【精品】桥博盖梁计算
- 格式:doc
- 大小:21.00 KB
- 文档页数:6
1.盖梁计算理论1.1计算依据《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004) 》规定:双柱式桥墩,当盖梁的刚度与墩柱的线刚度比大于5时,为简化计算可以忽略节点不均衡弯矩的分配及传递,一般可按简支梁或悬臂梁进行计算和配筋,多柱式的盖梁可按连续梁计算,当盖梁计算跨径L与粱高h之比,简支梁2.0<L/h≤5.0,连续粱或刚构2.0<L/h≤5.0,应按深受弯构件计算;L/h>5.0时,则按一般构件计算。
1.2内力计算恒载主要包括上部粱重,桥面铺装,防撞墙或人行道及栏杆,路灯,管线及设备,支座,垫石及盖梁自重,跨铁路桥梁还包括桥上防抛网等相关设施。
活载计算中需考虑的主要丁况有:单列车对称布置、非对称布置、双列车及多列车对称布置、非对称布置。
最后进行车道折减,取计算最大值。
在顺桥向活载移动情况下,需选取单孔布载和双孔布载两种工况,每种工况又相应分为单列车和多列车情况,分别计算出纵向支座活载反力最大值,用于盖梁的内力计算。
然后根据荷载横向分配系数,求出活载作用下各支座反力的最大值,再求出活载作用下盖梁各控制截面相应的内力值。
最后把上述求得的恒载内力及活载最大工况内力进行组合,以确定盖粱最终极限内力效应值。
需要说明的是,在盖梁内力计算时,可考虑桩柱支承宽度对削减负弯矩尖峰的影响。
桥梁通软件的盖梁计算原理同传统的计算方法基本一致。
对于普通钢筋混凝土盖梁可直接采用桥梁通软件进行盖梁内力计算及构件验算。
预应力混凝土盖梁可借助桥梁通软件获取盖梁上支座反力,然后利用其它有限元软件进行受力分析。
2.工程实例图一为黑龙江省新建前进镇至抚远铁路新建工程中,既有306围道平改立设计单幅桥桥墩盖梁尺寸,盖梁设计斜交角度为30º,主桥正截面宽机动车道宽11m,两侧分别设置0.5m防撞墙,全宽12m。
上部结构采用9块20m后张法预应力空心板梁,盖梁斜长13.62m.桥上设计荷载为公路-I级,上部恒载加载如图所示,图中上图为桥梁通计算模型,下图为依据支座位置加载盖梁实际受力模型。
桥墩盖梁计算书 (2008年12月5日14点57分计算)┏━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━┓┃设计者│复核者│审核者┃┠────────────────┼────────────────┼───────────────┨┃李选栋││┃┗━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━┛注:工程文件名:E:\2008桥梁\桥梁通文件\跨枯河桥梁(1.6m).qlt。
桥梁通单机版7.55版本计算。
原始数据表单位:kN-m制┏━━━━━━━━━━┯━━━━━━━━━━━━━━━━━━━━┯━━━━━━━┯━━━━━━━━━┓┃正常使用裂缝宽度计算│横分系数采用│裂缝宽度限值mm│支点过渡跨中间比值┃┠──────────┼────────────────────┼───────┼─────────┨┃计入冲击力│偏载杠杆法支点过渡偏压法跨中,对称杠杆法│ 0.200 │ 0.250 ┃┗━━━━━━━━━━┷━━━━━━━━━━━━━━━━━━━━┷━━━━━━━┷━━━━━━━━━┛注:横向加载位置除按左偏、右偏、里对称、外对称加载外,增加跨中、中柱、梁板作用位置对称加载┏━━━━━━━━┯━━━━━━━━━┯━━━━━━━━┯━━━━━━━┯━━━━━━━━━━━━━┓┃车道荷载│车辆荷载│人群集度│车道数│车道车辆荷载提高系数┃┠────────┼─────────┼────────┼───────┼─────────────┨┃城-A级│城-A级车辆│ 4.000 │ 4 │ 0.000 ┃┗━━━━━━━━┷━━━━━━━━━┷━━━━━━━━┷━━━━━━━┷━━━━━━━━━━━━━┛注:1、加载方式为自动加载。
重要性系数为1.1。
2、横向布载时车道、车辆均采用1到4列(辆)分别加载计算。
桥博盖梁计算书word版某高速公路高架桥盖梁计算一、工程概况某高速公路高架桥,半幅桥宽21.00米,上部构造采用25米先简支后结构连续小箱梁,下部构造采用矩形墩、钻孔灌注桩基础。
盖梁采用C50混凝土,矩形墩采用C30混凝土。
