椭圆及标准方程2
- 格式:ppt
- 大小:538.50 KB
- 文档页数:15
§2.2.1椭圆及其标准方程(2)编写:英德市第二中学,叶加修;审核:英西中学,刘东【学习目标】熟练椭圆方程的求解【知识回顾】1. 椭圆221259x y +=上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.5 B.6 C.4 D.102.椭圆 的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0)3.小结:【新知构建】用待定系数法求椭圆标准方程的步骤.(1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上.(2)设方程:①依据上述判断设方程为 或 .②在不能确定焦点位置的情况下也可设 .(3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组.(4)解方程组,代入所设方程即为所求.例1 已知圆A :(x +3)+y =100,圆A 内一定点B(3,0),圆P 过B 点且与圆A 内切,求圆心P 的轨迹方程.例2 已知两圆C 1:(x -4)2+y 2=169,圆C 2:(x +4)2+y 2=9,动圆在圆C 1内部和圆C 1相内切,和圆C 2相外切,求动圆圆心的轨迹.小结: 22125169x y +=【当堂练习】1.已知两定点F 1(-2,0),F 2(2,0),点P 是平面上一动点,且|PF 1|+|PF 2|=6,则点P 的轨迹是( )A .圆B .直线C .椭圆D .线段2.若椭圆的两焦点为(-2,0),(2,0),且过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x 26=1 C.y 24+x 28=1 D.y 26+x 210=1 3.过椭圆4x 2+2y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一焦点F 2构成△ABF 2,那么△ABF 2的周长是______.小结:【课后作业】1.椭圆x 2m +y 24=1的焦距是2,则m 的值为( ) A .5或3 B .8 C .5 D .32. 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(0,2)B .(0,+∞)C .(-∞,1)D .(0,1)3.椭圆x 249+y 224=1上一点P 与椭圆的两个焦点F 1、F 2的连线互相垂直,则△PF 1F 2的面积为( )A .20B .22C .24D .284. 一动圆过定点A (1,0),且与定圆(x +1)2+y 2=16相切,则动圆圆心轨迹方程是__________.5. 与椭圆x 2+4y 2=4有公共的焦点,且经过点A (2,1)的椭圆的方程为 .6.△ABC 的三边a >b >c 且成等差数列,A 、C 两点的坐标分别是(-1,0)、(1,0),求顶点B 的轨迹方程。
2.2.1椭圆及其标准方程(二)【教学目标】1.理解椭圆的定义及标准方程;2.掌握用定义法和待定系数法求椭圆的标准方程;3.理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学科素养】数学抽象、逻辑推理,数学运算.【教学重点】椭圆的定义及标准方程的推导.【教学难点】理解椭圆标准方程的推导过程,并能运用标准方程解决相关问题.【学法指导】教师启发讲授,学生探究学习.复习回顾问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?新知探究例2:如图,在圆422=+y x 上任意取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么? 点评:相关点法(代入法)(设计意图:利用直线中点坐标公式,探求动点轨迹)变式训练2:教材第50页B 组第一题例3:如图所示,设A ,B 的坐标分别是()()0,5,0,5-,直线BM AM ,相交于点M ,且它们的斜率之积是94-,求M点得轨迹方程。
(设计意图:把直线相关知识与椭圆结合到一起,加强知识之间的联系,以此培养学生 的知识串联能力)点评:参数法变式训练3:(教材第42页练习第4题)小结:求解与椭圆相关的轨迹问题的方法1、写出适合下列条件的椭圆的标准方程:(1)1,4==b a ,焦点在x 轴上;(2)15,4==c a ,焦点在y 轴上;(3)52,10==+c b a2、椭圆2211625x y +=的焦点坐标为( )A (0, ±3)B (±3, 0)C (0, ±5)D (±4, 0)3、在方程22110064x y +=中,下列a, b, c 全部正确的一项是( ) A a=100, b=64, c=36 B a=10, b=6, c=8C a=10, b=8, c=6D a=100, c=64, b=36 教材第42页练习第1题、第3题.课堂小结1.椭圆的概念及标准方程;2.求椭圆方程的方法.作业布置 习题2.2A 组5 、7板书设计椭圆及其标准方程1、椭圆的定义 例2: 例32、椭圆的标准方程课后感悟。
