方差2-方差的性质
- 格式:ppt
- 大小:284.50 KB
- 文档页数:5
均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
总结归纳⽅差的性质总结归纳⽅差的性质 ⽅差是在概率论和统计⽅差衡量随机变量或⼀组数据时离散程度的度量。
概率论中⽅差⽤来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的⽅差(样本⽅差)是每个样本值与全体样本值的平均数之差的平⽅值的平均数。
在许多实际问题中,研究⽅差即偏离程度有着重要意义。
以下是⼩编整理的总结归纳⽅差的性质,⼀起来看看吧。
总结归纳⽅差的性质篇1 ⼀.⽅差的概念与计算公式 例1 两⼈的5次测验成绩如下: X: 50,100,100,60,50 E(X )=72; Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离⼤。
⽅差描述随机变量对于数学期望的偏离程度。
单个偏离是 消除符号影响 ⽅差即偏离平⽅的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这⾥是⼀个数。
推导另⼀种计算公式 得到:“⽅差等于平⽅的均值减去均值的平⽅”。
其中,分别为离散型和连续型计算公式。
称为标准差或均⽅差,⽅差描述波动 ⼆.⽅差的性质 1.设C为常数,则D(C) = 0(常数⽆波动); 2. D(CX )=C2 D(X ) (常数平⽅提取); 证: 特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(⽅差⽆负值) 特别地 独⽴前提的逐项求和,可推⼴到有限项。
⽅差公式: 平均数:M=(x1+x2+x3+…+xn)/n (n表⽰这组数据个数,x1、x2、x3……xn表⽰这组数据具体数值) ⽅差公式:S=〈(M-x1)+(M-x2)+(M-x3)+…+(M-xn)〉╱n 三.常⽤分布的⽅差 1.两点分布 2.⼆项分布 X ~ B ( n, p ) 引⼊随机变量 Xi (第i次试验中A 出现的次数,服从两点分布), 3.泊松分布(推导略) 4.均匀分布 另⼀计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布 :其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); ~ 正态分布的后⼀参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的 总结归纳⽅差的性质篇2 第⼀章实数 ⼀、重要概念 1.数的分类及概念数系表: 说明:"分类"的原则:1)相称(不重、不漏) 2)有标准 2.⾮负数:正实数与零的统称。
方差定理公式方差定理公式是一种用于描述随机变量的离散程度的数学工具,它可以帮助我们分析数据的变化情况,评估统计模型的拟合效果,以及进行假设检验等。
方差定理公式有多种形式,本文将介绍其中的几种,并给出相应的证明和应用。
什么是方差方差是一种衡量随机变量或者一组数据与其均值之间的距离的度量,它反映了数据的波动程度。
方差越大,说明数据越分散,越不稳定;方差越小,说明数据越集中,越稳定。
方差的定义有多种方式,其中最常见的一种是:V ar(X)=E[(X−E(X))2]其中,X是一个随机变量,E(X)是它的期望值,E[(X−E(X))2]是它与期望值之差的平方的期望值。
这个定义可以理解为:方差等于每个可能的输出值与均值之差的平方乘以其概率后求和。
另一种常见的定义是:V ar(X)=E(X2)−[E(X)]2这个定义可以通过展开上面的定义得到,也可以记忆为“期望平方内减外”。
这个定义可以理解为:方差等于随机变量的平方的期望值减去随机变量的期望值的平方。
还有一种常见的定义是:V ar(X)=n∑i=1(x i−μ)2f(x i)其中,x i是随机变量X的第i个可能取值,μ=E(X)是它的期望值,f(x i)是它取该值的概率。
这个定义可以理解为:方差等于每个可能取值与均值之差的平方乘以其概率后求和。
以上三种定义都是等价的,可以根据不同的情况选择合适的形式来计算或推导方差。
方差定理公式方差定理公式是一些关于方差运算或性质的公式,它们可以帮助我们简化计算或推导过程,也可以帮助我们理解方差背后的含义或规律。
以下介绍几种常用的方差定理公式。
方差线性性质如果X,Y是两个随机变量,a,b是两个常数,则有:V ar(aX+bY)=a2V ar(X)+b2V ar(Y)+2abCov(X,Y)其中,Cov(X,Y)是X,Y之间的协方差,它表示两个随机变量之间的线性相关程度。
