03 热力学第二定律
- 格式:ppt
- 大小:2.41 MB
- 文档页数:93
物理化学-课后答案-热力学第二定律-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第三章 热力学第二定律【复习题】【1】指出下列公式的适用范围。
(1)min ln BB BS Rnx ∆=-∑;(2)12222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; (3)dU TdS pdV =-; (4)G Vdp ∆=⎰(5),,S A G ∆∆∆作为判据时必须满足的条件。
【解】 (1)封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力。
(2)非等温过程中熵的变化过程,对一定量的理想气体由状态A (P 1、V 1、T 1)改变到状态A (P 2、V 2、T 2)时,可由两种可逆过程的加和而求得。
(3)均相单组分(或组成一定的多组分)封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程。
(4)非体积功为0,组成不变的均相封闭体系的等温过程。
(5)S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡。
A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;【2】判断下列说法是否正确,并说明原因。
(1)不可逆过程一定是自发的,而自发过程一定是不可逆的; (2)凡熵增加过程都是自发过程; (3)不可逆过程的熵永不减少;(4)系统达平衡时,熵值最大,Gibbs 自由能最小;(5)当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;(6)某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;(7)在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;(8)理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符;(9)冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; (10)p C 恒大于V C 。
第3章 热力学第二定律练 习1、发过程一定是不可逆的。
而不可逆过程一定是自发的。
上述说法都对吗为什么 答案:(第一句对,第二句错,因为不可逆过程可以是非自发的,如自发过程的逆过程。
)2、什么是可逆过程自然界是否存在真正意义上的可逆过程有人说,在昼夜温差较大的我国北方冬季,白天缸里的冰融化成水,而夜里同样缸里的水又凝固成冰。
因此,这是一个可逆过程。
你认为这种说法对吗为什么 答案:(条件不同了)3、若有人想制造一种使用于轮船上的机器,它只是从海水中吸热而全部转变为功。
你认为这种机器能造成吗为什么这种设想违反热力学第一定律吗答案:(这相当于第二类永动机器,所以不能造成,但它不违反热力学第一定律)4、一工作于两个固定温度热源间的可逆热机,当其用理想气体作工作介质时热机效率为 η1,而用实际气体作工作介质时热机效率为 η2,则A .η1>η2B .η1<η2 C.η1=η2 D.η1≥η2 答案:(C )5、同样始终态的可逆和不可逆过程,热温商值是否相等体系熵变 ΔS 体 又如何 答案:(不同,但 ΔS 体 相同,因为 S 是状态函数,其改变量只与始、终态有关)6、下列说法对吗为什么(1)为了计算不可逆过程的熵变,可以在始末态之间设计一条可逆途径来计算。
但绝热过程例外。
(2)绝热可逆过程 ΔS =0,因此,熵达最大值。
(3)体系经历一循环过程后,ΔS =0 ,因此,该循环一定是可逆循环。
(4)过冷水凝结成冰是一自发过程,因此,ΔS >0 。
(5)孤立系统达平衡态的标态是熵不再增加。
答案:〔(1) 对,(2) 不对,只有孤立体系达平衡时,熵最大,(3)不对,对任何循环过程,ΔS=0 不是是否可逆,(4) 应是ΔS总>0,水→冰是放热,ΔS<0,ΔS>0,(5) 对〕7、1mol H2O(l)在、下向真空蒸发变成、的 H2O(g),试计算此过程的ΔS总,并判断过程的方向。
答案:(ΔS总=·K-1·mol-1>0)8、试证明两块重量相同、温度不同的同种铁片相接触时,热的传递是不可逆过程。
热力学第二定律一、自发反应—不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2。
热温商:热量与温度的商3。
熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
第三章 热力学第二定律复习题1指出下列公式的适用范围; 1min ln BB BS Rnx ∆=-∑;212222111lnln ln ln P v p T V T S nR C nR C p T V T ∆=+=+; 3dU TdS pdV =-; 4G Vdp ∆=⎰5,,S A G ∆∆∆作为判据时必须满足的条件;解 1封闭体系平衡态,理想气体的等温混合,混合前后每种气体单独存在时的压力都相等,且等于混合后气体的总压力;2非等温过程中熵的变化过程,对一定量的理想气体由状态AP 1、V 1、T 1改变到状态AP 2、V 2、T 2时,可由两种可逆过程的加和而求得;3均相单组分或组成一定的多组分封闭体系,非体积功为0的任何过程;或组成可变的多相多组分封闭体系,非体积功为0的可逆过程;4非体积功为0,组成不变的均相封闭体系的等温过程; 5S ∆:封闭体系的绝热过程,可判定过程的可逆与否; 隔离体系,可判定过程的自发与平衡;A ∆:封闭体系非体积功为0的等温等容过程,可判断过程的平衡与否; G ∆:封闭体系非体积功为0的等温等压过程,可判断过程的平衡与否;2判断下列说法是否正确,并说明原因;1不可逆过程一定是自发的,而自发过程一定是不可逆的; 2凡熵增加过程都是自发过程; 3不可逆过程的熵永不减少;4系统达平衡时,熵值最大,Gibbs 自由能最小;5当某系统的热力学能和体积恒定时,S ∆<0的过程不可能发生;6某系统从始态经过一个绝热不可逆过程到达终态,先在要在相同的始、终态之间设计一个绝热可逆过程;7在一个绝热系统中,发生了一个不可逆过程,系统从状态1变到了状态2,不论用什么方法,系统再也回不到原来状态了;8理想气体的等温膨胀过程,0U ∆=,系统所吸的热全部变成了功,这与Kelvin 的说法不符; 9冷冻机可以从低温热源吸热放给高温热源,这与Clausius 的说法不符; 10p C 恒大于V C ;答1不正确,因为不可逆过程不一定是自发的例如 可逆压缩就不是自发过程,但自发过程一定是不可逆的;2不正确,因为熵增加过程不一定是自发过程,但自发过程都是熵增加的过程;所以必须在隔离体系中凡熵增加过程都是自发过程;3不正确,因为不可逆过程不一定是自发的,而自发过程的熵永不减少;所以必须在隔离体系中;不可逆过程的熵永不减少4不正确;绝热体系或隔离体系达平衡时熵最大,等温等压不作非体积功的条件下,体系达平衡时Gibbs 自由能最小;5不正确,因为只有当系统的U 和V 恒定非体积功为0时,S ∆<0和S ∆=0的过程不可能发生; 6不正确,根据熵增加原理,绝热不可逆过程的S ∆>0,而绝热可逆过程的S ∆=0,从同一始态出发经历一个绝热不可逆过程的熵值和经历一个绝热可逆过程的熵值永不相等,不可能达到同一终态;7正确,在绝热系统中,发生了一个不可逆过程,从状态1变到了状态2,S ∆>0,S 2>S 1,仍然在绝热系统中,从状态2出发,无论经历什么过程,体系的熵值有增无减,所以永远回不到原来状态了;8不正确,Kelvin 