3.1.2 椭圆及其标准方程第2课时教学设计(一)教学内容椭圆及其标准方程(二)教学目标1.通过知识的教学,使学生能熟练掌握椭圆的标准方程,焦点、焦距等概念以及a、b、c之间的关系,发展解析几何中代数运算素养.2.通过求点的轨迹方程,能使学生体验曲线与方程之间的一一对应关系,进一步体会坐标法和数形结合的思想.(三)教学重点及难点重点:求椭圆的标准方程.难点:轨迹方程的求法.(四)教学过程设计(主体内容)用问题分解教学目标1.课题导入问题1:上节课我们学习了椭圆的定义,请同学们回忆一下,椭圆是怎样定义的?追问1:椭圆的标准方程是怎样的?它的图形有什么特点?参数a、b、c的关系是怎样的?追问2:现在我们来求椭圆的标准方程,还需要用坐标法吗?师生活动:学生作答,老师适时补充,教师板书,明确求椭圆的标准方程不需要用坐标法,可用待定系数法确定a,b即可.设计意图:目的是使学生熟悉椭圆的定义及标准方程以及a,b,c各量的关系,熟悉焦距.为下一步求椭圆的标准方程做好铺垫.2.例题教学例1 求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,且经过点(2,0)和点(0,1).(2)焦点在y轴上,与y轴的一个交点为P(0,-10),P到与它较近的一个焦点的距离为2.(3)椭圆经过点(1,32),(2)师生活动:通过学生交流探索,让学生学会分析与解决问题,学会转化问题和应用方程组思想,体会椭圆标准方程的常规方法待定系数法,便于掌握本节的重点.设计意图:巩固椭圆及其标准方程.问题2:动点的轨迹和轨迹方程有何区别?例2 如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足。
当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?(当P经过圆与x轴的交点时,规定点M与点P重合.师生活动:(1)轨迹是指图形,轨迹方程是指方程.明确求轨迹方程即是求轨迹上任意的点M的坐标(x,y)所满足的条件,因此必须先搞清楚点M所满足的条件.(2)掌握求一类轨迹问题的基本思路与方法,即通过建立点M与已知曲线上点的联系,利用已知曲线的方程求解. (3)明确椭圆与圆的联系,椭圆可看作是把圆“压扁”或“拉长”后,圆心一分为二所成的曲线.设计意图:提高思维的探究性与挑战性,理解椭圆与圆的关系.例3 如图4,设点A,B的坐标分别为(-5,0),(5,0).直线AM,BM相交于点M,且它们的斜率之积是4 -9,求点M 的轨迹方程.师生活动:(1)在学生分析、讨论解题思路的基础上,由学生独立完成;(2)教师视情况讲解、点评;(3)注意检验方程与曲线之间是否等价;(4)此题反过来,就是椭圆的一条性质.课堂练习:教科书第109页练习第3,4题.设计意图:深化学生对求曲线的方程的方法、椭圆的几何特征的认识.师生活动:学生运用椭圆的概念与椭圆的标准方程解决第3题,运用求曲线的方程的方法解决第4题,教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程.问题3:什么是椭圆的焦点三角形?焦点三角形又蕴含哪些知识呢?定义:椭圆上一点和两个焦点构成的三角形,称之为椭圆的焦点三角形.例4 椭圆22143x y+=,点P是椭圆上一点,F1,F2是椭圆的左、右焦点,且∠PF1F2=120°,则△PF1F2的面积为________.师生活动:教师在黑板上画出示意图,引导学生可联想解三角形的知识,由学生说出解决方案.(时间允许的话)从此题可推出一般结论:(1).(2)当P 点在椭圆与y 轴的交点时,焦点三角形面积最大为bc.设计意图:例题的难度不大,由学生自主思考分析并通过运算解决,培养独立思考独立分析解决问题的能力,通过练习,提醒学生在解决问题时,要根据题目的条件,灵活选用相关知识进行求解.3.课堂小结:问题4:回顾本节课所学知识与学习过程,你能对本节课的研究内容与结论作个梳理吗?师生活动:先由学生对椭圆的标准方程和轨迹方程求法作梳理,教师进行补充.设计意图:及时梳理、提炼与升华所学知识.(五)目标检测设计1.课堂检测(1).求符合下列条件的椭圆的标准方程:①经过点P(-,(1,;②a=2b0).设计意图:考查学生对椭圆的标准方程及a ,b ,c 之间的关系的理解与掌握水平,(2).已知△ABC 的周长为6,顶点A ,B 的坐标分别为(0,1),(0,-1),则点C 的轨过方程为( ) (A)221x 2)43x y +=≠±( (B)2212)34x y +=≠±(y (C)221x 0)43x y +=≠( (D)2210)34x y +=≠(y设计意图:考查学生对椭圆及其标准方程的理解水平以及思维的严谨性.(3).已知点A(-1.0),B 是圆F :229(1)x y +=-(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,求动点P 的轨迹方程. 师生活动:学生先独立完成,后相互交流,教师视学生错误情况进行点评、校正.教师查看学生完成情况后点评、校正.设计意图:进一步巩固椭圆的概念与椭圆的标准方程,考查学生求轨迹方程的掌握情况.2.课后作业教科书习题3.1第2,6,10题.(六)教学反思 点的纵坐标)是(P b S PF F 0021y .cy 2tan 2==∆θ。
