光纤的波长(光纤的损耗主要来自四个部分)
- 格式:docx
- 大小:15.93 KB
- 文档页数:1
光纤中的波长光纤作为一种传输光信号的重要媒介,其特点是具有高速、大容量、低损耗等优势。
而光信号的传输又与光的波长密切相关。
本文将以光纤中的波长为主题,探讨光纤中波长的意义、特性以及相关应用。
一、波长的定义和单位波长是指光波在介质中传播一个完整周期所需要的距离,通常用λ表示,单位为纳米(nm)。
在光的电磁波谱中,不同波长的光波具有不同的特性和应用。
二、光纤中的波长范围光纤传输的波长范围通常是从800纳米到1600纳米。
这个范围内的光波被称为光纤通信的窗口。
其中,850纳米、1310纳米和1550纳米是光纤通信中最常用的波长。
三、不同波长的特性和应用1. 850纳米波长850纳米波长的光波属于近红外光,具有较短的传输距离和较大的衰减。
这种波长的光波主要应用于短距离传输,例如局域网和数据中心内部的通信。
2. 1310纳米波长1310纳米波长的光波属于近红外光,具有较长的传输距离和较小的衰减。
这种波长的光波被广泛应用于长距离光纤通信,如城域网和广域网。
3. 1550纳米波长1550纳米波长的光波属于中红外光,具有最小的衰减和最长的传输距离。
这种波长的光波被广泛应用于光纤通信的骨干网和长距离传输。
四、波分复用技术波分复用技术(Wavelength Division Multiplexing,简称WDM)是利用不同波长的光波在同一根光纤中传输不同的信号。
这种技术可以极大地提高光纤传输的容量和效率。
目前常用的WDM技术包括密集波分复用(DWDM)和波分多路复用(CWDM)。
DWDM技术允许在光纤中传输数十个波长的光信号,从而大幅增加了光纤的传输容量。
CWDM技术则可以传输较少的波长,但成本较低,适用于短距离通信。
五、光纤中波长选择的影响因素在光纤通信中,选择合适的波长对于传输的质量和距离都有重要影响。
以下是一些影响因素:1. 光纤的材料和结构:不同材料和结构的光纤对于不同波长的光波有不同的响应特性,需要选择合适的波长以获得最佳传输效果。
光纤的参数指标
光纤的参数指标通常包括以下几个方面:
1. 光纤芯的直径:光纤芯的直径决定了能传输的光信号的模式数量,一般分为单模光纤和多模光纤两种,单模光纤芯直径较小,能够传输更多的光信号模式。
2. 光纤的损耗:光纤传输中,光信号会受到一定的损耗,主要包括吸收损耗、散射损耗和弯曲损耗等。
光纤损耗越小,表示光信号传输的效率越高。
3. 光纤的带宽:光纤的带宽表示光信号传输的频率范围,一般以兆赫兹(MHz)或吉赫兹(GHz)为单位。
带宽越大,表示光纤能够传输更高频率的光信号。
4. 光纤的色散:光纤传输中,不同波长的光信号会以不同的速度传播,导致信号的时域扩展,这种现象称为光纤的色散。
色散可以分为色散模式和色散系数两种,常见的有色散模式有色散波长、色散时间和色散距离等。
5. 光纤的折射率:光纤的折射率决定了光信号在光纤中的传播速度,一般来说,光纤芯的折射率大于包层的折射率,以确保光信号能够在光纤中总反射。
6. 光纤的温度和压力特性:光纤在不同温度和压力下的性能稳定性
也是一个重要的参数指标,一般来说,光纤应具有较好的温度和压力适应性。
这些参数指标会根据光纤的应用领域和设计要求有所不同,不同的光纤产品可能会有不同的参数要求。
光纤简介一、光纤概述光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。
通常,光纤一端的发射装置使用发光二极管〔light emitting diode,LED〕或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。
二、光纤工作波长光是一种电磁波。
可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。
μμμμ,μμμm以上的损耗趋向加大。