具体布置如下图:小箱梁横向布置图桥墩一般构造图二、结构计算盖梁计算程序采用桥梁博士系统。
盖梁结构离散为36个单元,39个节点。
计算模型见下图:盖梁计算模型盖梁立体模型盖梁单元几何图形钢束布置图设计荷载:公路-I级;结构重要性系数γ:1.0;钢绞线弹性模量:1.95x105MPa,标准强度:σ=1860MPa,张拉应力:0.75σ=1395MPa,单端锚具变形:0.006m;张拉方式:两端张拉。
预应力成孔方式:预埋波纹管;钢束布置:4N1束和5N2束,均采用φs15.2-10。
共分为九个施工阶段。
盖梁按A类预应力混凝土构件设计。
三、计算结果(一)成桥后1、承载能力极限状态强度包络图2、作用长期效应组合正应力承载能力极限状态强度包络图上缘最大正应力上缘最小正应力下缘最大正应力3、作用短期效应组合正应力下缘最小正应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力4、作用长期效应组合主应力5、作用短期效应组合主应力6、作用长期效应组合位移最大主压应力最大主拉应力最大主压应力最大主拉应力最大位移7、作用短期效应组合位移(二)、施工阶段分析1、第一施工阶段施工内容:下部构造施工,张拉5N2束。
最小位移最大位移最小位移钢束布置图1.1、正应力1.2、主应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力2、第二施工阶段施工内容:架设外边梁。
架桥机各支点计算反力:前支点:=161x1.15=185.15KN中支点:=291x1.15=334.65KN后支点:=232x1.15=266.8KN2.1、正应力2.2、主应力上缘最大正应力上缘最小正应力下缘最大正应力下缘最小正应力最大主压应力最大主拉应力3、第三施工阶段施工内容:架设另一外边梁。
盖梁计算书1 16m跨径空心板单幅双柱桥墩盖梁计算1.概况桥墩盖梁采用桥梁通计算,盖梁宽1.4m,跨中高度1.3m,端部高度0.65m。
盖梁按简支梁计算,盖梁结构简图如下图:图1 盖梁结构图2.荷载取值①恒载:各板自重产生支反力反向加载至盖梁上,二期恒载按平均分布于各板上计算。
②横向分布系数:活载横向分布系数采用左右偏载按偏心受压法,对称布置采用杠杆法。
③冲击系数:16m板冲击系数为1.26。
④活载加载:采用车道荷载及车辆荷载分别按双孔加载、单孔加载计算,按最不利情况,求出支点最大反力。
3.盖梁复核计算①持久状况极限承载能力验算:经计算最不利组合下弯矩包络图及盖梁承载力校核图如下:图2 盖梁承载力校核图可以看到,本桥盖梁极限承载力满足规范要求,并有适当安全储备。
②正常使用阶段抗裂验算:规范要求长期效应作用下混凝土裂缝宽度应小于0.2mm,按照裂缝控制配筋验算校核图如下图所示,可以看出均满足规范要求。
图3 盖梁裂缝验算校核图③斜截面抗剪验算:计算时按混凝土和箍筋承担剪力的100%计算,各截面抗剪验算如下表所示。
表1 梁板作用截面抗剪验算表2 墩柱截面抗剪验算由表中结果可知,混凝土截面及箍筋可提供的抗剪力已大于组合剪力。
盖梁中配有斜筋可作为安全储备。
4.主要结论综上,盖梁持久状况承载能力极限状态验算、抗剪验算、抗裂验算均满足规范要求。
2 20m跨径空心板单幅双柱桥墩盖梁计算1.概况桥墩盖梁采用桥梁通计算,盖梁宽1.6m,跨中高度1.3m,端部高度0.65m。
盖梁按简支梁计算,盖梁结构简图如下图:图1 盖梁结构图2.荷载取值①恒载:各板自重产生支反力反向加载至盖梁上,二期恒载按平均分布于各板上计算。
②横向分布系数:活载横向分布系数采用左右偏载按偏心受压法,对称布置采用杠杆法。
③冲击系数:20m板冲击系数为1.221。
④活载加载:采用车道荷载及车辆荷载分别按双孔加载、单孔加载计算,按最不利情况,求出支点最大反力。
桥梁盖梁计算的“两大算法”详细演示,设计师都收藏了!来源:道路瞭望桥梁盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。
又称帽梁。
在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。
主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。
盖梁的配筋很难套用标准图和通用图,需建模进行内力计算。
因此,盖梁计算模型的建立,在整个盖梁计算过程中很重要。
