热处理原理及工艺马氏体贝氏体转变
- 格式:pptx
- 大小:5.92 MB
- 文档页数:40
马氏体和贝氏体转变温度概述说明以及解释1. 引言1.1 概述马氏体和贝氏体转变温度是金属材料中一个重要的热处理参数,对于决定材料的性能具有重要影响。
马氏体和贝氏体都是金属材料在固态相变时产生的晶体结构类型,它们的转变温度是指在一定条件下,马氏体相或贝氏体相开始生成或完全消失的温度。
本文旨在系统地介绍马氏体和贝氏体转变温度的相关知识,包括其定义、原理以及测定方法。
通过深入探讨这些方面内容,我们可以更好地理解马氏体和贝氏体转变温度对于金属材料性能及加工过程的影响,并为研究者提供必要的参考资料。
1.2 文章结构本文将按照以下结构进行论述:- 引言部分首先概述了文章的背景和目标。
- 随后,在第二部分中详细介绍了马氏体转变温度,包括其定义与原理、影响因素以及测定方法。
- 第三部分则重点讨论了贝氏体转变温度,涉及到其定义与原理、影响因素以及测定方法。
- 第四部分将马氏体和贝氏体转变温度进行了关联,包括相互关系及对比分析、实际应用案例分析以及进一步研究和发展方向。
- 最后,本文将在结论部分总结论述内容,并提出未来研究的方向。
1.3 目的本文旨在系统概述和解释马氏体和贝氏体转变温度的相关知识,便于读者深入理解这两个参数在金属材料中的作用。
通过阐述马氏体和贝氏体转变温度的定义、原理以及测定方法,读者能够更好地理解这些参数对于金属材料性能和加工过程的影响。
同时,本文还将通过对马氏体和贝氏体转变温度之间关系的探讨,为读者提供一些实际应用案例以及未来研究方向的建议。
2. 马氏体转变温度2.1 定义和原理马氏体转变温度(Martensitic Transformation Temperature)是指当金属经历回火或降温等热处理过程后,发生马氏体相变的温度。
在固溶态的情况下,金属晶体中的原子具有较高的无序性,而经过回火或降温处理后,晶体结构会发生变化从而形成马氏体。
马氏体相是一种具有高硬度和脆性的晶态组织,在压缩应力作用下具有变形能力。
纳米材料的退火及热处理工艺讲解纳米材料的退火及热处理工艺是一项关键技术,可以对纳米材料的结构和性能进行调控和优化。
在纳米材料制备和应用中,退火和热处理是常见的工艺步骤,利用高温处理来改变材料的相结构、晶粒尺寸以及其他微观结构参数,从而调整材料的力学性能、热学性能以及电学性能等。
一、退火工艺1. 退火的原理与效果退火是一种通过加热材料到高温并保持一段时间,然后缓慢冷却的热处理过程。
通过退火,可以消除制备过程中产生的缺陷和残余应力,增加材料的晶界移动度,促进材料的晶粒长大和再结晶。
其效果主要有:(1)晶体再排列:退火过程中,晶体的原子重新排列,有助于减少晶界面的数量和增大晶粒尺寸,提高材料的晶界清晰度和晶体的有序性。
(2)应力释放:通过退火,材料中的内应力得以释放,减小材料的变形,提高材料的形变补偿能力和抗变形性能。
(3)残余缺陷处理:退火还可以消除材料中的缺陷,如晶界缺陷、空洞、夹杂物等,提高材料的均匀性和完整性。
2. 不同退火方式和工艺常见的退火方式主要包括恒温退火、等温退火、空气退火、气体保护退火、真空退火等,根据材料的特性和应用需求,选择合适的退火方式。
(1)恒温退火:将材料加热到设定的恒定温度并保持一段时间,然后缓慢冷却。
恒温退火一般用于对晶粒生长和晶界的调控,使其达到较大的晶粒尺寸和较少的晶界数量。
(2)等温退火:将材料加热到设定的温度,并精确控制温度在该值附近波动,保持一定的时间后缓慢冷却。
等温退火主要用于消除残余应力和缺陷,提高材料的力学性能。
(3)空气退火:在常气条件下进行退火,一般用于非氧化物的退火处理。
该退火方式成本较低,但会引入氧化等杂质,影响材料的性能。
(4)气体保护退火:在退火过程中用惰性气体如氮气或氢气代替空气,以减少氧化反应的发生,提高退火效果和材料的质量。
(5)真空退火:在高真空环境下进行退火处理,可避免材料表面与气体的反应,从而保持材料的纯度和质量。
真空退火常用于对氧化物和易挥发性材料的退火处理。
实验一钢的晶粒度及渗碳层深度的测定一、实验目的1、掌握用弦计算法测定晶粒度的方法。
2、了解加热温度对钢的奥氏体晶粒度的影响。
