工业结晶第七部分
- 格式:ppt
- 大小:1.41 MB
- 文档页数:68
工业结晶方法的分类溶液结晶是指晶体从溶液中析出的过程。
对于工业结晶按照结晶过程中过饱和度形成的方式,可将溶液结晶分为两大类:移除局部溶剂的结晶和不移除溶剂的结晶。
(1) 不移除溶剂的结晶不移除溶剂的结晶称冷却结晶法,它根本上不去除溶剂,溶液的过饱和度系籍助冷却获得,故适用于溶解度随温度降低而显著下降的物系。
(2) 移除局部溶剂的结晶法按照具体操作的情况,此法又可分为蒸发结晶法和真空冷却结晶法。
蒸发结晶是使溶液在常压(沸点温度下)或减压(低于正常沸点)下蒸发,局部溶剂汽化,从而获得过饱和溶液。
此法适用于溶解度随温度变化不大的物系,例如NaCl及无水硫酸钠等;真空冷却结晶是使溶液在较高真空度下绝热闪蒸的方法。
在这种方法中,溶液经历的是绝热等焓过程,在局部溶剂被蒸发的同时,溶液亦被冷却。
因此,此法实质上兼有蒸发结晶和冷却结晶共有的特点,适用于具有中等溶解度物系的结晶。
此外,也可按照操作连续与否,将结晶操作分为间歇式和连续式,或按有无搅拌分为搅拌式和无搅拌式等。
常见的工业结晶器一、冷却结晶器间接换热釜式冷却结晶器是目前应用最广泛的一类冷却结晶器。
冷却结晶器根据其冷却形式又分为循环冷却式和外循环冷却式结晶器。
空气冷却式结晶器是一种最简单的敞开型结晶器,靠顶部较大的敞开液面以及器壁与空气间的换热,以降低自身温度从而到达冷却析出结晶的目的,并不加晶种,也不搅拌,不用任何方法控制冷却速率及晶核的形成和晶体的生长。
冷却结晶过程所需冷量由夹套或外部换热器提供。
1、循环冷却式结晶器循环式冷却结晶器其冷却剂与溶剂通过结晶器的夹套进展热交换。
这种设备由于换热器的换热面积受结晶器的限制,其换热器量不大。
2、外循环冷却式结晶器外循环式冷却结晶器,其冷却剂与溶液通过结晶器外部的冷却器进展热交换。
这种设备的换热面积不受结晶器的限制,传热系数较大,易实现连续操作。
二、蒸发结晶器蒸发结晶器与用于溶液浓缩的普通蒸发器在设备构造及操作上完全一样。
工业结晶1. 引言结晶过程是一个复杂的相间质量与能量传递过程,其推动力主要来自于结晶多相体系在热力学上的非平衡特性[1,2]。
结晶体系的固液相平衡数据不仅是选择结晶精制过程溶剂体系和结晶方式的依据,而且是决定结晶过程最大生产能力和理论收率的关键因素,因此,结晶热力学研究是整个结晶过程研究和工艺优化的基础。
2. 溶解度和介稳区液固平衡(LSE)亦常称固液平衡,它分为两类,一是固体在溶剂中的溶解度,其特点是固体与溶剂的熔点迥异,一般以溶解度表示;二是熔点比较接近物质间的熔化平衡,无所谓溶剂,也不存在溶解度的概念[3]。
一般情况下,溶质与溶剂的熔点相差悬殊,所以通常意义下讨论的影响结晶过程的热力学问题就是第一种情况---溶解度。
2.1 溶解度固液相平衡的主要数据是固体在液体中的溶解度。
准确的溶解度数据在结晶过程的开发、设计和操作中是极为重要的。
众所周知,溶解度是指一定的温度和压力下,在100g溶剂中所能溶解溶质最大的克数。
常压下,溶解度曲线是随温度变化的一条特定的曲线。
这是常识性的知识,这里不再赘述。
2.2 介稳区介稳区(MetasTab. zone)指的是溶解度与超溶解度之间的区域。
超溶解度定义为某一温度下,物质在一定溶剂组成下能自发成核时的浓度。
溶解度曲线与超溶解度曲线将溶液浓度-温度相图分割为三个区域,分别为稳定区、介稳区和不稳区。
典型的溶液介稳区示意图如图1所示。
Mullin、丁绪淮等指出,一个特定的物系,只有一条明确的溶解度曲线,而超溶解度曲线的位置却要受很多因素的影响,例如有无搅拌,搅拌强度,有无晶种,晶种的大小多少,杂质的存在,超声波,电磁场等,所以超溶解度是一簇曲线[4-6]。
冷却或蒸发结晶溶析结晶图1介稳区示意图Fig. 1 Schematic diagram of metastable zone介稳区理论对结晶过程控制至关重要,在一个结晶过程中,当过饱和度超过介稳区进入不稳区时,溶液中就会自发成核,为了使产品具有较高的纯度和理想的粒度分布,通常将结晶过程控制在介稳区内进行。