的说法是不可能从单一的热源取出热使之变为功而不留下其它变化;关键是不留下其它变化,理想气体的等温膨胀时热全部变成了功,,体积增大了,环境的体积缩小的,留下了变化,故原来的说法不违反Kelvin 的说法;9不正确,Clausius 的说法是不可能把热从低温热源传到高温热源而不引起其它变化;冷冻机可以从低温热源吸热放给高温热源时环境失去了功,得到了热引起了变化,故原来的说法不违反Clausius 的说法; 10不正确,211p V P T T VV V C C V T V P αακκ∂∂⎛⎫⎛⎫-===- ⎪ ⎪∂∂⎝⎭⎝⎭,,因为P V T ∂⎛⎫ ⎪∂⎝⎭>0,TV P ∂⎛⎫⎪∂⎝⎭<0,即α>0,κ>0,则p V C C ->0,p C 恒大于V C ;但有例外,如对277.15K 的水,PV T ∂⎛⎫⎪∂⎝⎭=0,此时p V C C =;3指出下列各过程中,,,,,,Q W U H S A ∆∆∆∆和G ∆等热力学函数的变量哪些为零,哪些绝对值相等1理想气体真空膨胀; 2理想气体等温可逆膨胀; 3理想气体绝热节流膨胀; 4实际气体绝热可逆膨胀; 5实际气体绝热节流膨胀;62()H g 和2()O g 在绝热钢瓶中发生反应生成水; 72()H g 和2()Cl g 在绝热钢瓶中发生反应生成()HCl g ; 822(,373,101)(,373,101)H O l k kPa H O g k kPa ;9在等温、等压、不作非膨胀功的条件下,下列反应达到平衡2233()()2()H g N g NH g +10绝热、恒压、不作非膨胀功的条件下,发生了一个化学反应; 解10Q W U H ==∆=∆=20R U H Q W G A ∆=∆==∆=∆,,,0S ∆= 30U H Q W ∆=∆=== 40Q S U Q W W =∆=∆=+=, 50V Q U H =∆=∆=60W A G Q =∆=∆== U H ∆=∆ 70W A G Q =∆=∆== U H ∆=∆ 800R G A W U ∆=∆=-∆=∆H =,,; 90G ∆= ;10p 0H Q ∆== U W ∆=4将不可逆过程设计为可逆过程; 1理想气体从压力为p 1向真空膨胀为p 2;2将两块温度分别为T 1,T 2的铁块T 1>T 2相接触,最后终态温度为T 3水真空蒸发为同温、同压的气,设水在该温度时的饱和蒸气压为p , 22(,303,100)(,303,100)H O l K kPa H O g K kPa →4理想气体从111,,p V T 经不可逆过程到达222,,p V T ,可设计几条可逆路线,画出示意图;答1设计等温可逆膨胀2在T 1和T 2之间设置无数个温差为dT 的热源,使铁块T 1和T 1-dT,T 1-2dT,…的无数热源接触,无限缓慢地达到终态温度T,使铁块T 2和T 2-dT,T 2-2dT,…的热源接触,无限缓慢地达到终态温度T;3可以设计两条可逆途径:一是等压可逆,另一条是等温可逆;H 2O (l,303K,P S ) H 2S )H 2O (l,,)H 2H 2O ()H 2逆降温4可设计下列四条途径,从111,,p V T 变化到222,,p V T ; a 等容可逆升压到状态A 后再等温可逆膨胀终态Ⅱ; b 等压可逆膨胀到状态B 后再等温可逆膨胀到终态Ⅱ; c 等温可逆膨胀到状态C 后再等压可逆膨胀到终态Ⅱ; d 等温可逆膨胀到状态D 后再等容可逆升压到终态Ⅱ;5判断下列恒温、恒压过程中,熵值的变化,是大于零,小于零还是等于零,为什么 1将食盐放入水中;2HClg 溶于水中生成盐酸溶液; 343()()()NH Cl s NH g HCl g →+; 42221()()()2H g Og H O l +→;5333221(,)1(,)2(,)dm N g dm Ar g dm N Ar g +→+; 6333221(,)1(,)1(,)dm N g dm Ar g dm N Ar g +→+; 73332221(,)1(,)2(,)dm N g dm N g dm N g +→; 83332221(,)1(,)1(,)dm N g dm N g dm N g +→;解1S ∆<0,因为将食盐放入水中为放热过程,Q <0,QS Tδ∆=,所以S ∆<0;2S ∆<0,同理,HClg 溶于水中Q <0,S ∆<0;3S ∆>0,因为该过程为吸热反应,Q >0,S ∆>0;或因为混乱度增加; 4S ∆<0,因为该过程为放热反应,Q <0,S ∆<0;或因为混乱度减小; 5S ∆>0,根据min ln 2ln 2BB BS Rnx R ∆=-=∑>0,或因为混乱度增加;6S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;7S ∆=0,根据min ln 0BB BS Rnx ∆=-=∑;8S ∆<0,根据min ln 2ln 2BB BS Rnx R ∆=-=-∑<061在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应不能自发进行;但在实验室内常用电解水的方法制备氢气,这两者有无矛盾 2请将Carnot 循环分别表达在以如下坐标表示的图上:,,,,T p T S S V U S T H -----解 1r m G ∆>0的判据是在等温等压非体积功为0的条件下,所以在298K 和100kPa 时,反应2221()()()2H O l H g O g →+的r m G ∆>0,说明该反应在等温等压非体积功为0的条件下不能自发进行;而在实验室内常用电解水的方法制备氢气,是在电功对体系作功,所以并不矛盾; 21234习题01有5mol某双原子理想气体,已知其RCmV5.2,=,从始态400K,200kPa,经绝热可逆压缩至400kPa后,再真空膨胀至200kPa,求整个过程的Q,W,△U,△H和△S.解第一步绝热可逆压缩Q1=0 △S1=04.15.25.2,,,,=+=+==RRRCRCCCrmVmVmVmP根据绝热过程方程CTP rr=-1得KkPakPaKPPTTrr6.4874002004004.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=--111,21()5 2.58.314(487.6400)9.1 V mU W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=111,21()5 3.58.314(487.6400)12.75 P mH nC T T mol J K mol K K kJ--∆=-=⨯⨯⋅⋅-=第二步等温向真空膨胀W2=0 △U2=△H2=0 Q2=0111221400ln58.314ln28.8200p kPaS nR mol J K mol J Kp kPa---∆==⨯⋅⋅=⋅所以整个过程的Q=0,W=9.1kJ,△U=9.1kJ,△H=12.75kJ,△S=28.8J•K-12有5molHeg可看作理想气体, 已知其RCmV5.1,=,从始态273K,100kPa,变到终态298K,1000kPa,计算该过程的熵变.解根据理想气体从状态p1,V1,T1到终态p2,V2,T2的熵变公式:1221lnlnTTCppnRSp+=∆得:111110029858.314ln5 2.58.314ln1000273kPa K S mol J K mol mol J K molkPa K----∆=⨯⋅⋅+⨯⨯⋅⋅186.615J K-=-⋅03在绝热容器中,将0.10kg、283K的水与0.20kg、313K的水混合,求混合过程的熵变;设水的平均比热为4.184kJ•K-1•kg-1.