三、光纤分类光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。
〔1〕工作波长:紫外光纤、可观光纤、近红外光纤μμμm〕。
〔2〕折射率分布:阶跃〔SI〕型光纤、近阶跃型光纤、渐变〔GI〕型光纤、其它〔如三角型、W型、凹陷型等〕。
〔3〕传输模式:单模光纤〔含偏振保持光纤、非偏振保持光纤〕、多模光纤。
〔4〕原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤〔如塑料包层、液体纤芯等〕、红外材料等。
按被覆材料还可分为无机材料〔碳等〕、金属材料〔铜、镍等〕和塑料等。
〔5〕制造方法:预塑有汽相轴向沉积〔VAD〕、化学汽相沉积〔CVD〕等,拉丝法有管律法〔Rod intube〕和双坩锅法等。
四、单模光纤与多模光纤光纤是一种光波导,因而光波在其中传播也存在模式问题。
所谓“模”是指以一定角速度进入光纤的一束光。
模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。
一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。
基模是截止波长最长的模式。
除基模外,截止波长较短的其它模式称为高次模。
根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。
多模光纤允许多束光在光纤中同时传播,从而形成模分散〔因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散〕。
光纤损耗谱
光纤损耗谱是指在不同波长范围内,光纤对光信号的衰减程度。
光纤的损耗谱通常以分贝(dB)为单位来表示。
在可见光范围内,光纤的损耗主要包括以下几种:
1. 材料吸收损耗:光纤材料会吸收光信号的能量,导致损耗。
这种损耗在可见光范围内是较小的,一般每米小于0.3 dB。
2. 散射损耗:光信号在光纤中发生散射,导致能量传输的损失。
散射损耗在可见光范围内也是较小的,一般每米小于1 dB。
3. 弯曲损耗:当光纤被弯曲时,光信号会发生不同程度的衰减。
弯曲损耗主要取决于光纤的弯曲半径和弯曲角度,一般在可见光范围内每米小于0.5 dB。
4. 过载损耗:当光信号的功率超过光纤的承载能力时,会导致过载损耗。
光纤的过载损耗取决于光纤的材料和结构,一般每米小于1 dB。
除了以上这些损耗以外,光纤在不同波长范围内还存在一些特定的损耗现象,如光纤中干涉现象导致的色散损耗、光纤接头的衰减等。
总之,光纤损耗谱是一个描述光纤对不同波长光信号衰减程度的参数,它对于光纤通信系统的设计和性能评估至关重要。
光纤损耗有哪些光纤传输相比电缆传输和无线传输而言有众多优势。
光纤比电缆更轻、更小、更灵活,而且在长距离传输中,光纤比电缆的传播速度更快。
然而,影响光纤传输性能的因素很多,为了确保光纤的性能更好更稳定,这些因素不容忽视。
光纤的损耗就是其中之一,它已成为许多工程师在选择和使用光纤时最优先考虑的一个因素。
这篇教程将为您详细介绍光纤传输中的光损耗。
光信号经光纤传输后,光的强度会逐渐减弱,与此同时,光信号也会逐渐减弱。
光纤传输过程中,光信号的损失就叫做光纤损耗或者光的衰减。
所谓损耗是指光纤每单位长度上的衰减,单位为dB/km。
为了确保光信号安全有效的传输,就要尽可能地降低光纤的损耗。
引起光纤损耗的因素主要有两个:内部因素和外部因素,亦即本征光纤损耗和非本征光纤损耗。
本征光纤损耗本征光纤损耗是指光纤材料固有的一种损耗,引起本征光纤损耗的因素主要有两个:光的吸收和光的散射。
光的吸收是光纤传输中引起光损耗的主要原因,这是由于光纤材料和杂质对光能的吸收而引起的,因此,光的吸收损耗也被称为光纤材料吸收损耗。
实际上,光的吸收是光在传播过程中以热能的形式消耗于光纤中,这是由于分子的共振和波长的掺杂不均匀引起的。
完全纯净的的原子只吸收特定波长的光,但是绝对纯净的光纤材料几乎不可能生产出来,所以,光纤制造厂商选择掺杂锗这类含有纯硅的材料来优化光纤的性能。
