六年级数学圆柱、圆锥等有关公式
- 格式:pdf
- 大小:55.11 KB
- 文档页数:1
六年级数学公式(1)1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a= a5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径Ѕ=πr11、长方体的表面积=(长×宽+长×高+宽×高)×212、长方体的体积=长×宽×高V =abh13、正方体的表面积=棱长×棱长×6 S =6a14、正方体的体积=棱长×棱长×棱长V=a.a.a= a15、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch17、圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷319、长方体(正方体、圆柱体)的体1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a 面积=边长×边长S=a×a2 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a3 、长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ahs面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷28 圆形S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数本文标签: 复习资料六年级数学公式(2)和差问题(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh本文标签: 复习资料六年级数学公式(3)1.认识圆柱和圆锥,掌握它们的基本特征。
圆柱和圆锥是中学数学中常见的几何体,也是学生需要掌握的基本形状。
在六年级数学中,学生将深入学习圆柱和圆锥的性质、计算公式和解题方法。
圆柱是由一个圆形底面和一个与底面平行的侧面围成的,其计算公式主要包括底面积、侧面积和体积。
1.圆柱的底面积公式圆柱的底面积是一个圆的面积,用公式表示为:底面积=π×半径²其中,π(pi)是一个重要的数学常量,大约等于3.1416、半径是指底面上的半径长度。
2.圆柱的侧面积公式圆柱的侧面积是圆柱的侧面展开后的矩形面积,用公式表示为:侧面积=圆周长×高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径3.圆柱的体积公式圆柱的体积是指圆柱所能容纳的物体的空间大小,用公式表示为:体积=底面积×高圆锥是由一个圆形底面和一个顶点连接到底面不同点的侧面围成的,其计算公式主要包括底面积、侧面积和体积。
1.圆锥的底面积公式圆锥的底面积是一个圆的面积,计算公式与圆柱相同,即:底面积=π×半径²2.圆锥的侧面积公式圆锥的侧面积是由圆锥的侧面展开后形成的扇形的面积,用公式表示为:侧面积=½×圆周长×斜高其中,圆周长可以通过底面积的直径求得,即:圆周长=π×直径斜高是指从圆锥的顶点到圆底面上的一个点的直线距离。
3.圆锥的体积公式圆锥的体积是指圆锥所能容纳的物体的空间大小,用公式表示为:体积=1/3×底面积×高其中,底面积和高与圆柱的计算公式相同。
三、解题示例为了更好地理解和应用圆柱和圆锥的计算公式,以下是一些典型的解题示例:示例1:一个圆柱的底面半径为5cm,高为10cm,求底面积、侧面积和体积。
解:底面积= π × 5² = 3.1416 × 25 = 78.54cm²侧面积 = 圆周长× 高= 3.1416 × 10 = 31.416cm²体积 = 底面积× 高= 78.54 × 10 = 785.4cm³示例2:一个圆锥的底面半径为8cm,斜高为12cm,求侧面积和体积。
圆柱与圆锥【考点要求】1、认知圆柱与圆锥,掌握它们的各部分特征2、理解并掌握圆柱的侧面积和表面积的计算方法,并会正确计算3、理解并掌握圆柱与圆锥的体积的计算方法,会运用公式计算体积、容积,解决有关的简单的实际问题。
【基础知识回顾】考点一、圆柱的各部分名称,展开图一、圆柱的各部分名称,展开图1、底面、侧面、高:(1)圆柱的两个圆面叫做底面,圆柱的两个底面都是圆,并且大小一样;(2)周围的面叫做侧面,圆柱的侧面是曲面;(3)两个底面之间的距离叫做高,圆柱的高有无数条;拿一张长反省的硬纸,贴在木棒上,快速转动,转动起来的形状就是个一个圆柱。
2、圆柱的侧面展开图:圆柱的侧面展开图是一个长方形,长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
【练习一】1、点的运动可以形成(),线的运动可以形成一个(),面的运动可以形成()。
长方形绕一条边旋转一周可以形成()2、圆柱由()个面组成,分别是()()()组成,上下底面都是(),侧面的展开是一个()。