2.2.1椭圆及其标准方程(二)学习目标加深理解椭圆定义及标准方程,能熟练求解与椭圆有关的轨迹问题.知识点一椭圆标准方程的推导思考观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.答案(1)如图所示,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点:设点M(x,y)是椭圆上任意一点,且椭圆的焦点坐标为F1(-c,0),F2(c,0).(3)列式:依据椭圆的定义式|MF1|+|MF2|=2a列方程,并将其坐标化为(x+c)2+y2+(x-c)2+y2=2a.①(4)化简:通过移项、两次平方后得到:(a2-c2)x2+a2y2=a2(a2-c2),为使方程简单、对称、和谐,引入字母b,令b2=a2-c2,可得椭圆标准方程为x2a2+y2b2=1(a>b>0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x,y)为坐标的点到椭圆的两个焦点F1(-c,0),F2(c,0)的距离之和为2a,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫做椭圆的标准方程.梳理(1)椭圆的标准方程的形式焦点位置形状、大小焦点坐标标准方程焦点在x轴上形状、大小相同a>b>0,b2=a2-c2,焦距为2c F1(-c,0),F2(c,0)方程为x2a2+y2b2=1(a>b>0)焦点在y轴上F1(0,-c),F2(0,c)方程为y2a2+x2b2=1(a>b>0)(2)方程Ax2+By2=1表示椭圆的充要条件是A>0,B>0且A≠B.知识点二椭圆的焦点位置确定思考1已知椭圆的标准方程,怎样判定椭圆焦点在哪个坐标轴上?答案看x2,y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.较大的分母是a2,较小的分母是b2.如果x2项的分母大,焦点就在x轴上,如果y2项的分母大,则焦点就在y轴上.思考2 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?答案 椭圆方程中,a 表示椭圆上的点到两焦点间距离的和的一半,可借助图形帮助记忆,a 、b 、c (都是正数)恰构成一个直角三角形的三条边,a 是斜边,c 是焦距的一半,叫半焦距. a 、b 、c 始终满足关系式a 2=b 2+c 2.梳理 (1)椭圆的焦点位置确定是由x 2,y 2的系数大小决定的. (2)当求解椭圆标准方程,遇到其焦点位置不定时,需分类讨论.类型一 椭圆标准方程的确定例1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10; (2)经过点P (-23,1),Q (3,-2). 解 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由题意得c =4,2a =10, ∴a =5,b 2=a 2-c 2=9.∴所求的椭圆的标准方程为x 225+y 29=1.(2)设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ), ∵点P (-23,1),Q (3,-2)在椭圆上,∴代入得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,∴⎩⎨⎧m =115,n =15.∴椭圆的标准方程为x 215+y 25=1.反思与感悟 求解椭圆的标准方程,可以利用定义,也可以利用待定系数法,选择求解方法时,一定要结合题目条件,其次需注意椭圆的焦点位置.跟踪训练1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52);(2)焦点在y 轴上,且经过两个点(0,2)和(1,0). 解 (1)∵椭圆的焦点在y 轴上, ∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知: 2a =(-32)2+(52+2)2+ (-32)2+(52-2)2 =210,即a =10.又c =2, ∴b 2=a 2-c 2=6.∴所求的椭圆的标准方程为y 210+x 26=1.(2)∵椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).又椭圆经过点(0,2)和(1,0),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4,b 2=1. ∴所求的椭圆的标准方程为y 24+x 2=1.类型二 相关点法在求解椭圆方程中的应用例2 如图,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹.解 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0), 则x =x 0,y =y 02.因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4.①把x 0=x ,y 0=2y 代入方程①, 得x 2+4y 2=4,即x 24+y 2=1.所以点M 的轨迹是一个椭圆.反思与感悟 当题目中所求动点和已知动点存在明显关系时,一般利用相关点的方法求解.用相关点法求轨迹方程的基本步骤为(1)设点:设所求轨迹上动点坐标为P (x ,y ),已知曲线上动点坐标为Q (x 1,y 1).