光的散射是光纤损耗的另一个重要原因。
光纤的散射损耗是指在玻璃结构中分子水平上的不规则所造成的光的散射。
在光纤线路中,当发生散射时,光能量会向各个方向分散,其中一部分能量沿着线路方向继续前行,而其它方向分散的光能量则会丢失,如下图所示。
因此,为了减少散射而引起的光纤损耗,必须消除光纤芯的不完善,并对光纤涂层和挤压进行严格控制。
非本征光纤损耗本征光纤损耗,包括光的吸收和散射,只是光纤损耗的一方面原因。
非本征光纤损耗是光纤损耗的另一方面重要原因,通常是由光纤的不当处理引起的。
非本征光纤损耗主要有两种类型:弯曲损耗和对接损耗。
光纤的基本特性衰耗、色散1、光纤的损耗光纤的衰减或损耗是一个非常重要的、对光信号的传播产生制约作用的特性。
光纤的损耗限制了没有光放大的光信号的传播距离。
光纤的损耗主要取决于吸收损耗、散射损耗、弯曲损耗三种损耗。
1)吸收损耗光纤吸收损耗是制造光纤的材料本身造成的,包括紫外吸收、红外吸收和杂质吸收。
a:红外和紫外吸收损耗光纤材料组成的原子系统中,一些处于{氐能的电子会吸收光波能量而跃迁到高能级状态,这种吸收的中心波长在紫外的0.16μm处,吸收峰很强,其尾巴延伸到光纤通信波段,在短波长区,吸收峰值达ldB/km,在长波长区则小得多,约O.O5dB∕km.在红外波段光纤基质材料石英玻璃的Si-O键因振动吸收能量,这种吸收带损耗在9.1μm,12.5μm及21μm处峰值可达IOdB∕km以上,因此构成了石英光纤工作波长的上限。
红外吸收带的带尾也向光纤通信波段延伸。
但影响小于紫外吸收带。
在λ=L55μm时,由红外吸收引起的损耗小于0.01dB∕kmβb:氢氧根离子(OH-)吸收损耗在石英光纤中,O-H键的基本谐振波长为2.73μm,与Si-O键的谐振波长相互影响,在光纤的传输频带内产生一系列的吸收峰,影响较大的是在1.39、1.24及0.95μm波长上,在峰之间的低损耗区构成了光纤通信的三个传输窗口。
目前,由于工艺的改进,降低了氢氧根离子(OH-)浓度,这些吸收峰的影响已很小。
c:金属离子吸收损耗光纤材料中的金属杂质,如:金属离子铁(Fe3+)、铜(Cu2+)、镒(Mn3+)、镇(Ni3+)、钻(Co3+)、铭(Cr3+)等,它们的电子结构产生边带吸收峰(0.5~Llμm),造成损耗。
现在由于工艺的改进,使这些杂质的含量低于10-9以下,因此它们的影响已很小。
在光纤材料中的杂质如氢氧根离子(OH・)、过渡金属离子(铜、铁、铭等)对光的吸收能力极强,它们是产生光纤损耗的主要因素。
因此要想获得低损耗光纤,必须对制造光纤用的原材料二氧化硅等进行十分严格的化学提纯,使其纯度达99.9999%以上。
单模光纤的波长一般只有1310nm和1550nm,为什么不选其他波长的呢?第一是物质的本征吸收,分为紫外吸收和红外吸收第二是杂质离子的吸收,主要是金属阳离子和OH-第三是散射损耗,主要是Rayleigh散射,SRS和SBS。
最后是因为接续,弯曲和光纤本身结构的缺陷问题等带来的损耗。
这几个因素里面,第四点和光的波长的关系最小,可以先忽略。
Rayleigh散射的散射光圈和入射光波长的四次方成反比,波长太短的话散射现象会比较严重。
第二个问题里面,在光纤制作提纯的时候用化学提纯能到⑨个9的程度,一般的金属阳离子都是可以去掉的,但OH-比较麻烦,不巧的是在这段波有两个OH-吸收峰,必须避开。
第一个问题要看石英的本征吸收问题,在1.2μm以上的时候紫外外比较明显,1.6μm以上的时候红外吸收明显,也要避开。
70年代的时候人们也用850nm窗口的多模光纤进行通信,损耗比较大,但对于近距离(约2-3英里)来说设备更经济,1310nm是色散和损耗都比较小的窗口,1550nm有理论的最低损耗窗口。
降低损耗的意义还是很大的,降低损耗可以显著的提升中继距离,在远距离,比如越洋通信的时候,就算0.01dB/Km的衰减都能改变相当中继距离。
