几种主流无线通信技术的比较(终审稿)
- 格式:docx
- 大小:106.29 KB
- 文档页数:4
用于物联网的几种无线通信技术wifi、bt、zigbee对比用于物联网的几种无线通信技术wifi\bt\zigbee介绍随着物联网市场的加速发展,物联网变得更为触手可及,围绕物联网的宣传更加紧锣密鼓,而且令人更加困惑。
我们是时候面对现实情况,去鉴定现状并且评估事情走向。
有些困惑已经消除了,而有些则变本加厉——让我们一起从简化了的方面开始探讨吧。
无线电技术两年前,世界对可能有助于物联网的不同无线电技术掀起了讨论热潮。
一些公司主张,WiFi和蓝牙的存在就已足够,而其他公司开始推动IEEE 802.15.4(即ZigBee和Thread 的底层无线电技术)。
实际上,如今大多数的联网技术决策者能坦然接受并完全明白,物联网会针对不同的应用程序使用全部三种技术。
为了弥补WiFi的劣势(相对于ZigBee而言),市场开始推行使低功耗WiFi(IEEE 802.11ah)标准化的活动。
虽然该领域的活动仍在如火如荼地进行,并且可能会由此制订出标准,但全球对此的接纳程度却难以预测。
由于世界不同地区所用的规格和型号不同,该标准并非是放诸四海而皆准的。
雪上加霜的是,即使这一全新的低功耗标准被称为WiFi,但其并不兼容「真正」的WiFi,而是一种完全不同的无线电和MAC技术。
既然如此,那为什么不采用IEEE 802.15.4呢?这已经是一个通用标准,并且涵盖了新的低功耗WiFi开发商为之奋斗的所有特性,而新类型的「WiFi」并没有多大意义。
而蓝牙作为物联网标准而言,存在致命性缺陷——其设计理念是替代点对点有线传输技术而非联网技术的。
为了解决该缺陷,一些公司开始针对蓝牙研究网络层(「蓝牙网格」(Bluetooth Mesh)),但面临着严峻挑战。
以前,许多业内联网工程师已经见证了类似的mesh 联网所作出的努力均以失败告终。
例如IEEE 802.11s虽然存在,但几乎未曾使用,并只应用于单跳网格拓扑(中继器)之中,其主要问题是,在支持多跳时无法控制延时。
几种无线通信技术的比较The manuscript was revised on the evening of 2021几种无线通信技术的比较摘要:随着电子技术、计算机技术的发展,近年来无线通信技术蓬勃发展,出现了各种标准的无线数据传输标准,它们各有其优缺点和不同的应用场合,本文将目前应用的、无线通信方式进行了分析对比,并总结和预见了它们今后的发展方向。
关键词:Zigbee Bluetooth UWB Wi-Fi NFCSeveral Wireless Communications TechnologyComparisonAbstract:As the development of electronic technology,computer technology, wireless communication technology have a rapid development in recent years,emerged wireless data transmission standard,they have their advantages and disadvantages,and different applications,the application of various wireless communication were analyzed and compared,and summarized and foresee their future development.一.几种无线通讯技术(一)ZigBee1.简介:Zigbee是基于标准的低功耗个域网。
根据这个规定的技术是一种短距离、低功耗的技术。
其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。
主要适合用于自动控制和远程控制领域,可以嵌入各种设备。
ZigBee是一种高可靠的无线数传网络,类似于和网络。
ZigBee数传模块类似于移动网络。
无线传输技术比较无线传输技术按技术领域大致分为:无线能量(电能)传输技术与无线通信(数据)传输技术。
1.无线能量(电能)传输技术无线能量(电能)传输方式及技术原理:无线电力传输是一种传输电力的新技术,它将电力通过电磁耦合、射频微波、激光等载体进行传输。