3、圆柱的侧面展开是一个长方形,长方形的长等于圆柱的(),长方形的宽等于圆柱的()4、如右图,以长方形的长为轴,旋转一周,得到的立体图形是(),那么,得到的这个立体图形的高是()厘米,底面周长是()厘米。
3厘米6厘米5、判断(1)长方体中最多有4个面可能是正方形()(2)一个圆柱,如果底面直径和高相等,则圆柱的侧面展开是正方形()(3)如果一个物体上、下底面是面积相等的两个圆,那么这个物体一定是圆柱()。
考点二、圆柱的表面积π+2πrh=2πr(r+h)二、圆柱的表面积=2个圆的面积+1个侧面积=2r21、圆柱的侧面积=底面周长×高=πdh=2πrh因为圆柱的侧面展开是一个长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,所以长方形的面积就是圆柱的侧面积=底面周长×高π×22、圆柱的2个底面积:S=r2π+2πrh=2πr(r+h)3、圆柱的表面积:2个底面积+1个侧面积=2r2注意:有时题目计算表面积时,并不是三个面的面积都要计算,要结合具体题目具体分析,比如,通风管就只用计算侧面积即可,无盖的水桶就只用计算侧面积和1个底面积4、圆柱的截断与拼接:(1)把一个圆柱截成两个圆柱,增加的表面积是两个底面积;(2)把两个同样粗细的圆柱拼成一个圆柱,减少的表面积是两个底面积。
圆锥的认识和体积;圆柱和圆锥体积的应用学生姓名年级学科授课教师日期时段核心内容认识圆锥及其体积;掌握圆柱及圆柱体积应用课型一对一教学目标1、初步认识圆锥,掌握圆锥的特征;2、理解圆柱、圆锥体积的推导过程;3、掌握圆锥体积的计算公式,运用其解决简单的实际问题。
4、运用圆柱与圆锥的关系解决问题。
重、难点重点:教学目标1、3 难点:教学目标2、4课首沟通1、还记得圆柱吗?圆柱的表面积和体积的计算公式吗?2、你能说说我们解决圆柱的体积的计算方式是什么?知识导图课首小测1.一段圆柱形钢材长5米,横截成三个小圆柱表面积增加了40平方厘米。
如果每立方厘米钢重 7.8克,这段钢材重多少千克?2.一个圆形罐头盒的底面半径是5cm,高是18cm。
它的体积是多少?导学一:圆锥的认识和体积知识点讲解 1:圆锥的认识圆锥是由一个底面和一个侧面两部分组成的。
(1)底面:圆锥中圆形的面就是它的底面,它有一个底面。
底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。
(2)侧面:圆锥周围的面就是它的侧面。
圆锥的侧面是一个曲面(3)高:从圆锥的顶点到底面圆心的距离就是圆锥的高,高用字母h表示。
圆锥只有一条高。
例 1. 圆锥的底面是一个( );侧面是一个( ),侧面展开是一个( )。
例 2. 圆锥的高是指从圆锥( )到底面( )的( )。
【学有所获】测量圆锥的高:“先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离。
”我爱展示1.圆锥有()条高2.画出下列每个圆锥的高知识点讲解 2:圆锥的体积一个圆锥所占空间的大小,叫做这个圆锥的体积。
圆锥的体积的计算公式:圆锥的体积=底面积×高×V圆锥=S h推导公式:圆柱的体积=底面积×高,与圆柱等底等高的圆锥的体积等于圆柱体积的,推得圆锥的体积=底面积×高×例 1. 如图,先将甲容器注满水,再将水倒入乙容器,这时乙容器中的水有多高?(单位:cm)【学有所获】同底等高的圆柱和圆锥,圆柱的体积是圆锥体积的3倍。
圆柱和圆锥是初中数学的重要内容,下面为您详细介绍关于圆柱和圆锥的计算公式。
一、圆柱的计算公式:1.面积公式:圆柱的底面积公式为:S底=π×r²,其中r为底面半径。
圆柱的侧面积公式为:S侧=2π×r×h,其中r为底面半径,h为圆柱的高度。
圆柱的全面积公式为:S全=S底+S侧=π×r²+2π×r×h。
2.体积公式:圆柱的体积公式为:V=S底×h=π×r²×h,其中r为底面半径,h为圆柱的高度。
二、圆锥的计算公式:1.面积公式:圆锥的底面积公式为:S底=π×r²,其中r为底面半径。
圆锥的侧面积公式为:S侧=π×r×l,其中r为底面半径,l为斜高,即从锥顶到底面的距离。
圆锥的全面积公式为:S全=S底+S侧=π×r²+π×r×l。
2.体积公式:圆锥的体积公式为:V=(1/3)×S底×h=(1/3)×π×r²×h,其中r为底面半径,h为圆锥的高度。
三、圆柱和圆锥的应用举例:1. 比如一个圆柱的底面半径为2cm,高度为5cm,求其体积和表面积。
圆柱的底面积为:S底= π×r² = 3.14×2² ≈ 12.56 cm²圆柱的侧面积为:S侧= 2π×r×h = 2×3.14×2×5 ≈ 62.8 cm²圆柱的全面积为:S全 = S底 + S侧= 12.56 + 62.8 ≈ 75.36cm²圆柱的体积为:V = S底×h = 12.56×5 ≈ 62.8 cm³2. 再比如一个圆锥的底面半径为3cm,斜高为4cm,求其体积和表面积。