(2)求关系式:用点P 的坐标表示出点Q 的坐标,即得关系式⎩⎪⎨⎪⎧x 1=g (x ,y ),y 1=h (x ,y ).(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可. 跟踪训练2 如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,求点M的轨迹C 的方程,并判断此曲线的类型.解 设M 点的坐标为(x ,y ),P 点的坐标为(x P ,y P ), 由已知易得⎩⎪⎨⎪⎧x P=x ,y P =54y , ∵P 在圆上,∴x 2+(54y )2=25,即轨迹C 的方程为x 225+y 216=1.该曲线表示椭圆.1.方程x 2m +y 2=1表示焦点在x 轴上的椭圆,则m 的取值范围为( )A .(1,+∞)B .(12,+∞)C .[1,+∞)D .(-∞,1)答案 A解析 因焦点在x 轴上,故m >1,故选A.2.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为( ) A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0) 答案 A解析 由已知|AB |+|AC |+|BC |=18,|BC |=8,得|AB |+|AC |=10.由椭圆的定义可知,点A 的轨迹是椭圆的一部分,且2a =10,2c =8,即a =5,c =4,所以b 2=a 2-c 2=25-16=9,则椭圆方程为x 225+y 29=1.当点A 在直线BC 上,即y =0时,A ,B ,C 三点不能构成三角形.因此,顶点A 的轨迹方程是x 225+y 29=1(y ≠0).3.设P 是椭圆 x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形答案 B解析 由椭圆定义知|PF 1|+|PF 2|=2a =8. 又|PF 1|-|PF 2|=2,∴|PF 1|=5,|PF 2|=3. 又|F 1F 2|=2c =216-12=4, ∵|PF 2|2+|F 1F 2|2=|PF 1|2, ∴△PF 1F 2为直角三角形.4.在椭圆x 23+y 2=1中,有一沿直线运动的粒子从一个焦点F 2出发经椭圆反射后经过另一个焦点F 1,再次被椭圆反射后又回到F 2,则该粒子在整个运动过程中经过的距离为________. 答案 4 3解析 把粒子运动轨迹表示出来,可知整个距离为4a ,即4 3.5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为________________. 答案 x 24+y 23=1解析 由题设知|PF 1|+|PF 2|=2|F 1F 2|=4, ∴2a =4,2c =2, ∴b =3,∴椭圆的方程为x 24+y 23=1.(1)两种形式的椭圆的标准方程的比较如下表:标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0)不同点图形焦点坐标F1(-c,0)、F2(c,0) F1(0,-c)、F2(0,c) 相同点定义平面内到两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹a、b、c的关系a2=b2+c2(2)所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x2a2+y2b2=1与y2a2+x2b2=1这两个标准方程中,都有a>b>0的要求,如方程x2m+y2n=1(m>0,n>0,m≠n)就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式xa+yb=1类比,如x2a2+y2b2=1中,由于a>b,所以在x轴上的“截距”更大,因而焦点在x轴上(即看x2,y2分母的大小).要区别a2=b2+c2与习惯思维下的勾股定理c2=a2+b2.一、选择题1.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析方程mx2+ny2=1,即x21m+y21n=1表示焦点在y轴上的椭圆的充要条件为⎩⎪⎨⎪⎧1n>0,1m>0,1n>1m,即m>n>0.故选C.2.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点M的轨迹是()A .椭圆B .线段C .圆D .以上都不对答案 B解析 ∵|MF 1|+|MF 2|=4=|F 1F 2|,∴M 的轨迹是以F 1,F 2为端点的线段,故选B.3.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于( ) A.32 B. 3 C.72D .4 答案 C解析 不妨设F 1的坐标为(3,0),P 点坐标为(x 0,y 0), ∵PF 1与x 轴垂直,∴x 0= 3.把x 0=3代入椭圆方程x 24+y 2=1,得y 20=14. ∴|PF 1|=12.∴|PF 2|=4-|PF 1|=72.