方差2-方差的性质
- 格式:ppt
- 大小:284.50 KB
- 文档页数:5
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
总结归纳⽅差的性质总结归纳⽅差的性质 ⽅差是在概率论和统计⽅差衡量随机变量或⼀组数据时离散程度的度量。
概率论中⽅差⽤来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的⽅差(样本⽅差)是每个样本值与全体样本值的平均数之差的平⽅值的平均数。
在许多实际问题中,研究⽅差即偏离程度有着重要意义。
以下是⼩编整理的总结归纳⽅差的性质,⼀起来看看吧。
总结归纳⽅差的性质篇1 ⼀.⽅差的概念与计算公式 例1 两⼈的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离⼤。
⽅差描述随机变量对于数学期望的偏离程度。
单个偏离是 消除符号影响 ⽅差即偏离平⽅的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这⾥是⼀个数。
推导另⼀种计算公式 得到:“⽅差等于平⽅的均值减去均值的平⽅”。
其中,分别为离散型和连续型计算公式。
称为标准差或均⽅差,⽅差描述波动 ⼆.⽅差的性质 1.设C为常数,则D(C) = 0(常数⽆波动); 2. D(CX )=C2 D(X ) (常数平⽅提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(⽅差⽆负值) 特别地 独⽴前提的逐项求和,可推⼴到有限项。
⽅差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表⽰这组数据个数,x1、x2、x3……xn表⽰这组数据具体数值) ⽅差公式:S=〈(M-x1)+(M-x2)+(M-x3)+…+(M-xn)〉╱n 三.常⽤分布的⽅差 1.两点分布 2.⼆项分布 X ~ B ( n, p ) 引⼊随机变量 Xi (第i次试验中A 出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另⼀计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后⼀参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的 总结归纳⽅差的性质篇2 第⼀章实数 ⼀、重要概念 1.数的分类及概念数系表: 说明:"分类"的原则:1)相称(不重、不漏) 2)有标准 2.⾮负数:正实数与零的统称。
方差定理公式方差定理公式是一种用于描述随机变量的离散程度的数学工具,它可以帮助我们分析数据的变化情况,评估统计模型的拟合效果,以及进行假设检验等。
方差定理公式有多种形式,本文将介绍其中的几种,并给出相应的证明和应用。
什么是方差方差是一种衡量随机变量或者一组数据与其均值之间的距离的度量,它反映了数据的波动程度。
方差越大,说明数据越分散,越不稳定;方差越小,说明数据越集中,越稳定。
方差的定义有多种方式,其中最常见的一种是:V ar(X)=E[(X−E(X))2]其中,X是一个随机变量,E(X)是它的期望值,E[(X−E(X))2]是它与期望值之差的平方的期望值。
这个定义可以理解为:方差等于每个可能的输出值与均值之差的平方乘以其概率后求和。
另一种常见的定义是:V ar(X)=E(X2)−[E(X)]2这个定义可以通过展开上面的定义得到,也可以记忆为“期望平方内减外”。
这个定义可以理解为:方差等于随机变量的平方的期望值减去随机变量的期望值的平方。
还有一种常见的定义是:V ar(X)=n∑i=1(x i−μ)2f(x i)其中,x i是随机变量X的第i个可能取值,μ=E(X)是它的期望值,f(x i)是它取该值的概率。
这个定义可以理解为:方差等于每个可能取值与均值之差的平方乘以其概率后求和。
以上三种定义都是等价的,可以根据不同的情况选择合适的形式来计算或推导方差。
方差定理公式方差定理公式是一些关于方差运算或性质的公式,它们可以帮助我们简化计算或推导过程,也可以帮助我们理解方差背后的含义或规律。
以下介绍几种常用的方差定理公式。
方差线性性质如果X,Y是两个随机变量,a,b是两个常数,则有:V ar(aX+bY)=a2V ar(X)+b2V ar(Y)+2abCov(X,Y)其中,Cov(X,Y)是X,Y之间的协方差,它表示两个随机变量之间的线性相关程度。
如果X,Y相互独立,则协方差为零,上式就简化为:V ar(aX+bY)=a2V ar(X)+b2V ar(Y)这个公式说明了方差具有线性性质,即两个独立随机变量之和或者差的方差等于它们各自方差乘以系数后求和。
方差加减的性质
性质:
1、设C是常数,则D(C)=0;
2、设X是随机变量,C是常数,则有:
3、设 X 与 Y 是两个随机变量,则:
其中协方差:
特别的,当X,Y是两个不相关的随机变量则:
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
统计学意义
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。