合的方法。
其中,现场调查主要是通过巡视、检测工具和仪器等手段对公路工程进行实地观测和检测,主要包括路面平整度、水平和垂直偏差、裂缝和坑洼等变形情况。
而监测技术主要包括遥感技术、地面监测技术和无人机监测技术等,这些技术可以对公路工程的变形情况进行全方位的、实时的监测和记录。
在遥感技术方面,可以通过卫星影像和航空影像对公路工程的变形进行监测,这种方法可以实现对大范围区域的监测,且成本较低。
在地面监测技术方面,可以使用3S技术(即遥感、地理信息系统和全球定位系统)对公路工程进行变形监测,这种方法可以实现对特定区域和目标的精细化监测。
而无人机监测技术则是一种新兴的监测方法,通过无人机搭载遥感设备对公路工程进行变形监测,可以实现对地形、地貌、变形等情况的高分辨率监测,具有灵活性强、成本低、实时性好等优点。
4. 变形监测的指标和标准公路工程的变形监测需要依据一定的指标和标准进行,主要包括变形程度、变形形态、变形速率、变形区域等指标和标准。