解设混合后的平衡温度为T,则 0.10kg 、283K 的水吸热为Q 1=C P T-T 1=4.184kJ•K -1•kg -1×0.10kg×T-283K 0.20kg 、313K 的水放热为Q 2=C P T 1-T=4.184kJ•K -1•kg -1×0.20kg×313K-T 平衡时Q 1=Q 2得 T=303K111113030.1(4.184)ln 28.57283TP T C KS dT kg kJ K kg J K T K ---∆==⨯⋅⋅⨯=⋅⎰111123030.2(4.184)ln127.17313T P T C KS dT kg kJ K kg J K T K---∆==⨯⋅⋅⨯=-⋅⎰△S=△S 1+△S 2=1.40J •K -104在298K 的等温情况下,在一个中间有导热隔板分开的盒子中,一边放0.2molO 2g,压力为20kPa,另一边放0.8molN 2g,压力为80kPa,抽去隔板使两种气体混合,试求1混合后盒子中的压力;2混合过程的Q,W,△U,△S 和△G ;3如果假设在等温情况下,使混合后的气体再可逆地回到始态,计算该过程的Q 和W 的值;解1混合前O 2g 和N 2g 的体积V 相等,混合后是1mol 气体占全部容积的体积2V;21130.28.31429824.77620O nRT mol J K mol KV dm P kPa--⨯⋅⋅⨯===11318.3142985024.7762nRT mol J K mol K p kPa V dm --⨯⋅⋅⨯===⨯2由于是等温过程 △U=0O 2g 和N 2g 都相当于在等温下从V 膨胀到2V2ln 2.02ln2.02R V VR S O ==∆ 2ln 8.02ln 8.02R VVR S N ==∆221ln 2 5.76O N S S S R J K -∆=∆+∆===⋅J RT p p nRT Vdp G 17192ln ln12-=-===∆⎰ 3因为△U′=0,Qr=-Wr=T △S′所以 Qr=-Wr=T △S′=298K×-5.76J•K -1=-1.716J05有一绝热箱子,中间用绝热隔板把箱子的容积一分为二,一边放1mol 300K,100kPa 的单原子理想气体Arg,另一边放2mol 400K,200kPa 的双原子理想气体N 2g,如果把绝热隔板抽去,让两种气体混合达平衡,求混合过程的熵变;解起初Arg 和N 2g 的体积分别为R p nRT V Ar 3==, R pnRTV N 42== 当混合时对于1molArg 相当于从300K,100kPa 膨胀到T,P,V=7R对于2molN 2g 相当于从400K,200kPa 膨胀到T,P,V=7R 而整个体系的 W=0 Q V =△U=0所以02=∆+∆N Ar U U即 0))(())((22,1,2=-+-T T N C n T T Ar C n m V N m V Ar0)400(252)300(231=-⨯+-⨯K T R mol K T R mol得 T=362.5K⎰+=∆T T m V Ar TnC V VnR S 1,1ln111173362.518.314ln8.314ln32300R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =9.4J⎰+=∆T T m V N TnC V VnR S 22,2ln111175362.528.314ln8.314ln42400R Kmol J mol K J mol K R K----=⨯⋅⋅+⨯⋅⋅ =7.26JJ S S S N Ar 66.162=∆+∆=∆06有2mol 理想气体,从始态300K,20dm 3,经下列不同过程等温膨胀至50dm 3,计算各过程的Q,W,△U,△H 和△S;1可逆膨胀; 2真空膨胀;3对抗恒外压100kPa 膨胀;解由于是理想气体的等温过程,所以△U=△H=01可逆膨胀31123150ln 28.314300ln20V dm W nRT mol J K mol K V dm --=-=-⨯⋅⋅⨯⨯ =-4570.8J Q=-W=4570.8J14570.815.24300Q J S J K T K-∆==⋅ 2真空膨胀; W=Q=0S 是状态函数所以△S 的值同1 3对抗恒外压100kPa 膨胀;W=-PV 2-V 1=-100kPa50dm 3-20dm 3=-3.0kJ Q=-W=3.0kJS 是状态函数所以△S 的值同107有1mol 甲苯CH 3C 6H 5l 在其沸点383K 时蒸发为气,计算该过程的Q,W,△U,△H,△S,△A 和△G.已知在该温度下甲苯的汽化热为362kJ•kg -1.解在沸点时蒸发为可逆相变,所以 △G=0 △H=Q=362kJ•kg -1×1mol×0.092kg•mol -1=33.304kJ W =-p V g -V l = -p V g =-nRT=-1mol×8.341J•K -1•mol -1×383K=-3184.26J=-3.184kJ△U=△H-△PV=△H-P △V=△H+W=33.304kJ-3.184kJ=30.12kJ △S=Q/T=33.304kJ/383K=86.96J•K -1 △A=△U-T △S=△U-Q=W=-3.184kJ08在一个绝热容器中,装有298K 的H 2Ol1.0kg,现投入0.15kg 冰H 2Os,计算该过程的熵变.已知H 2Os 的熔化焓为333.4J•g -1. H 2Ol 的平均比热容为4.184J•K -1•g -1.解设计过程如下:1.0kg H 2Ol 放出的热为: Q 放=1.0×103×4.184×298-T0.15kgH 2Os 吸收的热为:Q 吸=0.15×103×4.184×T-273+0.15×103×333.4 根据Q 放=Q 吸 得 T=284.35K321S S S S ∆+∆+∆=∆dT TC T HdT TC K K p KKp ⎰⎰+∆+=35.28427335.284298 27335.284ln184.41015.02731015.04.33329835.284ln 184.4100.1333⨯⨯+⨯⨯+⨯⨯= =12.57J•K -109实验室中有一个大恒温槽的温度为400K,室温为300K,因恒温槽绝热不良而有4.0kJ 的热传给了室内的空气,用计算说明这一过程是否可逆.解该过程是体系放热Q,环境吸热-Q 的过程 △S 体系=Q/T 体系=-4.0kJ/400K=-10J •K -1 △S 环境=-Q/T 环境=4.0kJ/300K=13.33J •K -1△S 隔离=△S 体系+△S 环境=-10J •K -1+13.33J •K -1=3.33J •K -1>0 所以该过程为不可逆过程.10有1mol 过冷水,从始态263K,101kPa 变成同温、同压的冰,求该过程的熵变;并用计算说明这一过程的可逆性.