医学统计学--秩和检验
- 格式:ppt
- 大小:3.30 MB
- 文档页数:81
秩和检验结果解读The interpretation of the results of the rank sum test is crucial in statistical analysis, especially when dealing withnon-parametric data. This test, also known as the Mann-Whitney U test or the Wilcoxon rank sum test, is used to assess whether two independent samples come from the same distribution. It does not assume that the data follow a specific distribution, making it a robust tool for a wide range of applications.秩和检验结果的解读在统计分析中至关重要,特别是在处理非参数数据时。
这种检验,也被称为Mann-Whitney U检验或Wilcoxon秩和检验,用于评估两个独立样本是否来自同一分布。
它不假设数据遵循特定的分布,这使得它成为众多应用场景下的强大工具。
The test's output typically includes a statistic value and a corresponding p-value. The statistic value, such as the U statistic in the Mann-Whitney U test, represents the sum of ranks for one of the samples. A low U statistic indicates that the values in one sample tend to be smaller than those in the other, suggesting a difference between the two groups.检验的输出通常包括一个统计量值和相应的p值。
医学统计学知识点梳理医学统计学:?是用统计学原理和方法研究生物医学问题的一门学科。
他包括了研究设计、数据收集、整理、分析以及分析结果的正确解释和表达。
统计描述:用统计指标、统计图表对资料的数量特征及分布规律进行客观的描述和表达。
统计推断:在一定的置信度和概率保证下,用样本信息推断总体特征:? ①参数估计:用样本的指标去推断总体相应的指标? ②假设检验:由样本的差异推断总体之间是否可能存在的差异同质:一个总体中有许多个体,他们之所以共同成为人们研究的对象,必定存在共性,我们说一些个体处于同一总体,就是指他们大同小异,具有同质性。
总体(population)是根据研究目的确定的同质的观察单位的全体,更确切的说,是同质的所有观察单位某种观察值(变量值)的集合。
总体可分为有限总体和无限总体。
总体中的所有单位都能够标识者为有限总体,反之为无限总体。
样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。
样本应具有代表性。
所谓有代表性的样本,是指用随机抽样方法获得的样本。
随机抽样:随机抽样(random sampling)是指按照随机化的原则(总体中每一个观察单位都有同等的机会被选入到样本中),从总体中抽取部分观察单位的过程。
随机抽样是样本具有代表性的保证。
变异:在自然状态下,个体间测量结果的差异称为变异(variation)。
变异是生物医学研究领域普遍存在的现象。
严格的说,在自然状态下,任何两个患者或研究群体间都存在差异,其表现为各种生理测量值的参差不齐。
(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。
计量资料亦称定量资料、测量资料。
.其变量值是定量的,表现为数值大小,一般有度量衡单位。
(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。
计数资料亦称定性资料或分类资料。
秩和检验的原理
秩和检验是一种用于比较两个样本的非参数性统计方法。
它的原理是基于对样本数据进行排序,计算出两个样本的秩和,然后通过比较秩和的大小来判断两个样本的总体分布是否有显著差异。
具体而言,秩和检验将样本数据排序后,按照排序后的位置进行秩次的赋值。
对于同样的观测值,将其排名的平均值作为秩次;对于出现连续相同观测值的情况,将其秩次取为连续区间的平均值。
然后,分别计算两个样本的秩和,并比较它们的大小。
通过比较秩和的大小,可以得出以下结论:
- 如果两个样本的秩和相差显著大,则说明两个样本的总体分布有显著差异,即两个样本来自于不同的总体分布。
- 如果两个样本的秩和相差不大,则说明两个样本的总体分布没有显著差异,即两个样本来自于相同的总体分布。
需要注意的是,秩和检验适用于两个独立样本的比较。
在实际应用中,可以使用不同的秩和检验方法,如Mann-Whitney U 检验、Wilcoxon秩和检验等。