这种技术解除了对于导线的依赖,从而得到更加方便和广阔的应用。
无线电力传输的基本原理:(1)电磁感应——短程传输。
电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系与转化。
电磁感应是电磁学中的基本原理,变压器就是利用电磁感应的基本原理进行工作的。
利用电磁感应进行短程电力传输的基本原理为:发射线圈L1和接收线圈L2之间利用磁耦合来传递能量。
若线圈L1中通已交变电流,该电流将在周围介质中形成一个交变磁场,线圈L2中产生的感应电势可供电给移动设备或者给电池充电。
(2)电磁耦合共振——中程传输。
中程无线电力传输方式是以电磁波‘射频’或者非辐射性谐振‘磁耦合’等形式将电能进行传输。
它基于电磁共振耦合原理,利用非辐射磁场实现电力高效传输。
在电子学的理论中,当交变电流通过导体,导体的周围会形成交变的电磁场,称为电磁波。
在电磁波的频率低于1000khz时,电磁波就会被地表吸收,不能形成有效的传输,当电磁波频率高于1000khz时,电磁波便可以在空气中传播,并且经大气层外缘的电离层反射,形成较远距离传输能力,人们把具有较远距离传输能力的高频电磁波称为射频(即:RF)。
将电信息源(模拟或者数字)用高频电流进行调制(调幅或者调频),形成射频信号后,经过天线发射到空中;较远的距离将射频信号接收后需要进行反调制,再还原成电信息源,这一过程称为无线传输。
中程传输是利用电磁波损失小的天线技术,并借助二极管、非接触IC卡、无线电子标签等等,实现效率较高的无线电力传输。
(3)微波/激光——远程传输。
理论上讲,无线电波的波长越短,其定向性越好弥散就越小。
所以可以利用微波或激光形式来实现电能的远程传输,这对于新能源的开发利用解决未来能源短缺问题也有着重要意义。
十大无线网络技术对比目前,无线网络连接技术按照传输距离远近可分为短距离无线连接技术和长距离无线连接技术。
下面分别列举了各自的5种主要技术,包括蓝牙,Wi-Fi,NFC,ZigBee,UWB以及GPRS,5G,NB-IoT,LoRa,全球卫星导航系统等。
互联网行业发展到今天,人们生活的便利度已经被极大的提高。
在家有Wi-Fi,出门有4G,定位有GPS等等,似乎网络已经成为继衣食住行之后的又一重要组成部分,覆盖生活的方方面面,但在万物互联时代,网络连接技术需要进一步迭代。
物联网架构一般被分为感知层、网络层、平台层和应用层,其中网络层处于物联网生态系统的枢纽位置,在物联网设备连接方面扮演着举足轻重的作用。
物联网的最终目标仍然是服务于人,因此,具有更高便携性的无线网络连接技术得到了更广泛的关注。
在互联网时代已经发展出一大批无线网络技术,面向万物互联,无线网络连接技术得到了更好的发展。
物联网解决方案供应商云里物里科技目前,无线网络连接技术按照传输距离远近可分为短距离无线连接技术和长距离无线连接技术。
下面分别列举了各自的5种主要技术,包括蓝牙,Wi-Fi,NFC,ZigBee,UWB以及GPRS,5G,NB-IoT,LoRa,全球卫星导航系统等。
下面就随着物联网解决方案供应商云里物里科技一起来了解下这十大无线网络技术的优缺点。
一、短距离无线连接1.蓝牙蓝牙(Bluetooth)是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换(使用2.4—2.485GHz的ISM波段的UHF无线电波)。
蓝牙可连接多个设备,克服了数据同步的难题。
从音频传输、图文传输、视频传输,再到以低功耗为主打的物联网传输,蓝牙应用的场景也越来越广。
前两代蓝牙技术都是技术的塑形阶段,将蓝牙技术发展成为一种可靠、安全、实用的传输通信技术。
随着3G时代的到来,蓝牙技术也迈入高速率传输的第三代。
第三代蓝牙技术传输速率高达24Mbps,核心是使用AMP技术,允许蓝牙协议栈针对任一任务动态地选择正确射频。
无线通信技术各自的特点和相互比较无线通信技术各自的特点和相互比较目前使用较广泛的近距无线通信技术是蓝牙(Bluetooth),无线局域网802.11(Wi-Fi)和红外数据传输(IrDA)。
同时还有一些具有发展潜力的近距无线技术标准,它们分别是:Zigbee、超宽频(Ultra WideBand)、短距通信(NFC)、WiMedia、GPS、DECT、无线1394和专用无线系统等。
它们都有其立足的特点,或基于传输速度、距离、耗电量的特殊要求;或着眼于功能的扩充性;或符合某些单一应用的特别要求;或建立竞争技术的差异化等。