如果X,Y相互独立,则协方差为零,上式就简化为:V ar(aX+bY)=a2V ar(X)+b2V ar(Y)这个公式说明了方差具有线性性质,即两个独立随机变量之和或者差的方差等于它们各自方差乘以系数后求和。
方差加减的性质
性质:
1、设C是常数,则D(C)=0;
2、设X是随机变量,C是常数,则有:
3、设 X 与 Y 是两个随机变量,则:
其中协方差:
特别的,当X,Y是两个不相关的随机变量则:
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
统计学意义
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差概念及计算公式一.方差的概念与计算公式例1两人的5次测验成绩如下:X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”,即,其中分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
二.方差的性质1.设C为常数,则D(C) = 0(常数无波动);2.D(CX )=C2D(X ) (常数平方提取);证:特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3.若X、Y相互独立,则证:记则前面两项恰为D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
三.常用分布的方差1.两点分布2.二项分布X ~ B( n, p )引入随机变量X i(第i次试验中A出现的次数,服从两点分布),3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)~正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2求上节例2的方差。
解根据上节例2给出的分布律,计算得到求均方差。
均方差的公式如下:(xi为第i个元素)。
S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。
就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。
由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。
第二节 方 差1.方差的定义数学期望描述了随机变量取值的“平均”.有时仅知道这个平均值还不够.例如,有A ,B 两名射手,他们每次射击命中的环数分别为X ,Y ,已知X ,Y 的分布律为:表4-7其他的因素.通常的想法是:在射击的平均环数相等的条件下进一步衡量谁的射击技术更稳定些.也就是看谁命中的环数比较集中于平均值的附近,通常人们会采用命中的环数X 与它的平均值E (X )之间的离差|X -E (X )|的均值E [|X -E (X )|]来度量,E [|X -E (X )|]愈小,表明X 的值愈集中于E (X )的附近,即技术稳定;E [|X -E (X )|]愈大,表明X 的值很分散,技术不稳定.但由于E [|X -E (X )|]带有绝对值,运算不便,故通常采用X 与E (X )的离差|X -E (X )|的平方平均值E [X -E (X )]2来度量随机变量X 取值的分散程度.此例中,由于E [X -E (X )]2=0.2×(8-9)2+0.6×(9-9)2+0.2×(10-9)2=0.4,E [Y -E (Y )]2=0.1×(8-9)2+0.8×(9-9)2+0.1×(10-9)2=0.2.由此可见B 的技术更稳定些.定义4.2 设X 是一个随机变量,若E [X -E (X )]2存在,则称E [X -E (X )]2为X 的方差(Variance ),记为D (X ),即D (X )=E [X -E (X )]2. (4.7)称)(X D 为随机变量X 的标准差(Standard deviation )或均方差(Mean square deviation),记为σ(X ).根据定义可知,随机变量X 的方差反映了随机变量的取值与其数学期望的偏离程度.若X 取值比较集中,则D (X )较小,反之,若X 取值比较分散,则D (X )较大.由于方差是随机变量X 的函数g (X )=[X -E (X )]2的数学期望.若离散型随机变量X 的分布律为P {X =x k }=p k ,k =1,2,…,则D (X )=k k k p XE x∑∞=-12)]([. (4.8) 若连续型随机变量X 的概率密度为f (x ),则 D (X )=⎰+∞∞--.)