这些方法的具体计算方式有所差异,但基本原理相同。
它们都是通过对样本数据排序和秩次赋值,来判断两个样本的总体分布是否有显著差异。
医学统计学之秩和检验什么是秩和检验?秩和检验(Wilcoxon rank-sum test),又称为Mann-Whitney U检验,是非参数假设检验的一种常用方法,用于比较两个独立样本的位置差异。
这个方法基于样本的秩次,而不依赖于数据的具体分布。
秩和检验的适用场景秩和检验通常用于以下情况:1.样本数据不满足正态分布假设;2.无法满足方差齐性假设;3.样本容量较小。
秩和检验是一种非常灵活的方法,适用于大部分类型的数据分布,甚至可以包括极端的离群值。
秩和检验的原理秩和检验的原理是将两个样本的观察值合并后,按照大小重新排列,并赋予秩次。
然后利用秩次之和来比较两个样本的位置差异。
1.对于两个独立样本,将两组数据合并为一个整体的样本。
2.对于每个观察值,分别计算出在整体样本中的秩次。
3.计算两组样本的秩和,比较其大小。
4.根据秩和的大小以及样本容量,查表或计算检验统计量的p-value。
秩和检验的步骤秩和检验的具体步骤如下:1.将两个样本合并为一个整体样本,并标记属于哪个样本。
2.对整体样本中的观察值进行排序,得到秩次。
3.计算秩和,并比较两个样本的秩和大小。
4.根据秩和大小以及样本容量,查找临界值。
5.根据临界值判断是否拒绝原假设,或者计算统计量的p-value。
6.根据p-value判断是否拒绝原假设。
秩和检验的示例假设我们有两个医学治疗方法A和B,想要比较其对病人治疗效果的差异。
我们随机选择了两组病人,分别给予方法A和B进行治疗,然后观察他们的疗效。
以下是我们观察到的结果:组A:8, 10, 12, 10, 14 组B:9, 11, 14, 12, 13我们可以按照秩次将两组数据合并,并计算秩和:组A:8(1), 10(3), 12(4), 10(3), 14(5) 组B:9(2), 11(4), 14(5), 12(4), 13(2)组A的秩和为16,组B的秩和为17。
然后,我们根据秩和的大小以及样本容量,在秩和表中查找临界值。
一、描述集中位置的指标应用适用范围【筒】平均数:算数均数、几何均数、中位数、百分位数。
1、算数平均数:适用于单峰对称分布或近似于单峰对称分布的资料2、几何均数:适用于对数变换后单峰对称的资料。
eg∙等比资料、滴度资料、对数正态分布资料3、中位数:理论上可用于任何分布资料•,但当资料适合计算均数或几何均数时,不宜用中位数。
Eg:偏态分布、分布不明资料、有不确定值的资料.4、百分位数:适用于任何分布的资料。
二、描述离散趋势的指标【简】变异度:极差、四分位数间距、标准差、方差、变异系数。
1、极差:又称全距,是一组数据中最大值和最小值之差。
极差大说明资料的离散度大。
优点:简单明了缺点:不灵敏和不稳定。
样本例数相差悬殊时,不适宜比较其极差。
2、四分位数间距:即中间一半观察值的极差。
四分位数间距较全距稳定,常与中位数一起,描述不对称分布资料的特征。
3、标准差:基本内容是离均差,它显示一组变量值与其均数的间距,故标准差直接地、总结地、平均地描述了变量值的离散程度。
在同质的前提下,标准差大,表示变量值的离散程度大,即变量值的分布分散、不整齐、波动较大;标准差小,表示变量值的离散程度小,即变量值的分布集中、整齐、波动较小。
4、方差:利用了所用的信息,与变异度和变量值的个数有关。
5、变异系数(CV):变异系数派生于标准差,其应用价值在于排除了平均水平的影响,并消除了单位。
三、正态分布特征1、单峰分布;高峰在均数处;2、以均数为中心,均数两侧完全对称。
3、正态分布有两个参数(Parameter),即位置参数_(均数)和变异度参数_(标准差)。
4、有些指标本身不服从正态分布,但经过变换之后可以服从正态分布。
5、正态曲线下的面积分布有一定的规律。
四、参考值范围(含义+原则)【简】1、含义:(1)又称正常值范围,是绝大多数正常人的某观察指标所在的范围。
绝大多数:90%,95%,99%等等。
(2)确定参考值范围的意义:用于判断正常与异常。
秩和检验原理
秩和检验是一种非参数统计方法,主要用于比较两组相关样本或配对样本的差异是否显著。
该检验方法不要求数据满足正态分布、方差齐性等假设,因此在某些情况下更为适用。
秩和检验的原理是基于秩次的比较。
对于两组相关或配对样本,首先将数据按照大小进行排序,并为每个数据赋予相应的秩次,然后计算两组样本秩次和的差值。
如果两组样本的差异并无显著性,那么这些差值在排序后应该是随机分布的。
因此,比较两组样本的秩次和差值的分布情况,可以得出样本差异是否显著。
在进行秩和检验时,首先计算两组样本的秩次和,然后计算秩次和差值的绝对值,并将其秩次,最后根据样本的大小和秩次之间的比较,计算出秩和的值。
根据秩和值,可以查找相应的临界值,从而判断样本差异是否显著。
若秩和值大于临界值,则可以拒绝原假设,即两组样本存在显著差异。
总之,秩和检验通过对样本的秩次进行比较,来评估两组样本或配对样本的差异是否显著。
它的原理简单,不要求数据满足特定的分布假设,因此在某些情况下是一种较为有用的统计方法。