但是没有一种技术可以完美到足以满足所有的需求。
1、蓝牙技术bluetooth技术是近几年出现的,广受业界关注的近距无线连接技术。
它是一种无线数据与语音通信的开放性全球规范,它以低成本的短距离无线连接为基础,可为固定的或移动的终端设备提供廉价的接入服务。
蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。
其传输频段为全球公众通用的2.4GHz ISM频段,提供1Mbps的传输速率和10m的传输距离。
蓝牙技术诞生于1994年,Ericsson当时决定开发一种低功耗、低成本的无线接口,以建立手机及其附件间的通信。
该技术还陆续获得PC行业业界巨头的支持。
1998年,蓝牙技术协议由Ericsson、IBM、Intel、NOKIA、Toshiba 等5家公司达成一致。
蓝牙协议的标准版本为802.15.1,由蓝牙小组(SIG)负责开发。
802.15.1的最初标准基于蓝牙1.1实现,后者已构建到现行很多蓝牙设备中。
新版802.15.1a 基本等同于蓝牙1.2标准,具备一定的QoS特性,并完整保持后向兼容性。
但蓝牙技术遭遇了最大的障碍是过于昂贵。
全球无线通信技术对比:3G vs 4G vs 5G随着科技的不断发展,无线通信技术也在不断发展。
3G、4G、5G是当前三种最常用的无线通信技术。
本文将对这三种无线通信技术进行详细介绍比较。
1. 3G3G是第三代蜂窝通信技术,其最初标准为WCDMA,也有CDMA2000、TD-SCDMA等标准。
其主要特点是具有高速数据传输、高清音质、视频通话等功能。
3G最大的优点是速度相对较快。
然而,3G也存在较明显的缺点。
首先是网络容量受限,不能很好地支持高流量设备;其次3G价格比4G和5G高,不适合普及使用,这也是为什么很多人都放弃在3G网络上上网。
2. 4G4G是第四代移动通信技术,主要标准是LTE。
4G不仅可以提供高速数据传输、高清音质、视频通话等,而且可以使用催化技术,支持更高的用户密度。
4G速度比3G要快,而且使用4G上网比3G更便宜。
4G最大的缺陷是信号覆盖面较小,距离信号塔越远,传输速度越慢。
3. 5G5G是第五代移动通信技术,其标准被称为NR(New Radio)。
5G 拥有比4G更高的网速,同时也可以为多个设备提供高速通信。
5G的一个重要应用是连接机器,以进行自动化和机器学习等技术。
此外,5G 的延迟时间非常短,能够大大减少传输时间。
5G最大的一个缺点是设备和网络的成本相对较高,而且目前5G信号塔的部署也相对较少。
如果想要使用5G厉害的通信技术,需要投入更多的资金。
总结无线通信技术3G、4G和5G是当前最常用的技术。
3G速度相对较快,适合日常使用;4G相对3G速度更快,而且上网更便宜,但是信号覆盖面相对较小;5G不仅能够提供更高的速度,而且支持更多的设备连接和更快的传输速度,但是目前的网络覆盖面相对较少,而且设备和网络成本相对较高。
至于何时才能广泛普及5G通信技术,这可能需要一段时间来解决。
但无论如何,无线通信技术一直在不断地发展,我们期待未来的无线通信技术能够为我们带来更多的方便和效率。
无线通信技术的分类与比较近年来,随着无线通信技术的不断发展,人们对无线通信技术的分类和比较越来越关注。
无线通信技术是一项十分重要的技术,它是现代现代通讯的重要组成部分,深入人们的日常生活,如今,人们经常使用的手机、Wi-Fi、蓝牙等都是基于无线通信技术的,因此,了解分类和比较无线通信技术对我们更好的应用和发展无线通信技术是非常有必要的。
一、无线通信技术的分类1. 一代无线通信技术一代无线通信技术是早期的无线通信技术,是在20世纪70年代至80年代初期主流的无线通信技术。
一代无线通信技术主要使用模拟信号进行通讯,通讯质量较差,且频率资源非常有限。
其代表技术有AMPS(Analog Mobile Phone System)和NMT (Nordic Mobile Telephony)。
2. 二代无线通信技术二代无线通信技术是数字化的无线通信技术,主要应用于90年代至00年代初期。
相比一代无线通信技术,它使用数字信号进行通讯,通讯质量更好,通讯速率更快,而且频率资源得到了更好地利用。
其代表技术包括GSM(Global System for Mobile Communications)、CDMA(Code Division Multiple Access)和TDMA(Time Division Multiple Access)。