已知水和冰在该温度范围内的平均摩尔定压热容分别为:11,2(,)75.3P m C H O l J K mol --=⋅⋅,11,2(,)37.7P m C H O s J K mol --=⋅⋅;在273K, 101kPa时水的摩尔凝固热为60012(,) 5.90fus m H H O s kJ mol -∆=-⋅;解设计如下过程263K 101kPa H 2O(l)22H 1311121,1273ln175.3ln 2.81263P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=⋅ 1121( 5.90)21.61273fus mn H mol kJ mol S J K T K--∆⨯-⋅∆===-⋅11123,1263ln137.7ln 1.41273P m T K S nC mol J K mol J K T K---∆==⨯⋅⋅=-⋅ △S=△S 1+△S 2+△S 3=-20.21J•K -1111molN 2g 可作理想气体,从始态298K,100kPa,经如下两个等温过程,分别到达终态压力为600kPa,分别求过程的Q,W,△U,△H,△A,△G,△S,和△S iso .1等温可逆压缩; 2等外压为600kPa 时压缩;解由于都是理想气体的等温过程,所以△U=△H=0 1等温可逆压缩1112100ln18.314298ln 4.439600p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-4.439kJ△S =Q/T =-4439J/298K=-14.90J•K -1 △A =△U -T △S =-Q =W =4.439kJ △G =△H -T △S =-Q =W =4.439kJ △S 环境=-Q /T =14.90J•K -1 △S iso =△S 体系+△S 环境=0 2等外压为600kPa 时压缩 W=-P 2V 2-V 1=-nRT1-P 2/P 1=-1mol×8.314J•K -1•mol -1×298K×1-600kPa/100kPa =12.39kJ Q=-W=-12.39kJ△A,△G,△S 都是状态函数的变化,所以值与1相同 △S 环境=-Q /T=12.39kJ/298K=41.58J•K△S iso =△S 体系+△S 环境=-14.90J•K -1+41.58J•K=26.28J•K12将1molO 2g 从298K,100kPa 的始态,绝热可逆压缩到600kPa,试求该过程Q,W,△U,△H,△A,△G,△S,和△S iso .设O 2g为理想气体,已知O 2g的R C m p 5.3,=,112(,)205.14m S O g J K mol θ--=⋅⋅;解由于是绝热可逆压缩 Q=0 △S 体系=04.15.35.3,,,,=-=-==RR RRC C C C r m p m p mV m P根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 2.4996001002984.14.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--11,21()1 2.58.314(499.2298) 4.182V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(499.2298) 5.855P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=△A =△U - S △T =4182J-205.14J•K -1•mol -1×1mol×499.2K-298K =-37.092kJ △G =△H - S △T =5855J-205.14J•K -1•mol -1×1mol×499.2K-298K=-35.42kJ △S 环境=-Q /T =0 △S iso =△S 体系+△S 环境=013将1mol 双原子理想气体从始态298K,100kPa,绝热可逆压缩到体积为5dm 3,试求终态的温度、压力和过程的Q,W,△U,△H,和△S;解对于双原子理想气体R C m V 5.2,=R C m p 5.3,=4.15.25.3,,===RRC C r mV m P 而 11311118.31429824.78100nRT mol J K mol KV dm P kPa --⨯⋅⋅⨯===根据 C pV r=得:kPa dm dm kPa VV p p r12.940578.241004.1332112=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=322211940.125565.3818.314p V kPa dm T K nR mol J K mol --⨯===⨯⋅⋅因为是绝热可逆,所以Q=0 △S=011,21()1 2.58.314(565.38298) 5.557V m U W nC T T mol J K mol K K kJ--∆==-=⨯⨯⋅⋅-=11,21()1 3.58.314(565.38298)7.78P m H nC T T mol J K mol K K kJ --∆=-=⨯⨯⋅⋅-=14将1mol 苯C 6H 6l 在正常沸点353K 和101.3kPa 压力下,向真空蒸发为同温、同压的蒸气,已知在该条件下,苯的摩尔汽化焓为130.77vap m H kJ mol -∆=⋅,设气体为理想气体;试求1该过程的Q 和W ;2苯的摩尔汽化熵m vap S ∆和摩尔汽化Gibbs 自由能m vap G ∆; 3环境的熵变△S 环;4根据计算结果,判断上述过程的可逆性; 解1向真空蒸发 W=0Q=△U而△U 为状态函数的变化所以当等温等压时相变时:W′=-nRT=-1mol×8.314J•K -1•mol -1×353K=-2.935kJ Q=△H=130.77vap m H kJ mol -∆=⋅ △U=Q+W=30.77kJ-2.935kJ=27.835kJ 所以Q=27.835kJ 211130.7787.167353vap mvap m H kJ mol S J K mol T K---∆⋅∆===⋅⋅0=∆m vap G G 是状态函数,所以△G 与可逆相变时相同 3△S 环境=-Q /T =-27.835kJ/353K=-78.85J•K -14△S iso =△S 体系+△S 环境=87.167J•K -1-78.85J•K -1=8.317J•K -1 即 △S iso >0 可见是不可逆过程.15某一化学反应,在298K 和大气压力下进行,当反应进度为1mol 时,放热40.0kJ,如果使反应通过可逆电池来完成,反应程度相同,则吸热4.0kJ;1计算反应进度为1mol 时的熵变m r S ∆;2当反应不通过可逆电池完成时,求环境的熵变和隔离系统的总熵变,从隔离系统的总熵变值说明了什么问题;3计算系统可能做的最大功的值;解1111400013.42298R r m Q J mol S J K mol T K---⋅∆===⋅⋅211140000134.2298P Q J mol S J K mol T K----⋅∆===⋅⋅环境△S iso =△S 体系+△S 环境=13.4J•K -1•mol -1+134.2J•K -1•mol -1=147.6 J•K -1•mol -1 即 △S iso >0 可见是不可逆过程.3J J J S T G W f 44000)400040000()(max ,=---=∆-∆H -=∆-=16 1mol 单原子理想气体从始态273K,100kPa,分别经下列可逆变化到达各自的终态,试计算各过程的Q,W,△U,△H,△S,△A 和△G;已知该气体在273K,100kPa 的摩尔熵11100m S J K mol --=⋅⋅;1恒温下压力加倍; 2恒压下体积加倍; 3恒容下压力加倍;4绝热可逆膨胀至压力减少一半;5绝热不可逆反抗50kPa 恒外压膨胀至平衡; 解1恒温下压力加倍即等温可逆△U=△H=01112100ln18.314273ln 1.573200p kPa W nRT mol J K mol K kJ p kPa--=-=-⨯⋅⋅⨯⨯= Q=-W=-1.573kJ△S=Q/T=-1.573kJ/273K=-5.76J•K -1 △A =△U -T △S =-Q =W =1.573kJ △G =△H -T △S =-Q =W =1.573kJ 2恒压下体积加倍T 2=2T 1 W=-PV 2-V 1=-P 1V 1=-nRT =-1mol×8.314J•K -1•mol -1×273K =-2.27kJ11,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ--∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯= Q=△U-W=3.4kJ+2.27kJ=5.67kJ12ln5.2ln T T R T d C S p ==∆⎰ 1111 2.58.314ln 214.4mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=14.4J•K -1+100J•K -1=114.4J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-31.76kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×114.4J•K -1-273K×100J•K -1 =-29.49kJ3恒容下压力加倍 T 2=2T 1W=011,21()1 1.58.314273 3.4V m U nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=11,21()1 2.58.314273 5.67P m H nC T T mol J K mol K kJ --∆=-=⨯⨯⋅⋅⨯=Q=△U=3.4kJ12ln5.1ln T T R T d C S V ==∆⎰ 1111 1.58.314ln 28.67mol J K mol J K---=⨯⨯⋅⋅⨯=⋅S 2=△S+S 1=8.67J•K -1+100J•K -1=108.67J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=3.4×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-28.63kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=5.67×103J-2×273K×108.67J•K -1-273K×100J•K -1 =-26.36kJ4绝热可逆膨胀至压力减少一半;Q=0 △S=067.15.15.2,,===RRC C r mV m P 根据绝热过程方程C T Pr r=-1得K kPa kPa K P P T T rr 9.2065010027367.167.1112112=⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=--)(12,T T nC W U m V -==∆111 1.58.314(206.9273)824.58mol J K mol K K J --=⨯⨯⋅⋅-=-)(12,T T nC H m P -=∆111 2.58.314(206.9273)1374.3mol J K mol K K J --=⨯⨯⋅⋅-=- △A =△U -S △T=-824.58J-100J•K -1•mol -1×1mol×206.9K-273K =-5.787kJ △G =△H -S △T=-1374.3J-100J•K -1•mol -1×1mol×206.9K-273K =-5.33kJ5绝热不可逆反抗50kPa 恒外压膨胀至平衡;Q=0)()(12122T T C V V P W V -=--= 即: )()(1211222T T C P nRT P nRT P V -=-- 代入数据得:T 2=218.4K所以 1121()1 1.58.314(218.4273)V W U C T T mol J K mol K K --=∆=-=⨯⨯⋅⋅⨯- =-680.92J)(12,T T nC H m P -=∆111 2.58.314(218.4273)mol J K mol K K --=⨯⨯⋅⋅-=-1.135kJ⎪⎪⎭⎫⎝⎛+=+=∆122112,21ln 25ln ln lnT T p p nR T TnC p p nR S m p111005218.418.314ln ln502273kPa Kmol J K mol kPa K --⎛⎫=⨯⋅⋅+ ⎪⎝⎭=1.125J•K -1S 2=△S+S 1=1.125J•K -1+100J•K -1=101.125J•K -1 △A =△U -△TS =△U -T 2S 2-T 1S 1=-680.92J-218.4K×101.125J•K -1-273K×100J•K -1 =4.533kJ△G =△H -△TS =△H -T 2S 2-T 1S 1=-1135J-218.4K×101.125J•K -1-273K×100J•K -1 =-26.36kJ =4.08kJ17将1molH 2Og 从373K,100kPa 下,小心等温压缩,在没有灰尘等凝聚中心存在时,得到了373K,200kPa 的介稳水蒸气,但不久介稳水蒸气全变成了液态水,即H 2Og,373K,200kPa→H 2Ol,373K,200kPa求该过程的△H,△G 和△S;已知在该条件下水的摩尔汽化焓为146.02kJ mol -⋅,水的密度为1000kg•m -3.设气体为理想气体,液体体积受压力的影响可忽略不计;解设计可逆过程如下:H 2O(g)H 2O(l)H 2O(g)H 2O(l)373K,200kPa373K,200kPa(2)121lnp p nRT G =∆ =1mol×8.314J•K -1•mol -1×373Kln0.5 =-2.15kJ02=∆G)(12321p p nMVdp G p p -==∆⎰ρ=1mol×0.018kg•mol -1/1000kg•m -3200kPa-100kPa=1.8J△G=△G 1+△G 2+△G 3=-2148.2J11(46.02)46.02r m n mol kJ molkJ θ-∆H =∆H =⨯-⋅=- 146020(2148.2)117.6373G J J S J K T K-∆H -∆---∆===-⋅ 18用合适的判据证明:1在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2在263K 和100kPa 压力下,H 2Os 比H 2Ol 更稳定; 解1设计等温可逆过程如下1001200kPal kPaG V dp ∆=⎰20G ∆=等温等压无非体积功的可逆相变过程2003100kPag kPaG V dp ∆=⎰所以 ()20020013100100kPakPag l g kPakPaG G G V V dp V dp ∆=∆+∆=-≈⎰⎰若水蒸气可看作理想气体,则ln 20G RT ∆≈所以,在373K 和200kPa 压力下,H 2Ol 比H 2Og 更稳定; 2设100kPa 压力下设计如下可逆过程如下1mol,H 2O(s),263K21mol,H 2S 1ΔS 2S 3123S S S S ∆=∆+∆+∆,,273273()lnln 263273263fus m p m p mn K KnC nC K K K∆H =++冰(水)>0所以自发变化总是朝熵增加的方向进行,H 2Os 比H 2Ol 更稳定;19在298K 和100kPa 压力下,已知C 金刚石和C 石墨的摩尔熵、摩尔燃烧焓和密度分别为:试求:1在298K 及100kPa 下,C 石墨→C 金刚石的θm trs G ∆; 2在298K 及100kPa 时,哪个晶体更为稳定3增加压力能否使不稳定晶体向稳定晶体转化 如有可能,至少要加多大压力,才能实现这种转化解 1根据△G=△H-T △S),298(),298()298(金刚石石墨K H K H K H m c m c m r θθθ∆-∆=∆=-393.51kJ•mol -1--395.40kJ•mol -1 =1.89kJ•mol -1),298(),298()298(石墨金刚石K S K S K S m m m r -=∆θ=2.45J•K -1•mol -1-5.71J•K -1•mol -1 =-3.26J•K -1•mol -11111.89298( 3.26)trs m r m r m G H T S kJ mol K J K mol θθθ---∆=∆-∆=⋅-⨯-⋅⋅=2.862kJ•mol -12因为298K,100kPa 下,θm trs G ∆>0,说明此反应在该条件下不能自发向右进行,亦即石墨比较稳定.3设298K 下压力为p 2时石墨恰能变成金刚石dp V V p K G p K G p p m m m r m r )(),298(),298(2,2⎰-+∆=∆θθθθ石墨金刚石),298(2p K G m r θ∆>0,解上式得:p 2>1.52×109Pa即需要加压至1.52×109Pa 时,才能在298K 时,使石墨转化为金刚石.20某实际气体的状态方程为p RT pV m α+=,式中α为常数;设有1mol 该气体,在温度为T 的等温条件下,由p 1可逆地变到p 2;试写出:Q,W,△U,△H,△S,△A 及△G 的计算表达式;解:2112ln ln p p RT V V RT dV V RTpdV W m -=---=--=-=⎰⎰ααα因为 p T p T V U V T -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 而 α-=⎪⎭⎫ ⎝⎛∂∂m V V R T p 所以 0=--=⎪⎭⎫⎝⎛∂∂p V R TV U mT α 即该气体的等温过程 △U=0 Q=-W=21lnp p RT α=-=⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂P R TV T V T V P H P T )(12p p dp H -==∆⎰ααP R T V P S PT -=⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂12ln p p R dp p RS -=-=∆⎰12lnp p RT S T S T U A =∆-=∆-∆=∆ 1212ln)(p p RT p p S T H G +-=∆-∆=∆α 21在标准压力和298K 时,计算如下反应的)298(K G m r θ∆,从所得数据值判断反应的可能性;1 CH 4g+1/2O 2g →CH 3OHl2 C 石墨+2H 2g+ 1/2O 2g→CH 3OHl 所需数据自己从热力学数据表上查阅;解所查热力学数据如下:1155.115)72.50(27.166)298(-•-=---=∆mol kJ K G m r θ可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.21(298)166.27r m G K kJ mol θ-∆=-⋅可见θm trs G ∆<0,说明此反应在该条件下能自发向右进行.22计算下述催化加氢反应,在298K 和标准压力下的熵变;C 2 H 2 g + 2H 2 g → C 2 H 6 g已知C 2 H 2 g,H 2 g,C 2 H 6 g 在298K 和标准压力下的标准摩尔熵分别为:200.8J•K -1•mol -1,,130.6J•K -1•mol -1,,229.5J•K -1•mol -1,.解 ),(2),(),(),298(22262g H S g H C S g H C S p K S m m m m r θθθθθ--=∆=229.5J•K -1•mol -1-200.8J•K -1•mol -1-2×130.6J•K -1•mol -1, =-232.5J•K -1•mol -1 23若令膨胀系数P T V V ⎪⎭⎫ ⎝⎛∂∂=1α,压缩系数TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ;试证明: κα2VT C C V P =-证明根据V P C C 和的定义,及H=U+P VV p P V p V P T U T V p T U T U T H C C ⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂-⎪⎭⎫ ⎝⎛∂∂=-由dV V U dT T U dU TV ⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂= 在恒压下对T 求偏导得: pT V p T V V U T U T U ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ p T V P T V p V U C C ⎪⎭⎫ ⎝⎛∂∂⎭⎬⎫⎩⎨⎧+⎪⎭⎫ ⎝⎛∂∂=- 1又因为 pdV TdS dU -=在恒温下对V 求偏导得: p V S T V U TT -⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 2 TT T V p p S V S ⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂ 将麦克斯韦关系式p TT V p S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫⎝⎛∂∂代入上式Tp T V p T V V S ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 3将3代入2得: p V p T V T V U Tp T-⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂ 4将4代入1得: Tp V P V p T V T C C ⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂-=-2再将P T V V ⎪⎭⎫ ⎝⎛∂∂=1α, TpV V ⎪⎪⎭⎫⎝⎛∂∂-=1κ代入得: κα2VT C C V P =-24对van der Waals 实际气体,试证明: 2VV U T α=⎪⎭⎫ ⎝⎛∂∂证明: van der Waals 实际气体的状态方程式为()RT b V V a p m m =-⎪⎪⎭⎫ ⎝⎛+2 b V R T p mV -=⎪⎭⎫⎝⎛∂∂ 22m m m m m VT V V b V RT b V RT p b V R Tp T p T V U αα=+---=--=-⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂ 25对理想气体,试证明:nR S U p H V U VS S -=⎪⎭⎫ ⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 证明 pdV TdS dU -=则 T S U V=⎪⎭⎫ ⎝⎛∂∂ p V U S-=⎪⎭⎫⎝⎛∂∂ 又 Vdp TdS dH +=则 Vp H S=⎪⎪⎭⎫ ⎝⎛∂∂ 那么 nRT pV S U p H V U VSS -=-=⎪⎭⎫⎝⎛∂∂⎪⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂ 26在600K,100kPa 压力下,生石膏的脱水反应为42422()()2()CaSO H O s CaSO s H O g ⋅→+试计算:该反应进度为1mol 时的Q,W,△Um,△Hm,△Sm,△Am 及△Gm;已知各物质在298K,100kPa 