()]([2x x f X E x d (4.9)由此可见,方差D (X )是一个常数,它由随机变量的分布惟一确定.根据数学期望的性质可得:D (X )=E [X -E (X )]2=E [X 2-2X ·E (X )+[E (X )]2]=E (X 2)-2E (X )·E (X )+[E (X )]2=E (X 2)-[E (X )]2.于是得到常用计算方差的简便公式D (X )=E (X 2)-[E (X )]2. (4.10)例4.11 设有甲,乙两种棉花,从中各抽取等量的样品进行检验,结果如下表:表4-9且评定它们的质量.解 由于E (X )=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30,E (Y )=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30,故得D (X )=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=4×0.1+1×0.15+0×0.5+1×0.15+4×0.1=1.1,D (Y )=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=4×0.13+1×0.17+0×0.4+1×0.17+4×0.13=1.38.因D (X )<D (Y ),所以甲种棉花纤维长度的方差小些,说明其纤维比较均匀,故甲种棉花质量较好.例4.12 设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤-+.,0,10,1,01,1其他x x x x求D (X ).解 E (X )=⎰⎰-++-1001)1()1(x x x x x x d d =0, E (X 2)=⎰⎰-++-102012)1()1(x x x x x x d d =1/6, 于是 D (X )=E (X 2)-[E (X )]2=1/6.2.方差的性质方差有下面几条重要的性质.设随机变量X 与Y 的方差存在,则1°设c 为常数,则D (c )=0;2°设c 为常数,则D (cX )=c 2D (X );3°D (X ±Y )=D (X )+D (Y )±2E [(X -E (X ))(Y -E (Y ))];4°若X ,Y 相互独立,则D (X ±Y )=D (X )+D (Y );5°对任意的常数c ≠E (X ),有D (X )<E [(X -c )2].证 仅证性质4°,5°.4°D (X ±Y )=E [(X ±Y )-E (X ±Y )]2=E [(X -E (X ))±(Y -E (Y ))]2=E [X -E (X )]2±2E [(X -E (X ))(Y -E (Y ))]+E [Y -E (Y )]2=D (X )+D (Y )±2E [(X -E (X ))(Y -E (Y ))].当X 与Y 相互独立时,X -E (X )与Y -E (Y )也相互独立,由数学期望的性质有E [(X -E (X ))(Y -E (Y ))]=E (X -E (X ))E (Y -E (Y ))=0.因此有D (X ±Y )=D (X )+D (Y ).性质4°可以推广到任意有限多个相互独立的随机变量之和的情况.5°对任意常数c ,有E [(X -c )2]=E [(X -E (X )+E (X )-c )2]=E [(X -E (X ))2]+2(E (X )-c )·E [X -E (X )]+(E (X )-c )2=D (X )+(E (X )-c )2.故对任意常数c ≠EX ,有DX <E [(X -c )2].例4.13 设随机变量X 的数学期望为E (X ),方差D (X )=σ2(σ>0),令Y =σ)(X E X -,求E (Y ),D (Y ).解 E (Y )=[],0)()(1)]([1)(=-=-=⎥⎦⎤⎢⎣⎡-X E X E X E X E X E X E σσσ D (Y )=.1)(1)]([1)(2222===-=⎥⎦⎤⎢⎣⎡-σσσσσX D X E X D X E X D 常称Y 为X 的标准化随机变量.例4.14 设X 1,X 2,…,X n 相互独立,且服从同一(0-1)分布,分布律为P {X i =0}=1-p ,P {X i =1}=p , i =1,2,…,n .证明 X =X 1+X 2+…+X n 服从参数为n ,p 的二项分布,并求E (X )和D (X ).