CH6.3 马氏体相变的主要特点PPT(10级)
- 格式:ppt
- 大小:1.21 MB
- 文档页数:15
马氏体相变的特点
马氏体相变的特点
马氏体相变是金属和合金在温度变化时出现的一种结构变化现象,它的特点主要是结构的拉伸和缩紧。
一、温度变化范围狭窄
马氏体相变的温度变化范围很狭窄,一般是5℃左右,也有变化范围大于10℃的,但都不是很多。
二、变化量小
马氏体相变的变化量较小,长度变化很小,一般变化不超过0.1~
0.2%。
三、温度变化率大
温度变化率较大,当温度在马氏体相变范围内,由于结构的拉伸和缩紧,长度会变化很大,可达数十倍,温度变化率也很大,可达数百倍以上。
四、延展性差
马氏体相变的导热性能差,其密度和硬度较大,所以延展性也很差,一般变化不超过0.2%。
五、热力学易变
热力学可以显示马氏体相变时金属和合金的温度变化,以及在不同温度下状态的各项物理性能,如结构、强度、尺寸等。
六、熔化温度变化
马氏体相变还会影响金属和合金的熔化温度,一般情况下,熔化
温度会随着温度变化而变化。
马氏体相变的基本特征引言马氏体相变是指固体材料经过快速冷却或机械应力作用后,在普通的冷处理条件下发生的晶体结构相变现象。
马氏体相变具有广泛的应用背景,在材料科学和工程领域具有重要的意义。
本文将从马氏体相变的定义、形成机理、基本特征以及应用方面进行探讨。
马氏体相变的定义马氏体相变是指固体材料在冷却过程中经历组织相变,从高温相变为低温相的过程。
这种相变过程是一种固态相变,属于无序到有序的结构转变,通常发生在低温下。
马氏体相变的特点是快速、均匀和可逆的。
马氏体相变的形成机理马氏体相变的形成机理主要涉及晶格畸变、原子扩散和位错运动等过程。
通常情况下,当固体材料经历冷却过程时,晶格会发生畸变,从而形成新的有序结构。
这种畸变能够通过原子的扩散来进行传播,并且位错运动也会促进马氏体相变的形成。
马氏体相变的基本特征马氏体相变具有以下几个基本特征:1.快速性:马氏体相变是一个快速的相变过程,通常在毫秒至微秒的时间尺度内发生。
这种相变速度快的特点使得马氏体相变在某些应用中具有重要意义,比如形状记忆合金。
2.可逆性:马氏体相变是可逆的,即当加热到一定温度时,马氏体又会重新转变为高温相。
这种可逆性使得马氏体材料可以多次进行相变过程,具有重复使用的特点。
3.形状记忆效应:马氏体相变材料具有形状记忆效应,即在经历应力作用后,材料可以保持其原来的形状。
这种形状记忆效应使得马氏体相变材料在机械领域有广泛的应用,比如医疗器械和航空航天。
4.结构转变:马氏体相变是由无序的高温相向有序的低温相转变的过程。
在相变中,晶格结构会发生改变,从而影响材料的力学性能和磁性能等。
马氏体相变的应用马氏体相变具有广泛的应用背景,主要包括以下方面:1.形状记忆合金:马氏体相变材料在形状记忆合金中有广泛的应用。
形状记忆合金可以通过调控温度或应力来改变其形状,并且具有良好的可逆性和稳定性。
这种特性使得形状记忆合金在医疗器械、汽车工业和航空航天等领域有广泛的应用。