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线 答案 B解析 由题意知|PO |=12|MF 2|,|PF 1|=12|MF 1|,又|MF 1|+|MF 2|=2a ,所以|PO |+|PF 1|=a >|F 1O |=c ,故由椭圆的定义知P 点的轨迹是椭圆. 5.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A .圆B .椭圆C .双曲线的一支D .抛物线答案 A解析 如图,依题意: |PF 1|+|PF 2|=2a (a >0是常数). 又∵|PQ |=|PF 2|, ∴|PF 1|+|PQ |=2a , 即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A.6.已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左,右焦点,若△F 1PF 2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个 答案 C解析 当∠PF 1F 2为直角时,根据椭圆的对称性知,这样的点P 有2个;同理当∠PF 2F 1为直角时,这样的点P 有2个;当P 点为椭圆的短轴端点时,∠F 1PF 2最大,且为直角,此时这样的点P 有2个.故符合要求的点P 有6个.7.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( ) A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1 答案 B解析 设椭圆标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠PFF ′=∠FPO ,∠OF ′P =∠OPF ′,所以∠PFF ′+∠OF ′P +∠FPO +∠OPF ′=180°,知∠FPO +∠OPF ′=90°,即FP ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12, 从而a =6,得a 2=36,于是b 2=a 2-c 2=36-(25)2=16, 所以椭圆的方程为x 236+y 216=1.二、填空题8.已知椭圆x 2m +y 216=1上的一点P 到椭圆一个焦点的距离为3,到另一焦点的距离为7,则m=________. 答案 25解析 由椭圆定义知|PF 1|+|PF 2|=2a =10, ∴a =5,∴a 2=25,即m =25. 9.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案 6 2解析 将P ,Q 两点间的最大距离转化为圆心到椭圆上点的最大距离加上圆的半径,设Q (x ,y ),则圆心(0,6)到椭圆上点的距离d =x 2+(y -6)2=-9y 2-12y +46=-9⎝⎛⎭⎫y +232+50≤52,所以P ,Q 两点间的最大距离为6 2.10.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称; ③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________. 答案 ②③解析 设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得(x +1)2+y 2·(x -1)2+y 2=a 2 (a >1),将原点(0,0)代入等式不成立,故①不正确. ∵点P (x ,y )在曲线C 上,∴点P 关于原点的对称点为P ′(-x ,-y ),将P ′代入曲线C 的方程等式成立,故②正确.设∠F 1PF 2=θ,则12F PF S =12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确. 三、解答题11.已知方程x 25-2m +y 2m +1=1表示椭圆,求实数m 的取值范围.解 (1)当方程表示焦点在x 轴上的椭圆时, 则有5-2m >m +1>0,解得-1<m <43;(2)当方程表示焦点在y 轴上的椭圆时, 则有m +1>5-2m >0,解得43<m <52.综上,m 的取值范围为(-1,43)∪(43,52).12.点M (x ,y )与定点F (2,0)的距离和它到定直线x =8的距离的比是1∶2,求点M 的轨迹方程.解 设d 是点M 到直线x =8的距离,根据题意,所求轨迹就是集合P =⎩⎨⎧⎭⎬⎫M ⎪⎪|MF |d=12, 由此得(x -2)2+y 2|8-x |=12.将上式两边平方,并化简,得3x 2+4y 2=48, 即点M 的轨迹方程为:x 216+y 212=1.13.如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与CQ 的连线交于点M ,求点M 的轨迹方程. 解 由题意知点M 在线段CQ 上, 从而有|CQ |=|MQ |+|MC |.又点M 在AQ 的垂直平分线上,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5>|AC |=2. ∵A (1,0),C (-1,0),∴点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214. 