解 X 所有可能取值为0,1,…,n ,由独立性知X 以特定的方式(例如前k 个取1,后n -k 个取0)取k (0≤k ≤n )的概率为p k (1-p )n -k ,而X 取k 的两两互不相容的方式共有kn C 种,故P {X =k }=kn C p k (1-p )n -k , k =0,1,2,…,n ,即X 服从参数为n ,p 的二项分布.由于E (X i )=0×(1-p )+1×p =p ,D (X i )=(0-p )2×(1-p )+(1-p )2×p =p (1-p ), i =1,2,…,n ,故有 E (X )=.)(11np X E X E ni i n i i ==⎪⎭⎫ ⎝⎛∑∑== 由于X 1,X 2,…,X n 相互独立,得D (X )= ).1()(11p np X D X D ni i n i i -==⎪⎭⎫ ⎝⎛∑∑== 3.常用分布的方差(1) (0-1)分布设X 服从参数为p 的0-1分布,其分布律为由例4.14知,D (X )=p (1-p ).(2) 二项分布设X 服从参数为n ,p 的二项分布,由例4.14知,D (X )=np (1-p ).(3) 泊松分布设X 服从参数为λ的泊松分布,由上一节知E (X )=λ,又E (X 2)=E [X (X -1)+X ]=E [X (X -1)]+E (X )=∑∑∞=--∞=-+-=+-2220)!2(!)1(k k k kk k k k λλλλλλλe e=λ2e -λ·e λ+λ=λ2+λ,从而有D (X )=E (X 2)-[E (X )]2=λ2+λ -λ2=λ.(4) 均匀分布设X 服从[a ,b ]上的均匀分布,由上一节知E (X )=2ba +,又E (X 2)=3222b ab a x a b x b a ++=-⎰d ,所以D (X )=E (X 2)-[E (X )]2=12)()(41)(312222a b b a b ab a -=+-++.(5) 指数分布 设X 服从参数为λ的指数分布,由上一节知.E (X )=1/λ,又E (X 2)=222λλλ=⎰-b a x x x d e ,所以D (X )=E (X 2)-[E (X )]2=.112222λλλ=⎪⎭⎫ ⎝⎛-(6) 正态分布设X ~N (μ,σ2),由上一节知E (X )=μ,从而D (X )=[]⎰⎰∞+∞--∞+∞--=--d e πd x x x x f XE x x 222)(2221)()()(σμσμ令σμ-x =t 则D (X )=)(22222222222⎰⎰∞+∞--∞+∞--∞+∞--+-=t t t t t t td e e πd e πσσ=)20(22ππ+σ =σ2.由此可知:正态分布的概率密度中的两个参数μ和σ分别是该分布的数学期望和均方差.因而正态分布完全可由它的数学期望和方差所确定.再者,由上一章第五节例3.17知道,若X i ~N (μi ,σi 2),i =1,2,…,n ,且它们相互独立,则它们的线性组合c 1X 1+c 2X 2+…+c n X n (c 1,c 2,…,c n 是不全为零的常数)仍然服从正态分布.于是由数学期望和方差的性质知道:c 1X 1+c 2X 2+…+c n X n ~⎪⎭⎫ ⎝⎛∑∑==n i n i i i i i c c N 1122,σμ.这是一个重要的结果.例4.15 设活塞的直径(以cm 计)X ~N (22.40,0.032),气缸的直径Y ~N (22.50,0.042),X ,Y 相互独立,任取一只活塞,任取一只气缸,求活塞能装入气缸的概率.解按题意需求P {X <Y }=P {X -Y <0}.令Z =X -Y ,则E (Z )=E (X )-E (Y )=22.40-22.50=-0.10,D (Z )=D (X )+D (Y )=0.032+0.042=0.052,即Z ~N (-0.10,0.052),故有P {X <Y }=P {Z <0}=⎪⎭⎫⎝⎛Φ=⎭⎬⎫⎩⎨⎧--<--05.010.005.0)10.0(005.0)10.0(Z P=Φ(2)=0.9772.。
方差概念及计算公式-CAL-FENGHAI.-(YICAI)-Company One1方差概念及计算公式一.方差的概念与计算公式例1两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”,即,其中分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
二.方差的性质1.设C为常数,则D(C) = 0(常数无波动);2.D(CX )=C2D(X ) (常数平方提取);证:特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3.若X、Y相互独立,则证:记则前面两项恰为D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