的热力学数据为:解W=-P △V=-PV 水=-2RT=-2×8.314J•K -1•mol -1×600K=-9.98kJ 在298K,100kPa 时:1(298)241.822(1432.68)(2021.12)104.8r m H K kJ mol θ-∆=-⨯+---=⋅11(298)188.832106.70193.97290.39r m S K J mol K θ--∆=⨯+-=⋅⋅11,33.58299.60186.2019.44r p m C J mol K --∆=⨯+-=-⋅⋅dT C K H K H m T T r m r m r ⎰∆+∆=∆21)298()600(θθ=104.8kJ•mol -1+-19.44J•K -1•mol -1600K-298K =98.93kJ•mol -T d C K S K S m T T r m r m r ln )298()600(21⎰∆+∆=∆θθ=290.39J•K -1•mol -1+-19.44J•K -1•mol -1ln KK298600 =276.79J•K -1•mol -1△Um=△Hm+W=98.93kJ•mol --9.98kJ•mol -=88.95kJ•mol - Q=△U-W=98.93kJ•mol -△Am=△U-T △S=88.95kJ•mol -1-600K×276.79J•K -1•mol -1=-77.124kJ•mol -1△Gm=△H-T △S=98.93kJ•mol -1-600K×276.79J•K -1•mol -1=-67.14kJ•mol -127将1mol 固体碘I 2s 从298K,100kPa 的始态,转变成457K,100kPa 的I 2g,计算在457K 时I 2g 的标准摩尔熵和过程的熵变;已知I 2s 在298K,100kPa 时的标准摩尔熵112(,,298)116.14m S I s K J K mol --=⋅⋅,熔点为387K,标准摩尔熔化焓12(,)15.66fus m H I s kJ mol -∆=⋅;设在298-378K 的温度区间内,固体与液体碘的摩尔比定压热容分别为11,2(,)54.68P m C I s J K mol --=⋅⋅,11,2(,)79.59P m C I g J K mol --=⋅⋅,碘在沸点457K 时的摩尔汽化焓为12(,)25.52vap m H I l kJ mol -∆=⋅;解设计可逆过程如下:I 22(g)100kPa△S=△S 1+△S 2+△S 3+△S 4=vapm vap KKp fusmfus KKP T T d l C T H T d s C H ∆++∆+⎰⎰ln )(ln )(457387387298θ=4571052.25387457ln 68.543871066.15298387ln 68.5433⨯+⨯+⨯+⨯=123.82J•K -1•mol -1又因为 ),(),(22s I S g I S S m m -=∆123.82J•K -1•mol -1=),(2g I S m -116.14 J•K -1•mol -1得: ),(2g I S m =239.96J•K -1•mol -128保持压力为标准压力,计算丙酮蒸气在1000K 时的标准摩尔熵值;已知在298K 时丙酮蒸气的标准摩尔熵值11(298)294.9m S K J K mol θ--=⋅⋅在273-1500K 的温度区间内,丙酮蒸气的定压摩尔热容m P C ,与温度的关系式为:36211,[22.47201.810(/)63.510(/)]P m C T K T K J K mol ----=+⨯-⨯⋅⋅解:由于dT T C S P⎰=故 TC dS P=即⎰⎰=2121T T PS S dT TC S d T T T d C K S K S m K Kr m m ln )298()1000(1000298⎰∆+=θθ=434.8J•K -1•mol -1。
第三章热力学第二定律一.基本要求1.了解自发过程的共同特征及热力学第二定律的表述方式。
2.掌握Carnot循环中各步的功和热的计算,了解如何从Carnot循环中引出熵这个状态函数。
3.掌握Clausius不等式的应用及熵增加原理,会熟练计算一些常见过程如:等温、等压和等容过程的熵变,学会设计简单的可逆过程。
4.了解熵的本质和规定熵的由来,会使用规定熵值来计算化学变化的熵变。
5.理解为什么要定义Helmholtz自由能和Gibbs自由能,它他们有什么用处?如何计算不同过程中它们的变化值?6.了解有几个热力学判据,掌握如何利用Gibbs自由能判据来判断变化的方向和限度。
7.了解热力学的四个基本共识的由来,记住每个热力学函数的特征变量,会利用d G的表示式计算温度和压力对Gibbs自由能的影响。
二.把握讲课要点的建议自发过程的共同特征是不可逆性,热力学第二定律即是概括了所有不可逆过程的经验定律。
通过学习本章,原则上解决了判断变化的方向和限度的问题,完成了化学热力学的最基本的任务。
所以学好本章十分重要。
通过学习Carnot循环,一方面熟练不同过程中功和热的计算,另一方面理解所导出的熵函数的状态函数的性质及热机效率总是小于1的原因。
Clausius不等式就是热力学第二定律的数学表达式,从这个不等式就可以引出以后的几个判据,解决判断变化方向与限度的问题,必须要让学生掌握。
熵增加原理引出了熵判踞,但要讲清楚绝热过程的熵变只能判断过程的可逆与否,而只有隔离系统的熵变才能判断过程的可逆与否及自发与否。
要计算隔离系统的熵变,必须介绍如何计算环境的熵变。
计算熵变一定要用可逆过程的热效应,如果实际是个不可逆过程,则要介绍几个如何设计可逆过程的方法,例如,如何可逆地绕到相变点:熔点、沸点或饱和蒸汽压时的可逆气-液平衡点。
不必完整地介绍熵的本质和热力学第三定律,只需要让学生了解熵是系统混乱度的一种量度,凡是混乱度增加的过程都是自发过程。
第三章热力学第二定律热力学第一定律指出了能量的守恒和转化以及在转化过程中各种能量具有相应的当量关系,但它不能指出变化的方向和变化进行的程度。
自然界的变化无一例外地不违反热力学第一定律,但是不违反热力学第一定律的变化却不一定能发生。
自发变化:某种变化有自动发生的趋势,一旦发生就无需借助外力,可以自动进行,这种变化称为自发变化。
§3.1 自发变化的共同特征——不可逆性下列过程是自发的:(1)焦耳热功当量中功自动转变成热;(2)气体向真空膨胀,吸收热量,降低其内能;(3)热量从高温物体传入低温物体,降低高温物体的内能,使其以热的形式传给低温热源;(4)浓度不等的溶液混合均匀,可降低其内能(5)锌片与硫酸铜的置换反应,将化学能转变成体积功,降低其内能;它们的逆过程都不能自动进行。
要使它们反方向进行,则必须借助外力。
当借助外力,体系恢复原状后,会给环境留下不可磨灭的影响。
如:(1)要将热转变成功,根据卡诺可逆循环,热的一部分可转变为功,而另一部分则必须释放给低温热源,即环境做了功而得到了部分的热。
环境中留下了功变成热的痕迹;(2)要使气体压缩,则环境必须对其做压缩功,而得到等量的热。
环境中留下了功变成热的痕迹;(3)要使热量从低温物体传入高温物体,必须对其做功而得到相应的热。
环境中留下了功变成热的痕迹;(4)将均匀的混合溶液分离,必须通过萃取、结晶、蒸发等对其做功,而得到相应的热。
环境中留下了功变成热的痕迹;(5)要用铜来置换硫酸锌里的锌,则必须对其做电功。
这些例子说明,一个自发变化发生后,不可能使体系和环境都恢复到原来的状态而不留下任何影响,就是说自发过程是不可逆的。
§3.2 热力学第二定律在生活和生成实践中遇到的自动进行的过程,其共同特征就是不可逆性。
也就是说,一切实际过程都是热力学不可逆过程。
而这些不可逆过程都是相互联系的。