故点M 的轨迹方程为x 2254+y 2214=1.2.2.1椭圆及其标准方程(二)(学生版)学习目标加深理解椭圆定义及标准方程,能熟练求解与椭圆有关的轨迹问题.知识点一椭圆标准方程的推导思考观察椭圆的形状,你认为怎样选择坐标系才能使椭圆的方程较简单?并写出求解过程.答案(1)如图所示,以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy.(2)设点:设点M(x,y)是椭圆上任意一点,且椭圆的焦点坐标为F1(-c,0),F2(c,0).(3)列式:依据椭圆的定义式|MF1|+|MF2|=2a列方程,并将其坐标化为(x+c)2+y2+(x-c)2+y2=2a.①(4)化简:通过移项、两次平方后得到:(a2-c2)x2+a2y2=a2(a2-c2),为使方程简单、对称、和谐,引入字母b,令b2=a2-c2,可得椭圆标准方程为x2a2+y2b2=1(a>b>0).②(5)从上述过程可以看到,椭圆上任意一点的坐标都满足方程②,以方程②的解(x,y)为坐标的点到椭圆的两个焦点F1(-c,0),F2(c,0)的距离之和为2a,即以方程②的解为坐标的点都在椭圆上.由曲线与方程的关系可知,方程②是椭圆的方程,我们把它叫做椭圆的标准方程.梳理(1)椭圆的标准方程的形式焦点位置形状、大小焦点坐标标准方程焦点在x轴上形状、大小相同a>b>0,b2=a2-c2,焦距为2cF1(-c,0),F2(c,0)方程为x2a2+y2b2=1(a>b>0) 焦点在y轴上F1(0,-c),F2(0,c)方程为y2a2+x2b2=1(a>b>0)(2)方程Ax2+By2=1表示椭圆的充要条件是A>0,B>0且A≠B.知识点二椭圆的焦点位置确定思考1已知椭圆的标准方程,怎样判定椭圆焦点在哪个坐标轴上?答案看x2,y2的分母的大小,哪个分母大,焦点就在哪个坐标轴上.较大的分母是a2,较小的分母是b2.如果x2项的分母大,焦点就在x轴上,如果y2项的分母大,则焦点就在y轴上.思考2 椭圆方程中的a 、b 以及参数c 有什么意义,它们满足什么关系?答案 椭圆方程中,a 表示椭圆上的点到两焦点间距离的和的一半,可借助图形帮助记忆,a 、b 、c (都是正数)恰构成一个直角三角形的三条边,a 是斜边,c 是焦距的一半,叫半焦距. a 、b 、c 始终满足关系式a 2=b 2+c 2.梳理 (1)椭圆的焦点位置确定是由x 2,y 2的系数大小决定的. (2)当求解椭圆标准方程,遇到其焦点位置不定时,需分类讨论.类型一 椭圆标准方程的确定例1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10; (2)经过点P (-23,1),Q (3,-2).反思与感悟 求解椭圆的标准方程,可以利用定义,也可以利用待定系数法,选择求解方法时,一定要结合题目条件,其次需注意椭圆的焦点位置. 跟踪训练1 求适合下列条件的椭圆的标准方程.(1)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点(-32,52);(2)焦点在y 轴上,且经过两个点(0,2)和(1,0).类型二 相关点法在求解椭圆方程中的应用例2 如图,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点M 的轨迹.反思与感悟 当题目中所求动点和已知动点存在明显关系时,一般利用相关点的方法求解.用相关点法求轨迹方程的基本步骤为(1)设点:设所求轨迹上动点坐标为P (x ,y ),已知曲线上动点坐标为Q (x 1,y 1).(2)求关系式:用点P 的坐标表示出点Q 的坐标,即得关系式⎩⎪⎨⎪⎧x 1=g (x ,y ),y 1=h (x ,y ).(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可. 跟踪训练2 如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,求点M 的轨迹C 的方程,并判断此曲线的类型.1.方程x 2m +y 2=1表示焦点在x 轴上的椭圆,则m 的取值范围为( )A .(1,+∞)B .(12,+∞)C .[1,+∞)D .(-∞,1)2.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为( ) A.x 225+y 29=1 (y ≠0) B.y 225+x 29=1 (y ≠0) C.x 216+y 216=1 (y ≠0) D.y 216+x 29=1 (y ≠0)3.设P 是椭圆 x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形4.在椭圆x 23+y 2=1中,有一沿直线运动的粒子从一个焦点F 2出发经椭圆反射后经过另一个焦点F 1,再次被椭圆反射后又回到F 2,则该粒子在整个运动过程中经过的距离为________.5.已知椭圆的焦点是F 1(-1,0),F 2(1,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|和|PF 2|的等差中项,则椭圆的方程为________________.