三.常用分布的方差1.两点分布2.二项分布X ~ B( n, p )引入随机变量X i(第i次试验中A出现的次数,服从两点分布),3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)~正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2求上节例2的方差。
解根据上节例2给出的分布律,计算得到求均方差。
均方差的公式如下:(xi为第i个元素)。
S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。
一、***方差的性质及方差的计算题目:某机械企业在下料时需要把长度为L的钢材截成长度为L1和L2的两段,已知L服从均值为10cm,标准差为0.4cm的正态分布,L1服从均值为5cm,标准差为0.3cm的正态分布,则关于L2的分布,下列说法正确的是:CA. 一定不是正态分布B. 服从均值为5cm,标准差为0.1cm的正态分布C. 服从均值为5cm,标准差为0.5cm的正态分布D. 服从均值为5cm,标准差为0.7cm的正态分布X1和X2相互独立时,有此题是两正态分布之差L2还是正态分布,均值10-5=5,标准差是两方差之和再开平方。
Var(X1-X2)=VarX1+VarX2Var(L2)=Var(L-L1)=VarL+VarL1=0.4^2+0.3^2=0.25Stdev(L2)=0.25^0.5=0.5注意:方差有可加性,sqrt(0.08^2+0.06^2)=sqrt(0.01)=0.1题目:某公司对20名六西格玛绿带奖励了2万元,奖金按每个绿带的表现进行了二次分配,有人计算出奖金额的方差为81。
后来,公司又出了两个追加奖金的备选方案:(1)每人增加100元;(2)每人增加10%。
问若实施这两种方案,奖金的方差分别是多少(保留整数)?AA. 81 98B. 81 89C. 91 98D. 以上都不对方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。
概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。
在概率分布中,设X是一个离散型随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X),Var(X)或DX,其中E(X)是X的期望值,X是变量值[1],公式中的E是期望值expected value 的缩写,意为“变量值与其期望值之差的平方和”的期望值。
概率论中的期望与方差概率论是一门研究随机现象的数学理论。
在概率论中,期望和方差是两个重要的概念。
本文将围绕这两个概念展开阐述,并探讨它们在概率论中的应用。
一、期望的定义与性质期望是对随机变量的平均值的度量,反映了随机变量的平均水平。
设随机变量X的分布律为P(X=x),则X的期望E(X)定义为∑[x·P(X=x)]。
期望具有线性性质,即对于任意常数a和b,E(aX+b)=aE(X)+b。
期望在概率论中有着广泛的应用。
在统计学中,期望被用于描述样本均值的性质。
在金融领域,期望被用于计算资产收益的预期值。
在工程学中,期望被用于评估系统的性能。
二、方差的定义与性质方差用于衡量随机变量的离散程度。
设随机变量X的分布律为P(X=x),则X的方差Var(X)定义为∑[(x-E(X))^2·P(X=x)]。
方差的算术平方根称为标准差。
方差的计算是概率论中的重要内容。
方差衡量了随机变量与其期望之间的差异程度,越大表示随机变量值的分散程度越大。
方差的应用包括金融学中的风险度量、质量控制中的异常度量等。
三、期望与方差的关系期望和方差是概率论中两个紧密相关的概念。
根据方差的定义可得,Var(X)=E[(X-E(X))^2]。
这说明方差是对随机变量离散程度的度量,同时也可以看作是随机变量与其期望之差的平方的期望。
期望和方差之间存在一定的关系。
例如,对于两个独立随机变量X和Y,有Var(X+Y)=Var(X)+Var(Y)。
这个性质被称为方差的可加性。
另外,若常数a和b分别为aX和bY的系数,则Var(aX+bY)=a^2·Var(X)+b^2·Var(Y)。
四、期望与方差的应用期望和方差在概率论中有着广泛的应用。
以期望为例,它可以用于计算随机变量的平均值,进而评估随机事件的结果。
在统计学中,期望被用于估计总体参数,如样本均值是总体均值的无偏估计。
方差的应用也是多种多样的。
在金融学中,方差被用于度量资产的风险程度。