盖梁的计算要点就是如何建立准确而且简化的计算模型。
作为设计师,这两大算法一定要会……盖梁两大计算方法1 传统简化算法以桥梁通为代表2 盖梁影响线直接加载法以桥梁博士为代表桥梁通盖梁计算与绘图一盖梁计算原理⑴以交通部颁布现行的桥涵规范作为编程依据。
⑵斜桥以桥孔斜长为计算跨径,按正交桥的方法计算。
⑶顺桥向按简支梁加载计算荷载支反力。
⑷横向分配系数对称布载按杠杆法,偏载按刚性横梁法。
⑸三跨及以上时盖梁视为刚性支承的双悬臂多跨连续梁,两跨时为双悬臂简支梁。
⑹建立柱(肋)支承反力影响线和每个计算截面内力影响线。
⑺横桥向荷载经横向分配传递给每片梁(板),再由每片梁(板)按内力影响线加载得出各计算截面人群、汽车、挂车引起的最不利内力值。
⑻对荷载内力进行组合,求出各计算截面内力最大值和最小值,形成内力包络图。
⑼弯矩控制正截面强度和主筋根数,剪力控制斜截面抗剪强度和斜筋根数以及箍筋间距和根数,裂缝由弯矩控制。
二绘图编制原理⑴根据盖梁外廓尺寸按纵、横方向分别计算确定钢筋构造图的绘图比例,绘图比例按2增减,同时计算出立面、平面、侧面、钢筋大样等图上控制座标。
⑵根据斜交角、弯起钢筋种类、箍筋环数、盖梁等高或悬臂段变高计算钢筋编号。
⑶绘制钢筋立面、平面、侧面及钢筋大样,并计算钢筋根数和长度(含平均长度)。
⑷计算并绘制钢筋明细表和材料数量表以及弯起钢筋D值表。
⑸生成*.SCR钢筋图形文件,用户进入AutoCAD图形平台,即可将其显示在屏幕上,并进行编辑和修改,绘图机输出。
桥墩盖梁计算书原始数据表单位:kN-m制┏━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━━━┓┃横分系数│汽车控制裂缝mm │挂车控制裂缝mm │支点过渡跨中间比值┃┠───────┼──────────┼──────────┼────────────┨┃ 0 │ 0。
180 │ 0.180 │ 0.25 ┃┗━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━━━┛注:横分系数0指“杠杆法过渡偏心受压法”,1指“左右偏载按偏压法,对称按杠杆法”,2指“完全杠杆法”。
┏━━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━━━┯━━━━━━━━┓┃汽车荷载│挂车荷载│人群集度│车道数┃┠───────────┼──────────┼──────────┼────────┨┃公路-Ⅱ级│不加载│ 0.000 │ 2 ┃┗━━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━━━┷━━━━━━━━┛汽车数据┏━━━━┯━━━━┯━━━━━┯━━━━━┯━━━━━━━┯━━━━━━━┯━━━━┓┃汽车车距│汽车轮距│汽车前轮重│汽车后轮重│重车与前车车距│重车与后车车距│重车轮重┃┠────┼────┼─────┼─────┼───────┼───────┼────┨┃ 15.00 │ 4。
00 │ 0。
0 │ 0.0 │ 1000。
00 │ 1000.00 │ 300。
0 ┃┗━━━━┷━━━━┷━━━━━┷━━━━━┷━━━━━━━┷━━━━━━━┷━━━━┛┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓┃重车轮轴数│ 1~2轮距│ 2~3轮距┃┠──────────────┼─────────────┼─────────────┨┃ 3 │ 3.60 │ 1。
20 ┃┗━━━━━━━━━━━━━━┷━━━━━━━━━━━━━┷━━━━━━━━━━━━━┛┏━━━━━━━━━━━━━━┯━━━━━━━━━━━━━┯━━━━━━━━━━━━━┓┃第1轮重│第2轮重│第3轮重┃┠──────────────┼─────────────┼─────────────┨┃ 60.0 │ 120。
跨苏申外港线特大桥结构复核计算1.工程概况跨苏申外港线特大桥是苏州东方大道新建工程中的一座特大桥。
主桥里程桩号k5+810.39m~k6+110.61m,全长290.11m。