3、熟悉钢的化学热处理渗碳层的显微组织特征。
4、掌握钢的渗碳层深度的测定方法。
二、概述钢中晶粒大小直接影响其力学性能,评定晶粒大小的方法称晶粒测定法,影响奥氏体晶粒度的因素很多。
加热温度和保温时间起着决定性作用。
合金元素、原始组织状态、热加工、热处理等对奥氏体晶粒度也有一定的影响。
钢晶粒度测定法很多,有比较法、面积法、截点法、弦计算法等。
渗碳的目的是为了使钢件表层获得高的硬度和耐磨性,而中心具有良好的冲击韧性,渗碳用钢均是低碳钢和低合金钢,如10、15、20、15Cr、20CrMn Ti、20MnVB、20Cr、12Cr2Ni4A等等。
三、实验原理及内容(一)、测定奥氏体晶粒度的试样及晶粒显示方法测定奥氏体晶粒度的试样,应在交货状态的钢材上截取,试样的数量及取样部位按相应的标准规定执行。
试样尺寸建议为:圆形试样直径10~20mm,矩形试样10×20mm。
奥氏体晶粒度的显示方法主要有以下几种:渗碳法、网状F法、网状P法、加热缓冷法等,其中加热缓冷法适用于过共析钢,我们实验中采用过共析钢,故晶粒显示参照加热缓冷法,具体方法为:将一组试样经不同的温度加热、保温1.5h后,缓冷至600℃出炉。
除去试样表面氧化层,制成金相试样,根据碳化物沿奥氏体晶界析出的网络测定钢的晶粒度。
(用碱性苦味酸钠酒精溶液腐蚀使网状Fe3C变成黑色)。
(二)、钢的渗层组织及检查方法1、渗碳后的显微组织根据渗碳温度,渗碳时间及渗碳介质活性的不同,钢的渗碳层厚度与含碳量的分布也不同。
一般渗碳层厚度约为0.5-1.7mm。
渗碳层的含碳量,从表层向中心,含碳量逐渐下降。
渗碳后钢的表面含碳量约在0.85~1.05% 之间。
碳钢与合金钢渗碳后的组织状态有很大差别。
碳钢经渗碳后退火状态下从表面至中心部分的显微组织,最表面第一层为过共析区(含碳量0.8-1.2%),由珠光体和网状二次渗碳体组成,而合金渗碳钢渗碳后则为珠光体和粒状碳化物组成;第二层为共析区(含碳量在0.8%左右),由层状珠光体组织构成;第三层为亚共析过渡区,直至钢中心部分出现原始组织的界限为止(含碳量由0.8%以下直到碳钢原始含碳量为止),由珠光体和先共析铁素组成;中心为亚共析区,即未渗碳前的原始组织。
H a r b i n I n s t i t u t e o f T e c h n o l o g y热处理工艺与原理课程名称:热处理工艺与原理题目:比较贝氏体转变、珠光体转变和马氏体转变的异同院系:材料科学与工程班级:1219001班设计者:缪克松学号:1121900133设计时间:2015.04.20哈尔滨工业大学一、产物组成与晶体结构在三种相中都由铁素体与渗碳体组成,其中铁素体为体心立方结构,渗碳体为复杂斜方结构。
马氏体相中由于碳原子的分布使铁原子排布成体心正方结构(要求碳含量大于0.25%)。
在三种相中,碳化物含量:珠光体>贝氏体>马氏体。
二、分类依据组织形貌每种相中有不同的划分,珠光体可分为珠光体、贝氏体、屈氏体。
贝氏体可分为上贝氏体、下贝氏体、粒状贝氏体、无碳化物贝氏体、柱状贝氏体、反常贝氏体、BⅢ贝氏体等。
马氏体可分为板条状马氏体、片状马氏体、蝶状马氏体、薄片状马氏体、ε马氏体等。
三、转变类型及温度珠光体转变是扩散型转变,马氏体转变是非扩散型转变,贝氏体转变既有扩散型相变特点,又有非扩散型相变特点。
珠光体转变温度最高,此温度下碳原子和铁原子都能够发生扩散。
贝氏体转变温度其次,此温度下碳原子可以扩散,铁原子不可以扩散。
马氏体转变温度最低,此温度下碳原子和铁原子都不能扩散。
四、热力学条件在三种转变之中,相变的驱动力都是体系自由能的下降。
珠光体转变是准平衡相变,其过程可以用铁碳平衡相图来分析,阻力并不明显。
马氏体转变是非平衡相变,转变阻力包括界面能和界面弹性应变能,由于过程为共格切变,界面能很小。
由于新相和母相共格,同时具有体积效应,导致具有极大的界面弹性应变能。
因此马氏体相变需要很大的过冷度来提高体系自由能差从而克服阻力。
贝氏体相变介于马氏体相变和珠光体相变之间,一方面,在贝氏体相变时,碳在奥氏体中发生预先扩散,重新分布。
由于碳的扩散,降低了形成贝氏体中铁素体的碳含量,使铁素体的自由能降低,增大了新旧两相的自由能差,提高了相变驱动力。