人们逐渐总结出反映这一普遍联系的简便说法,即热力学第二定律(The Second Law of Thermodynamics )。
第三章热力学第二定律第三章 热力学第二定律(一)主要公式及其适用条件1、热机效率1211211/)(/)(/T T T Q Q Q Q W -=+=-=η式中:Q 1及Q 2分别为工质在循环过程中从高温热源T 1所吸收的热量和向低温热源T 2所放出的热量,W 为在循环过程中热机对环境所作的功。
此式适用于在两个不同温度的热源之间所进行的一切可逆循环。
2、卡诺定理的重要结论⎩⎨⎧<=+不可逆循环可逆循环,0,0//2211T Q T Q不论是何种工作物质以及在循环过程中发生何种变化,在指定的高、低温热源之间,一切要逆循环的热温商之和必等于零,一切不可逆循环的热温商之和必小于零。
3、熵的定义式TQ dS /d r def = 式中:r d Q 为可逆热,T 为可逆传热r d Q 时系统的温度。
此式适用于一切可逆过程熵变的计算。
4、克劳修斯不等式⎰⎩⎨⎧≥∆21)/d (可逆过程不可逆过程T Q S上式表明,可逆过程热温商的总和等于熵变,而不可逆过程热温商的总和必小于过程的熵变。
5、熵判据∆S (隔) = ∆S (系统) + ∆S (环境)⎩⎨⎧=>系统处于平衡态可逆过程能自动进行不可逆,,0,,0 此式适用于隔离系统。
只有隔离系统的总熵变才可人微言轻过程自动进行与平衡的判据。
在隔离系统一切可能自动进行的过程必然是向着熵增大的方向进行,绝不可能发生∆S (隔)<0的过程,这又被称为熵增原理。
6、熵变计算的主要公式⎰⎰⎰-=+==∆212121r d d d d d T p V H T V p U T Q S对于封闭系统,一切可逆过程的熵变计算式,皆可由上式导出。
(1)∆S = nC V ,m ln(T 2/T 1) + nR ln(V 2/V 1)= nC p,m ln(T 2/T 1) + nR ln(p 2/p 1)= nC V ,m ln(p 2/p 1) + nC p,m ln(V 2/V 1)上式适用于封闭系统、理想气体、C V ,m =常数、只有pVT 变化的一切过程。
热力学第二定律公式
热力学第二定律描述了热能在任何发生物理或化学变化时的按照
规律运动,它是解释物理学中温度变化的关于热能运动的定律。
热力
学第二定律公式简单地表示为热能流动时,它对热源和汇合处的统一性。
其公式为dQ=TdS,其中dQ为热能流动的量,T是温度,dS是热能的熵变。
热力学第二定律是必需有一种热源,即热源处的守恒量需要大于
汇合处的守恒量,以实现传递和传导热能,即利用从热源处至汇合处
之间自然属性的压力。
而TdS,T代表温度,dS代表熵,熵是表示一个热站热量流动的量,它使得熵的变量影响热流的大小。
所以在TdS(T
温度的熵变)的影响下,熵增加量越大,热流量就越大,熵减小量越大,热流越小。
热力学第二定律告诉我们,任何热能运动的原理,其变化只能从
热源处至汇合处,而不是相反。
它也让我们明白,只有熵变才会影响
热流,熵变越大热流也越大,熵变越小热流也越小。
因此,我们可以
从历史和实验中考察物种热量和熵的定义,进而了解它们变化的规律。
第三章 热力学第二定律一、本章小结热力学第二定律揭示了在不违背热力学第一定律的前提下实际过程进行的方向和限度。
第二定律抓住了事物的共性,推导、定义了状态函数—熵,根据熵导出并定义了亥姆霍兹函数和吉布斯函数,根据三个状态函数的变化可以判断任意或特定条件下实际过程进行的方向和限度。
通过本章的学习,应该着重掌握熵、亥姆霍兹函数和吉布斯函数的概念、计算及其在判断过程方向和限度上的应用。
同时,进一步加深对可逆和不可逆概念的认识。
自然界一切自发发生的实际宏观过程均为热力学不可逆过程。
而在没有外界影响的条件下,不可逆变化总是单向地趋于平衡态。
主要定律、定义及公式:1. 热力学第二定律克劳修斯说法:“不可能把热从低温物体传到高温物体而不产生其它影响。
” 开尔文说法:“不可能从单一热源吸取热量使之完全转化为功而不产生其它影响。
” 2. 热力学第三定律: 0 K 时纯物质完美晶体的熵等于零。
()*m 0lim ,0T S T →=完美晶体 或 ()*m0K 0S =完美晶体,。
3. 三个新函数的定义式r δd Q S T =或 2r1δΔQ S T=⎰A U TSG H TS=-=-物理意义:恒温过程 r dA W δ=恒温恒压过程 'r dG W δ=4. 定理卡诺定理:在T 1与T 2两热源之间工作的所有热机中,卡诺热机的效率最高。
12121T T Q Q T Q ⎧-+≥⎨⎩>不可逆循环=可逆循环 12120,0,Q Q T T <⎧+⎨=⎩不可逆循环可逆循环克劳修斯不等式:2121δ,Δδ,Q T S Q T⎧>⎪⎪⎨⎪=⎪⎩⎰⎰不可逆过程可逆过程熵增原理:0,Δ0,S >⎧⎨=⎩绝热不可逆过程绝热可逆过程5. 过程判据熵判据:适用于任何过程;iso sysamb ΔΔΔS S S =+ 000>⎧⎪=⎨⎪<⎩,不可逆,可逆,不可能发生的过程亥姆霍兹(函数)判据:适用于恒温恒容,W '=0的过程;,0,d 00T VA <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 吉布斯(函数)判据:适用于恒温恒压,W '=0;,0,d 00T p G <⎧⎪⎨⎪>⎩自发=,平衡,反向自发 6. 熵变计算公式最基本计算公式:2r1δΔQ S T=⎰次基本计算公式:21d d ΔU p VS T+=⎰(δW '= 0 ) 理想气体pVT 变化熵变计算公式:22,m 11Δln ln V T V S nC nR T V =+ 21,m 12Δlnln p T p S nC nR T p =+ 22,m ,m 11Δlnln V p p V S nC nC p V =+ 请读者自己从次基本计算公式推出以上三式,再由以上三式分别推导出理想气体恒温、恒压、恒容熵变计算公式。
热力学中的热力学第二定律热力学第二定律是热力学中的重要原理之一,指出了一个自然过程的方向性。
它限制了热量如何在系统中传递并转化为做功的能力。
热力学第二定律有许多不同的表述方式,我们将探讨其中几种。
一、卡诺循环卡诺循环是解释热力学第二定律的重要工具。
它是由封闭系统中的两个等温和两个绝热过程组成的循环。
卡诺循环具有最高效率,不可逆过程的效率始终低于卡诺循环的效率。
二、熵增定理熵是热力学中一个非常重要的物理量,它可以看作是系统的无序程度。
根据熵增定理,孤立系统的熵将不断增加,而不会减少。
这意味着热量转化为做功时会产生一定的熵增。
三、布朗运动布朗运动是指微观粒子在溶液中作无规则的运动。
这种无规则的运动表明热力学中微观粒子的运动是不可逆的。
无论是液体中的溶质分子还是气体中的分子,它们的运动都是受到热力学第二定律的限制。
四、热力学势函数热力学势函数是热力学中用来描述系统状态的函数。
吉布斯自由能和哈密顿函数都是物理系统中的热力学势函数。
根据热力学第二定律,一个孤立系统在达到平衡时,其吉布斯自由能将取得最小值。
五、霍金辐射霍金辐射是由黑洞事件视界附近的虚粒子产生的辐射。
根据热力学第二定律,黑洞的质量和面积之间存在一条关系,称为黑洞面积定理。
这表明黑洞在蒸发的过程中,它的面积将不断变小。
六、微观解释热力学第二定律在微观尺度上可以通过统计力学解释。
根据玻尔兹曼原理,微观粒子的状态数随着能量的分配方式而增加。
由于自然趋向高熵状态的发展,低熵状态的出现概率远小于高熵状态。
结语热力学第二定律是热力学中的重要原理,它限制了热量在系统中传递和转化的方式。
通过卡诺循环、熵增定理、布朗运动、热力学势函数、霍金辐射和微观解释等方面的探讨,我们可以更好地理解和应用热力学第二定律。
深入了解和研究这一定律,对于推动科学的发展和应用都具有重要意义。