圆柱圆锥的体积【教学目标】1.记住圆柱圆锥体积公式2.理解同底面积、同高的圆柱和圆锥,圆柱体积是圆锥体积的3倍3.能根据圆柱和圆锥公式,解决一般的实际应用题【知识梳理】一、圆柱1.定义:以矩形的一边绕着另一条边旋转360°,其余三边旋转形成的面所围成的旋转体叫做圆柱。
2.如图:上下两个面是底面,围成圆柱的曲面叫做侧面,两个底面之间的距离叫做高。
3、圆的周长:C=πd =2πr4、圆的面积:S=πr25、圆柱的侧面积:把圆柱侧面沿高展开,得到一个长方形(或正方形),长方形的长是圆柱的底面周长,长方形的宽是圆柱的高。
侧面积:S侧=Ch=πdh=2πrh逆推公式有:C=S侧÷h h=S侧÷C6、圆柱的表面积:S表=S侧+2S底7、圆柱的体积圆柱所占空间的大小,叫做这个圆柱体的体积。
设一个圆柱底面半径为r,高为h,则体积V:V=πr2h ;如S为底面积,高为h,体积为V:V=Sh圆柱的体积跟长方体、正方体一样,都是底面积×高圆柱体积=底面积×高V柱=Sh=πr2 h圆柱的高=体积÷底面积h =V柱÷S=V柱÷(πr2)圆柱的底面积=体积÷高S=V柱÷h圆柱的切割a.横切(垂直于轴):切面是圆,表面积增加2倍底面积,即S增=2πr2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh注:圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
常见的圆柱解决问题:①、压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④鱼缸、厨师帽(求侧面积和一个底面积);V钢管=(πR2﹣πr2)×h(1)等底等高:V锥:V柱=1:3(2)等底等体积:h锥:h柱=3:1圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。
六年级下册数学圆柱圆锥练习题(含答案)一、1. 一个圆柱的底面直径为8厘米,高为10厘米,求其体积和表面积。
解:圆柱的体积公式为V = πr^2h,表面积公式为S = 2πr(r+h)。
其中r为底面半径,h为高度。
先求出底面半径r = 8/2 = 4厘米。
体积V = π(4^2)×10 = 160π≈ 502.65 cm^3表面积S = 2π×4(4+10) = 2π×4×14 ≈ 351.86 cm^22. 一个圆锥的底面半径为6厘米,高为8厘米,求其体积和表面积。
解:圆锥的体积公式为V = 1/3πr^2h,表面积公式为S = πr(r+√(r^2+h^2))。
先求出底面半径r = 6厘米。
体积V = 1/3π(6^2)×8 = 96π≈ 301.59 cm^3表面积S = π×6(6+√(6^2+8^2)) ≈ 150.80 cm^2二、3. 一个圆柱的底面直径是12.6厘米,高是16厘米,求其体积和表面积。
解:首先计算底面半径r = 12.6/2 = 6.3厘米。
体积V = π(6.3^2)×16 = 633.6π≈ 1991.05 cm^3表面积S = 2π×6.3(6.3+16) ≈ 570.97 cm^24. 一个圆锥的底面直径是9.8厘米,高是12厘米,求其体积和表面积。
解:先计算底面半径r = 9.8/2 = 4.9厘米。
体积V = 1/3π(4.9^2)×12 ≈ 237.67 cm^3表面积S = π×4.9(4.9+√(4.9^2+12^2)) ≈ 145.55 cm^2三、5. 一个圆柱的底面半径是5厘米,高是18厘米,求其体积和表面积。
解:底面半径r = 5厘米。
体积V = π(5^2)×18 = 450π≈ 1413.72 cm^3表面积S = 2π×5(5+18) ≈ 376.99 cm^26. 一个圆锥的底面半径是7厘米,高是10厘米,求其体积和表面积。
圆、圆柱、圆锥的有关公式
圆的面积s =π×半径2 S=πr 2
环形的面积s =π(R 2-r 2)
圆的周长=圆周率×直径=圆周率×半径×2 c=πd 或c =2πr
圆柱的侧面积=底面圆的周长×高 S=ch
圆柱的表面积=侧面积+底面积×2
求圆柱的表面积三步:
(1)圆柱的侧面积=底面圆的周长×高 S 侧=ch
(2)圆柱的底面积S
底=πr²
(3)圆柱的表面积=侧面积+底面积×2
圆柱的体积=底面积×高
V=Sh 或V=πr 2 h
圆锥的体积=底面积×高÷3
V=Sh 或V=πr 2 h
3
13
1圆锥体积的公式
(1) 圆锥的体积等于与它等底等高圆柱体积的
3
1(2)已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3
(3)已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h
(4)已知圆锥体积(V )和底面积(S ),求高的公式:h=3V
锥÷
S 底。