3. 三代无线通信技术三代无线通信技术主要应用于21世纪初期。
相比较于二代无线通信技术,它提供了更高的通讯速率和更好的通讯质量,使用的通信技术更加多元化。
主要代表技术包括WCDMA(Wideband Code Division Multiple Access)、CDMA2000(Code Division Multiple Access 2000)和WiFi(Wireless Fidelity)。
4. 四代无线通信技术四代无线通信技术是目前的主流无线通信技术,它提供了更快的通讯速率和更好的通讯质量,支持更多的用户进行数据交换。
几种短距无线通信技术的对比和应用前景[导读]当我们谈及无线通信的时候,大家可能已经快速的联想到各种各样的无线设备,比如手机、无线路由器、遥控器等。
这已经无处不在,很可能你现在看这篇文章用的就是无线设备。
但还有更无处不在的,那就是无线信号,这也是经常被大家忽略的。
其实如果它能被肉眼看见,你会真觉得简直浸在其中。
其实它们已经应用到家居、办公、工业等诸多领域,下面我们通个对比以下几种不同的无线技术谈谈其应用前景。
目前使用较广泛的近距无线通信技术有蓝牙(Bluetooth)、无线局域网802.11(Wi-Fi)和红外数据传输(IrDA)。
同时还有一些具有发展潜力的近距无线技术标准,如Zigbee、超宽频(Ultra WideBand)、5G Wi-Fi、433MHz、近场通信(NFC)、DECT等等。
1.蓝牙蓝牙技术是一种无线数据与语音通信的开放性全球规范,其实质内容是为固定设备或移动设备之间的通信环境建立通用的近距无线接口,将通信技术与计算机技术进一步结合起来,使各种设备在没有电线或电缆相互连接的情况下,能在近距离范围内实现相互通信或操作。
其传输频段为全球公众通用的 2.4GHz ISM 频段,提供1Mbps的传输速率和10m的传输距离。
但蓝牙技术遭遇了最大的障碍是过于昂贵。
突出表现在芯片大小和价格难以下调、抗干扰能力不强、传输距离太短、信息安全问题等等。
这就使得许多用户不愿意花大价钱来购买这种无线设备。
因此,业内专家认为,蓝牙的市场前景取决于蓝牙价格和基于蓝牙的应用是否能达到一定的规模。
但目前蓝牙在手持移动设备短距离传输上还占很大的市场份额。
2.ZigBeeZigbee是基于IEEE802.15.4标准的低功耗个域网协议。
根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。
主要特点包括低功耗、低成本、低速率、支持大量节点、支持多种网络拓扑、低复杂度、快速、可靠、安全。
ZigBee 网络中的设备可分为协调器(Coordinator)、汇聚节点(Router)、传感器节点(EndDevice)等三种角色。
OCCUPATION2011 5120几种典型无线电技术的性能比较文/曲少梅速回路。
此种调速回路温升小、效率高,用扩大油箱容量和通风自然冷却来缓解油温的升高。
另外,还可以采用双油箱结构方案,以实现不同温升情况下的油温调节。
当系统功率损失较大,发热量大而结构又不允许有较大的油箱容量的情况下,可采用冷却器进行强制冷却。
5.加强液压系统的维护保养和管理(1)选择合适的液压油。
要根据液压系统的特点和使用环境,选择合适的液压油。
首先要求具备合适的黏度、合适的固体颗粒污染等级;其次,要考虑液压油的抗氧化性、抗乳化性及是否有耐磨添加剂等,还需考虑液压工作介质与元件金属材料及其密封材料的相容性。
选择液压油时应根据以下几个方面的情况考虑:工作压力较高的系统宜选用黏度较大的液压油,以减少泄漏;液压系统的工作部件运动速度较高时,宜选用黏度较小的液压油,以减少运动阻力;环境温度较高时,宜选用黏度较大的液压油。
(2)定期清洗滤芯、油箱、管道和元件内部的污垢,定期更换滤芯,建立液压系统一级保养制度。
(3)通过检查油质来确定是否该换油。
因为不同的液压油使用寿命也不同,同一种液压油在不同的设备、不同的环境、不同的维护条件下,使用期限相差很大。
常用来检测液压油污染度的方法有:铁谱分析法、光谱分析法、重量分析法、自动颗粒计数法等。
前面这些方法在某些场合,如野外和生产现场会受到限制,可使用便携式污染测量仪来检测,如数显式污染报警仪、测试仪、污染检测仪、颗粒计数器、污染度检测仪。
若没有这些仪器,也可采用目测法和比色法。
