工业结晶过程理论基础
- 格式:pptx
- 大小:4.34 MB
- 文档页数:173
金属结晶过程
金属结晶过程是一种金属物质的晶化程序,是让物质转变成晶体结构的
过程,也叫熔融凝固。
这是金属液体受到冷却或压力而变为晶体的过程。
这
是一个重要的工业生产过程,用于制造汽车零件、飞机零件、家具、陶瓷用
品等金属制品。
它也在天然形成过程中起着关键作用。
金属结晶有三个步骤:加热、熔融和冷却。
加热步骤需要加热金属到足
以融化的温度;熔融步骤需要保持金属液体在一定温度;冷却步骤则是从液
态到固态过渡,让金属形成晶体结构。
除了加热、熔融和冷却外,金属结晶
还可以用改变熔点的压力或其他方法来完成。
金属的晶体结构可以由金属原子的排列组成,于是每种金属有其自己的
晶体形状,可以这样来分类:普通直接晶系、四棱柱晶系、六角柱晶系和八
面体晶系。
金属结晶只是金属物质的凝固状态,但在许多情况下,为了提高金属物
质的力学强度和硬度,金属的冷却过程需要加快,或者金属的晶体结构需要
特别处理,以增强金属的结构。
这就是所谓的金属变形和金属热处理,他们
是金属工程的重要组成部分。
以上就是金属结晶过程的大致介绍,它为制造金属制品提供了基本工艺,也为天然晶体的形成提供了理论基础。
结晶现象知识点总结结晶是物质从溶解状态向固态状态转变的过程,在自然界和生活中都是非常常见的现象。
从雪花到盐晶,从钻石到岩石,结晶现象无处不在。
结晶现象的基本原理和规律对于化学、地质、物理等领域的研究有着重要的意义。
本文将结合化学、物理等多个领域的知识,对结晶现象进行深入的总结和探讨。
一、结晶现象的基本概念1. 结晶的概念结晶是指物质由溶解状态转变为具有有序结构的固态状态的过程。
在结晶过程中,原子、离子或分子以一定的方式排列成晶格,形成晶体的结构。
结晶是物质从液态或气态到固态的一种相变过程,也是物质从高能状态向低能状态转变的过程。
2. 结晶的特征结晶具有以下几个特征:(1)有序性:结晶物质中的原子、离子或分子按规则排列成晶格,具有一定的空间有序性;(2)周期性:晶格具有周期性,即晶体中的相邻晶胞之间存在一定的周期性相互关系;(3)绝对整体性:结晶物质具有一定的整体性,不同晶体之间存在显著的差异,晶体的结构和性质在一定程度上能够确定其是何种物质。
3. 结晶的分类根据结晶物质的化学性质和形态特征,结晶可以分为无机结晶和有机结晶、单晶和多晶等不同类型。
同时,根据结晶形态的差异,结晶可以分为板状晶体、柱状晶体、粒状晶体等不同形态。
二、结晶现象的基本原理1. 结晶的热力学基础热力学是研究物质的热现象与能量转化关系的科学,热力学定律对于解释结晶现象具有重要的意义。
结晶是物质从高能状态向低能状态转变的过程,在热力学上属于放热过程。
2. 结晶的动力学基础动力学是研究物质在不同条件下的变化规律的科学,动力学理论对于揭示结晶过程的热力学条件具有重要的意义。
结晶过程是一个动力学过程,受温度、压力、溶液浓度等外界条件的影响。
3. 结晶的晶体学基础晶体学是研究晶体结构和性质的科学,晶体学的理论对于揭示结晶现象的内在原理具有重要的意义。
晶体学理论揭示了晶体内部的空间有序性和周期性相互关系,为研究结晶现象提供了重要的理论基础。
工业结晶1. 引言结晶过程是一个复杂的相间质量与能量传递过程,其推动力主要来自于结晶多相体系在热力学上的非平衡特性[1,2]。
结晶体系的固液相平衡数据不仅是选择结晶精制过程溶剂体系和结晶方式的依据,而且是决定结晶过程最大生产能力和理论收率的关键因素,因此,结晶热力学研究是整个结晶过程研究和工艺优化的基础。
2. 溶解度和介稳区液固平衡(LSE)亦常称固液平衡,它分为两类,一是固体在溶剂中的溶解度,其特点是固体与溶剂的熔点迥异,一般以溶解度表示;二是熔点比较接近物质间的熔化平衡,无所谓溶剂,也不存在溶解度的概念[3]。
一般情况下,溶质与溶剂的熔点相差悬殊,所以通常意义下讨论的影响结晶过程的热力学问题就是第一种情况---溶解度。
2.1 溶解度固液相平衡的主要数据是固体在液体中的溶解度。
准确的溶解度数据在结晶过程的开发、设计和操作中是极为重要的。
众所周知,溶解度是指一定的温度和压力下,在100g溶剂中所能溶解溶质最大的克数。
常压下,溶解度曲线是随温度变化的一条特定的曲线。
这是常识性的知识,这里不再赘述。
2.2 介稳区介稳区(MetasTab. zone)指的是溶解度与超溶解度之间的区域。
超溶解度定义为某一温度下,物质在一定溶剂组成下能自发成核时的浓度。
溶解度曲线与超溶解度曲线将溶液浓度-温度相图分割为三个区域,分别为稳定区、介稳区和不稳区。
典型的溶液介稳区示意图如图1所示。
Mullin、丁绪淮等指出,一个特定的物系,只有一条明确的溶解度曲线,而超溶解度曲线的位置却要受很多因素的影响,例如有无搅拌,搅拌强度,有无晶种,晶种的大小多少,杂质的存在,超声波,电磁场等,所以超溶解度是一簇曲线[4-6]。
冷却或蒸发结晶溶析结晶图1介稳区示意图Fig. 1 Schematic diagram of metastable zone介稳区理论对结晶过程控制至关重要,在一个结晶过程中,当过饱和度超过介稳区进入不稳区时,溶液中就会自发成核,为了使产品具有较高的纯度和理想的粒度分布,通常将结晶过程控制在介稳区内进行。