当年高锟博士在他的论文中就之处如果光纤的损耗可以降低到20dB/Km的时候就有可行性,现在常用的G.652的1310nm损耗典型值是0.35dB/Km,1550nm是0.20dB/Km,1550nm窗口的理论损耗极限好像是0.15dB/Km,现在实验室能做到0.16-0.17的样子,一般的同轴电缆的损耗都是10-20dB/Km,优势还是很大的。
因为综合光纤损耗的各个因素,这两个波长的光在光纤中传输的损耗最小。
具体情况可以参考下面这张图(实线表示光纤传输损耗与波长的关系):在光纤通信中一般把1310 1550作为两个低损耗窗口有时也加上850nm。
至于光纤用哪个波长就看光纤的参数咯,比如我用g652c/d我也可以用1383/1625nm(OESCL 波带)。
光纤、光缆的基本知识(非常实用)1.简述光纤的组成。
答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。
3. 产生光纤衰减的原因有什么?答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。
造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。
4.光纤衰减系数是如何定义的?答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。
5.插入损耗是什么?答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。
6.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
7.光纤的色散有几种?与什么有关?答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。
取决于光源、光纤两者的特性。
8.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。
9.什么是截止波长?答:是指光纤中只能传导基模的最短波长。
对于单模光纤,其截止波长必须短于传导光的波长。
10.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。
影响误码率的大小,和传输距离的长短,以及系统速率的大小。
11.什么是背向散射法?答:背向散射法是一种沿光纤长度上测量衰减的方法。
光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。
在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。
12.光时域反射计(OTDR)的测试原理是什么?有何功能?答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。
单模光纤的波长一般只有1310nm和1550nm,为什么不选其他波长的呢?
第一是物质的本征吸收,分为紫外吸收和红外吸收
第二是杂质离子的吸收,主要是金属阳离子和OH-
第三是散射损耗,主要是Rayleigh散射,SRS和SBS。
最后是因为接续,弯曲和光纤本身结构的缺陷问题等带来的损耗。
这几个因素里面,第四点和光的波长的关系最小,可以先忽略。
Rayleigh散射的散射光圈和入射光波长的四次方成反比,波长太短的话散射现象会比较严重。
第二个问题里面,在光纤制作提纯的时候用化学提纯能到⑨个9的程度,一般的金属阳离子都是可以去掉的,
但OH-比较麻烦,不巧的是在这段波有两个OH-吸收峰,必须避开。
第一个问题要看石英的本征吸收问题,在1.2μm以上的时候紫外外比较明显,1.6μm以上的时候红外吸收明显,
也要避开。
70年代的时候人们也用850nm窗口的多模光纤进行通信,损耗比较大,
但对于近距离(约2-3英里)来说设备更经济,1310nm是色散和损耗都比较小的窗口,
1550nm有理论的最低损耗窗口。