(1)两种形式的椭圆的标准方程的比较如下表:标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)不同点图形焦点坐标F1(-c,0)、F2(c,0) F1(0,-c)、F2(0,c) 相同点定义平面内到两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹a、b、c的关系a2=b2+c2(2)所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x2a2+y2b2=1与y2a2+x2b2=1这两个标准方程中,都有a>b>0的要求,如方程x2m+y2n=1(m>0,n>0,m≠n)就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式xa+yb=1类比,如x2a2+y2b2=1中,由于a>b,所以在x轴上的“截距”更大,因而焦点在x轴上(即看x2,y2分母的大小).要区别a2=b2+c2与习惯思维下的勾股定理c2=a2+b2.一、选择题1.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.到两定点F1(-2,0)和F2(2,0)的距离之和为4的点M的轨迹是()A.椭圆B.线段C.圆D.以上都不对3.椭圆x24+y2=1的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|等于()A.32B. 3C.72D .44.已知椭圆x 2a 2+y 2b 2=1(a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线5.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A .圆B .椭圆C .双曲线的一支D .抛物线6.已知椭圆x 24+y 22=1上有一点P ,F 1,F 2是椭圆的左,右焦点,若△F 1PF 2为直角三角形,则这样的点P 有( )A .3个B .4个C .6个D .8个7.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( ) A.x 225+y 25=1 B.x 236+y 216=1 C.x 230+y 210=1 D.x 245+y 225=1二、填空题8.已知椭圆x 2m +y 216=1上的一点P 到椭圆一个焦点的距离为3,到另一焦点的距离为7,则m=________.9.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是________.10.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.三、解答题11.已知方程x 25-2m +y 2m +1=1表示椭圆,求实数m 的取值范围.12.点M (x ,y )与定点F (2,0)的距离和它到定直线x =8的距离的比是1∶2,求点M 的轨迹方程.13.如图,在圆C:(x+1)2+y2=25内有一点A(1,0),Q为圆C上一点,AQ的垂直平分线与CQ的连线交于点M,求点M的轨迹方程.。
椭圆及其标准方程教学目标:(1)掌握椭圆定义和标准方程;(2)通过椭圆定义的归纳和标准方程的推导,培养学生发现规律、认识规律并利用规律解决实际问题的能力;(3)在椭圆定义的获得和其标准方程的推导过程中进一步渗透数形结合等数学思想和方法教学重点:椭圆定义的归纳及其标准方程的推导。
教学难点:椭圆标准方程的推导以及椭圆方程的应用教材分析:本节课是圆锥曲线的第一课时。
它是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。
椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容;椭圆的标准方程推导过程中,化简两个根式的方程的方法特殊,难度较大,学生初次遇到。
教学过程一、新课引入2016年9月15日,中国的航天史又被翻开了新的一页,我国自主研制的天宫二号升上太空,在太空中探索宇宙的奥秘。
这一事件,再一次向世界表明,我们中国人有信心、有能力攀登一个又一个科学高峰。
“天宫二号”升空后,准确的进入预定轨道,它运行中期的轨道是一个椭圆。
在宇宙中还有许多天体的运行轨道也是椭圆,生活中也有许多椭圆形的实际例子。
由此看来,若要探索浩瀚宇宙的奥秘,解决日常生活中与椭圆有关的一些实际问题,需要对椭圆这一图形进行研究。
今天我们就来研究什么是椭圆及椭圆的标准方程。
那么什么是椭圆呢?二、新课讲解(一)认识椭圆,问题引出:1、对椭圆的感性认识,通过演示课前老师和学生共同准备的有关椭圆的实物和图片,让学生从感性上认识椭圆.(天体运行轨道;平面截圆锥等图片)2、对比圆的定义:平面内与定点的距离等于定长的点的集合。
如果将圆的定义中的“定点”改为“两定点”,“距离”改为“距离的和”,那么平面内到两定点的距离的和等于定长的点的集合(轨迹)是什么图形?(二)动手实验,亲身体验指导学生互相合作(主要在于动手),体验画椭圆的过程(课前准备直尺、细绳、钉子、笔、纸板),并以此了解椭圆上的点的特征.请三名同学上台画在黑板上.先在画板上点两点F 1、F 2,取一定长的细绳,把它的两端固定在画板上的F 1、F 2两点处。