淬火和回火原理淬火和回火是金属材料热处理过程中常用的两个工艺,它们具有重要的意义和作用。
下面将详细介绍淬火和回火的原理和过程。
一、淬火淬火是指将金属材料加热到适当温度,然后迅速冷却至室温或较低温度的热处理过程。
淬火主要通过改变材料组织结构和性能来达到增强材料硬度和强度的目的。
淬火原理包括以下几个方面:1.马氏体转变:金属材料在加热到一定温度时,会发生马氏体转变。
具体来说,当金属加热到淬火温度以上(通常为材料的临界温度),母体组织会发生相变,形成马氏体组织。
马氏体具有高硬度和脆性的特点,可以增强材料的硬度和强度。
2.残余应力:淬火过程中由于材料内部由于温度的突然变化,会形成内部应力。
这些残余应力能够增加材料的硬度和强度,但也容易导致材料脆性和开裂。
3.相变速率:淬火过程中冷却速率非常快,会影响相变的形态和组织结构。
冷却速率快,会产生较细小的马氏体组织,有利于提高材料的硬度和强度。
淬火工艺一般包括加热、保温、冷却三个阶段。
加热阶段是将材料加热到适当温度,使其达到马氏体转变的条件。
保温阶段是让材料在加热温度下保持一定时间,以保证组织改变的发生。
冷却阶段是将材料迅速冷却至室温或较低温度,使其形成马氏体组织。
二、回火回火是指将淬火后的材料加热到适当温度,然后缓慢冷却到室温的热处理过程。
回火主要是为了调整淬火后的硬度和强度,降低材料的脆性,并提高其韧性和可加工性。
回火原理包括以下几个方面:1.马氏体转变逆过程:回火过程中,马氏体组织会发生相变,部分马氏体转变为贝氏体和/或余氏体。
这些相变会导致材料硬度和强度的降低,同时增加材料的韧性和可塑性。
2.降低残余应力:回火过程中,由于温度变化较慢,能够缓解材料内部的残余应力,减少材料的脆性和开裂倾向。
3.组织恢复:回火过程中,材料的组织会发生恢复和再结晶,使其变得更加均匀和稳定。
这有利于提高材料的韧性和可加工性。
回火工艺一般包括加热、保温、冷却三个阶段。
加热阶段是将材料加热到适当温度,使其发生相变和组织改善。
热处理原理与工艺复习思考题一、解释名词本质晶粒度、临界冷却速度、马氏体、淬透性、淬硬性、调质处理、固溶处理、时效二、填空题1.钢的热处理工艺由、、三个阶段所组成。
2.钢加热时奥氏体形成是由等四个基本过程所组成。
3.在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是,不同点是4.用光学显微镜观察,上贝氏体的组织特征呈状,而下贝氏体则呈状。
5.钢的淬透性越高,则其C曲线的位置越,说明临界冷却速度越6.钢完全退火的正常温度范围是,它只适应于钢。
7.球化退火的主要目的是,它主要适用于钢。
8.钢的正常淬火温度范围,对亚共析钢是,对过共析钢是9.马氏体的显微组织形态主要有、两种。
其中的韧性较好。
10.在正常淬火温度下,碳素钢中共析钢的临界冷却速度比亚共析钢和过共析钢的临界冷却速度都11.高碳淬火马氏体和回火马氏体在形成条件上的区别是,在金相显微镜下观察二者的区别是12.当钢中发生奥氏体向马氏体的转变时,原奥氏体中碳含量越高,则MS点越,转变后的残余奥氏体量就越13.改变钢整体组织的热处理工艺有、、、四种。
14.淬火钢进行回火的目的是,回火温度越高,钢的强度与硬度越15.化学热处理的基本过程包括、、等三个阶段。
16.变形铝合金按热处理性质可分为铝合金和铝合金两类。
17.铝合金的时效方法可分为和两种。
18.变形铝合金的热处理方法有、、19.铝合金淬火后的强度和硬度比时效后的,而塑性比时效后的三、择正确答案1.钢在淬火后获得的马氏体组织的粗细主要取决于:a.奥氏体的本质晶粒度;b.奥氏体的实际晶粒度;c.奥氏体的起始晶粒度。
2.奥氏体向珠光体的转变是:a.扩散型转变;b.非扩散型转变;c.半扩散型转变。
3.钢经调质处理后获得的组织是:a.回火马氏体;b.回火屈氏体;c.回火索氏体。
4.过共析钢的正常淬火加热温度是:a.Ac1+30—50℃;b.Accm+30—50℃;c.Ac3+30—50℃.5.影响碳钢淬火后残余奥氏体量的主要因素是:a.钢材本身的碳含量;b.钢中奥氏体的碳含量;c.钢中碳化物的含量。