2.技术标准和设计参数2.1技术标准2.1.1桥跨型式:主桥为双幅连续箱梁,跨径布置:80.11+130+80.112.1.2桥面宽度:全宽30m,横向布置为0.5米防撞护栏+12.5米行车道+0.5米防撞护栏+3.0米中央分隔带+0.5米防撞护栏+12.5米行车道+0.5米防撞护栏2.1.3桥面纵坡:小于3%2.1.4桥面横坡:2%(单幅单向坡)2.1.5荷载标准2.1.5.1车辆荷载等级:汽车-超20级,挂车-1202.1.5.2地震烈度:6度地震区,按7度设防2.1.6通航标准2.1.6.1通航水位(黄海高程)最高通航水位2.21m2.1.6.2通航净空净高7m净宽70m2.1.7温度:桥址处极端最高温度41℃,极端最低温度-12.0℃;桥址处月平均最高温度32℃,月平均最低温度-0.7℃。
设计基准温度取15℃。
2.2设计规范2.2.1《公路工程技术标准》(JTJ001-97)2.2.2《公路桥涵设计通用规范》(JTJ021-89)2.2.3《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTJ023-85)2.2.4《公路工程抗震设计规范》(JTJ004-89)2.2.5《公路桥涵地基与基础设计规范》(JTJ024-85)2.2.6《公路桥涵施工技术规范》(JTJ041-2000)2.3主要材料及其设计参数2.3.1混凝土2.3.1.1 50号混凝土(用于主桥、墩身及支座垫石)弹性模量:35000MPa剪切模量:15050MPa泊桑比:1/6轴心设计抗压强度:28.5MPa设计抗拉强度:2.45MPa热膨胀系数:0.000012.3.1.2 40号混凝土(用于承台)弹性模量:33000MPa剪切模量:14190MPa泊桑比:1/6轴心设计抗压强度:23.0MPa设计抗拉强度:2.15MPa热膨胀系数:0.000012.3.1.3 30号混凝土(用于桩基础)弹性模量:30000MPa剪切模量:12900MPa泊桑比:1/6轴心设计抗压强度:17.5MPa设计抗拉强度:1.75MPa热膨胀系数:0.000012.3.1.4 20号混凝土(用于承台封底)弹性模量:26000MPa剪切模量:11180MPa泊桑比:1/6轴心设计抗压强度:11MPa设计抗拉强度:1.3MPa热膨胀系数:0.000012.3.2低松弛钢绞线(用于主梁内预应力)直径:15.24mm弹性模量:190000MPa标准强度:1860MPa张拉控制应力:1395MPa热膨胀系数:0.0000122.3.3精轧螺纹钢筋(用于主梁内竖向预应力)直径:32mm弹性模量:200000MPa标准强度:750MPa张拉控制应力:675MPa热膨胀系数:0.0000122.4设计荷载取值2.4.1恒载2.4.1.1一期恒载一期恒载包括主梁材料重量,混凝土容重取26KN/m3。
盖梁受力计算一、底模板下次梁(100*100×木方)验算:盖梁施工在桥墩上预留空洞,横穿螺栓,顺盖梁方向架设工字钢,工字钢用预埋螺栓固定,工字钢上铺100*100木方,0.1m 间距,木方上方铺设2cm 厚竹胶板,作为作业平台。
1、盖梁总重:82.1685t ,转化为力为821.685KN 。
2、2cm 竹胶板重0.01t ,转化为力为0.1KN 。
所以静载P=821.785KN 。
即100mm 间距布设木方条件下,单根木方承受力为P 1=821.785/12.747*0.1=6.447KN 模板荷载模板荷载:KN kg N m m m kg P 36.0/102.11.0/3022=⨯⨯⨯= 动载KN kg N m m m kg P 24.0/102.11.0/20023=⨯⨯⨯= 砼浇注冲击及振捣荷载KN kg N m m m kg P 24.0/102.11.0/20042=⨯⨯⨯=则有KN P P P P P 287.74321=+++=总则均布荷载m KN m KN l P q /073.62.1/287.7/===木由横梁正应力计算公式得: 最大弯矩m kN m m KN l q M ⋅=⨯⨯=⨯⨯=093.12.1/073.6818122max 木 截面抵抗矩:342210667.161.01.06m bh W z -⨯=⨯== 截面惯性矩:46331033.8121.01.012m bh I -⨯=⨯== 强度验算:MPa W M z 56.610667.1093.14max max =⨯==-σ计算结果:MPa MPa 7][56.6max =<=σσ强度满足要求;由矩形简支梁挠度计算公式得:MPa E 51009.0⨯=mm EI ql f 19.21033.81009.03842.1073.6538456544max =⨯⨯⨯⨯⨯⨯==-木 计算结果:mm l f mm f 4.2500][19.2max ==<=,刚度满足要求。