目测法就是通过看油的颜色,嗅油的味道,摸油液的光滑度来估测液压油的污染程度;也可用两只洁净透明的玻璃瓶,一只装待测的液压油,另一只装新的液压油,将两只瓶子对着太阳看,来估计液压油的污染度。
比色法是将一定体积油样中的污染物用滤纸过滤出来,然后根据滤纸颜色来判断介质污染程度。
具体方法:取同数量使用油和同号纯油各少许,分离滴在滤纸上,过一段时间后,比较两种滤纸的颜色,从而确定油液污染程度以及是否需要换油。
几种主流无线通信技术
的比较
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-
几种主流无线通信技术的比较
来源:德国易能森有限公司供稿
[导读]近几年,随着面向家庭控制及自动化短距离无线技术的发展,家庭智能化所带来的机遇正成为现实。
轻家居相比传统智能家居很明显的两个优势就是在易安装和易交互。
在已出现的各种短距离无线通信技术中, EnOcean、Zigbee,Z-Wave和Bluetooth(蓝牙)是当前连接智能家居产品的主要手段。
关键词:
近几年,随着面向家庭控制及自动化短距离无线技术的发展,家庭智能化所带来的机遇正成为现实。
轻家居相比传统智能家居很明显的两个优势就是在易安装和易交互。
在已出现的各种短距离无线通信技术中, EnOcean、Zigbee,Z-Wave和Bluetooth(蓝牙)是当前连接智能家居产品的主要手段。
EnOcean
EnOcean无线通信标准被采纳为国际标准“ISO/IEC 14543-3-10”,这也是世界上唯一使用能量采集技术的无线国际标准。
EnOcean能量采集模块能够采集周围环境产生的能量,从光、热、电波、振动、人体动作等获得微弱电力。
这些能量经过处理以后,用来供给EnOcean超低功耗的无线通讯模块,实现真正的无数据线,无电源线,无电池的通讯系统。
EnOcean无线标准ISO/IEC14543-3-10使用868MHz,902MHz,
928MHz和315MHz频段,传输距离在室外是300 米,室内为30米。
Zigbee
Zigbee个域网协议。
根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。
其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。
是一种便宜的,低功耗的近距离无线组网通讯技术。
Zigbee使用频段为2.4G,868MHz以及915MHz。
在不使用功率放大器的前提下,Zigbee的有效传输范围为10-75m。
Z-Wave
Z-Wave是由丹麦公司Zensys所主导的无线组网规格, Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。
工作频带为908.42MHz,868.42MHz信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。
Z-Wave技术也是低功耗和低成本的技术,有力地推动着低速率无线个人区域网。
Bluetooth
蓝牙技术主要分为BT3.0+HS和4.0版本中加入的Wibree标准也就是Bluetooth Low Energy(BLE)。
在轻家居领域,主要讨论BLE部分。
低功耗蓝牙(BLE)技术是低成本,短距离,可互操作的鲁棒性无线技术,工作在2.4G频段。
BLE采用可变连接时间间隔,几毫秒到几秒,利用快速的连接方式,平时可以处于“非连接”状态节省能源,此时链路两端相互间只是知晓对方,只有在必要时才开启链路,然后在尽可能短的时间内关闭链路,因此拥有极低的运行和待机功耗。
EnOcean与其他三种协议的区别
与该领域的其他技术相比,EnOcean技术的特点是无需电池。
比方说,50-60层的高层大厦的管理系统有时会使用4000-6000个传感器单元。
如果各传感器单元使用以电池为驱动的技术,电池的更换和管理将成为巨大的负担,令大厦管理公司无所适从。
其他技术的弱点就是以电池驱动装置。
EnOcean技术能够保证在照明关闭5天的情况下仍然可以工作。
EnOcean技术是作为非常简单的标准设计的。
EnOcean无线信号所需的电力是 ZigBee的1/30-1/100。
另外,由于使用了1GHz以下的频段,因此EnOcean的传输距离较使用2.4GHz的Zigbee及BLE要远,且干扰更少。
各协议的功耗及传输距离对比:
通过下面两个表格,我们可以更直观全面地对比几种主流的无线通信技术:。