关于横向分布调整系数:
一、进行桥梁的纵向计算时:
a)汽车荷载
对于整体箱梁、整体板梁等整体结构
其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。
例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4x0.67(四车道的横向折减系数)x1。
15(经计算而得的偏载系数)x0。
97(大跨径的纵向折减系数)=2.990.汽车的横向分布系数已经包含了汽车车道数的影响。
多片梁取一片梁计算时
按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。
计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。
b)人群荷载
对于整体箱梁、整体板梁等整体结构
人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1即可。
因为在桥博中人群效应=人群集度x人行道宽度x人群横向分布调整系数。
城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。
多片梁取一片梁计算时
人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1.
c)满人荷载
对于整体箱梁、整体板梁等整体结构
满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。
与人群荷载不同,城市荷载不对满人的人群集度折减。
多片梁取一片梁计算时
满人宽度填1,横向分布调整系数填求得的。
注:
1、由于最终效应:
人群效应=人群集度x人行道宽度x人群横向分布调整系数。
满人效应=人群集度x满人总宽度x满人横向分布调整系数。
所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。
2、新规范对满人、特载、特列没作要求。
所以程序对满人工况没做任何设计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合.
二、进行桥梁的横向计算时
a)车辆横向加载分三种:箱梁框架,横梁,盖梁。
计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度;
横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ 对应下的最大值,除以纵向计算时汽车的横向分布调整系数来算得),进行最不利加载。
b)对于人群(或满人)效应,在“横向加载有效区域"中已经填入了人行道分布区域,程序会据此进行影响线加载。
人行道宽度填1。
横梁、盖梁计算时,这里的人群横向分布系数与汽车的相似,是指单位横向人行道宽度(1m)的支反力。
在计算支反力时,这个系数已经考虑人群集度的大小,所以此时窗口中的“人群集度”应该填1。
c)横向加载最终效应
(假设汽车车道数输入为3)如果计入车道折减系数则折减系数=0.78(公路技术规范),不计入则=1。
0。
汽车效应=三辆汽车加载的效应(每辆汽车的总重为1,每轮重1/2)x汽车横向分布系数x车道折减系数。
汽车冲击力=汽车效应x冲击系数。
(此时用户应自己输入汽车冲击系数,因为横向加载不知道桥梁的实际纵向跨径,但冲击系数是根据纵向跨径计算的.
横梁和盖梁:
(1)将纵向一列车的支反力作为汽车横向系数(注意城市荷载纵向计算的车道数大于4时,计算剪力时荷载乘1.25,故用多列车支反力除横向分布系数较真实),横向加载有效区域需手动扣除车轮距路缘石的距离。
(2)每m宽人群纵向支反力作为人群横向系数,人行道宽度为纵向宽度,填1,人群集度填1,加载有效区域按实际填。
箱梁框架:
(1)汽车横向分布系数=轴重/顺桥向分布宽度,横向加载有效区域需手动扣除车轮距路缘石的距离。
(2)人群集度按实际填,人行道宽度指顺桥向,填1m,横向分布调整系数填1,横向加载有效区域按实际填。