小波工具箱常用函数
- 格式:docx
- 大小:14.98 KB
- 文档页数:5
db5小波基函数DB5小波基函数是一种离散小波变换中常用的小波基函数之一。
它是由Daubechies提出的,也被称为Daubechies-5小波基函数。
DB5小波基函数具有紧支集、对称性和正交性等特点,在信号处理领域有着广泛的应用。
1. DB5小波基函数的定义DB5小波基函数是由一个低通滤波器和一个高通滤波器组成的,其中低通滤波器用于提取信号中的低频部分,高通滤波器用于提取信号中的高频部分。
DB5小波基函数可以通过以下公式表示:h0 = (1+sqrt(10)+sqrt(5-sqrt(10))+sqrt(10-2*sqrt(10)))/16h1 = (sqrt(10)+3*sqrt(5)+sqrt(2*sqrt(10))+sqrt(sqrt(10)-2))/16 h2 = (-1-sqrt(10)+sqrt(5-sqrt(10))-sqrt(10-2*sqrt(10)))/16h3 = (-sqrt(10)+3*sqrt(5)-sqrt(sqrt(10)-2)-sqrt(sqrt(10)+2))/16 h4 = (1+3*sqrt(sqrt(10)-2)-3*sqrt(sqrt(10)+2)-3*sqrt(sqrt(sqrt(10)-2))-6*sqrt(sqrt(sqrt(10)+2))))/16g0 = h4g1 = -h3g2 = h2g3 = -h1g4 = h0其中,h0、h1、h2、h3、h4是低通滤波器的系数,g0、g1、g2、g3、g4是高通滤波器的系数。
2. DB5小波基函数的性质DB5小波基函数具有以下性质:- 紧支集:DB5小波基函数在时域上具有紧支集,即只在有限的时间范围内才有非零值。
- 对称性:DB5小波基函数是对称的,即它关于垂直轴对称。
- 正交性:DB5小波基函数是正交的,即低通滤波器和高通滤波器之间是正交关系。
3. DB5小波基函数的应用DB5小波基函数在信号处理领域有着广泛的应用,包括图像压缩、信号去噪、特征提取等。
-、绘制原理1.需要用到的小波工具箱中的三个函数COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。
FREQ = centfrq('wname')说明:该函数能求出以wname命名的母小波的中心频率。
F = scal2frq(A,'wname',DELTA)说明:该函数能将尺度转换为实际频率,其中A为尺度,wname为小波名称,DELTA为采样周期。
注:这三个函数还有其它格式,具体可参阅matlab的帮助文档。
2.尺度与频率之间的关系设a为尺度,fs为采样频率,Fc为小波中心频率,则a对应的实际频率Fa为Fa=Fc×fs/a (1)显然,为使小波尺度图的频率范围为(0,fs/2),尺度范围应为(2*Fc,inf),其中inf表示为无穷大。
在实际应用中,只需取尺度足够大即可。
3.尺度序列的确定由式(1)可以看出,为使转换后的频率序列是一等差序列,尺度序列必须取为以下形式:c/totalscal,...,c/(totalscal-1),c/4,c/2,c (2)其中,totalscal是对信号进行小波变换时所用尺度序列的长度(通常需要预先设定好),c 为一常数。
下面讲讲c的求法。
根据式(1)容易看出,尺度c/totalscal所对应的实际频率应为fs/2,于是可得c=2×Fc/totalscal (3)将式(3)代入式(2)便得到了所需的尺度序列。
4.时频图的绘制确定了小波基和尺度后,就可以用cwt求小波系数coefs(系数是复数时要取模),然后用scal2frq将尺度序列转换为实际频率序列f,最后结合时间序列t,用imagesc(t,f,abs(coefs))便能画出小波时频图。
注意:直接将尺度序列取为等差序列,例如1:1:64,将只能得到正确的尺度-时间-小波系数图,而无法将其转换为频率-时间-小波系数图。
应广大版友的需要,下面将介绍小波时频(尺度)图的绘制原理,并举例加以说明。
1、绘制原理需要用到的小波工具箱中的三个函数COEFS = cwt(S,SCALES,'wname')说明:该函数能实现连续小波变换,其中S为输入信号,SCALES为尺度,wname为小波名称。
FREQ = centfrq('wname')说明:该函数能求出以wname命名的母小波的中心频率。
F = scal2frq(A,'wname',DELTA)说明:该函数能将尺度转换为实际频率,其中A为尺度,wname为小波名称,DELTA为采样周期。
注:这三个函数还有其它格式,具体可参阅matlab的帮助文档。
2.尺度与频率之间的关系设a为尺度,fs为采样频率,Fc为小波中心频率,则a对应的实际频率Fa为Fa=Fc×fs/a (1)显然,为使小波尺度图的频率范围为(0,fs/2),尺度范围应为(2*Fc,inf),其中inf表示为无穷大。
在实际应用中,只需取尺度足够大即可。
3.尺度序列的确定由式(1)可以看出,为使转换后的频率序列是一等差序列,尺度序列必须取为以下形式:c/totalscal,...,c/(totalscal-1),c/4,c/2,c (2)其中,totalscal是对信号进行小波变换时所用尺度序列的长度(通常需要预先设定好),c 为一常数。
下面讲讲c的求法。
根据式(1)容易看出,尺度c/totalscal所对应的实际频率应为fs/2,于是可得c=2×Fc/totalscal (3)将式(3)代入式(2)便得到了所需的尺度序列。
4.时频图的绘制确定了小波基和尺度后,就可以用cwt求小波系数coefs(系数是复数时要取模),然后用scal2frq将尺度序列转换为实际频率序列f,最后结合时间序列t,用imagesc(t,f,abs(coefs))便能画出小波时频图。
最近想尝试一下小波的用法,就这matlab的帮助尝试了一下它的例子,顺便翻译了一下帮助的内容,发现matlab帮助做的确实不错,浅显易懂!现把翻译的文档写出来吧,想学习的共同学习吧!小波工具箱简介小波工具箱包含了图像化的工具和命令行函数,它可以实现如下功能:l 测试、探索小波和小波包的特性l 测试信号的统计特性和信号的组分l 对一维信号执行连续小波变换l 对一维、二维信号执行离散小波分析和综合l 对一维、二维信号执行小波包分解(参见帮助Using Wavelet Packets)l 对信号或图像进行压缩、去噪另外,工具箱使用户更方便的展示数据。
用户可以做如下选择:l 显示哪个信号l 放大感兴趣的区域l 配色设计来显示小波系数细节工具箱可以方便的导入、导出信息到磁盘或matlab工作空间。
具体详见File Menu Options一维连续小波分析这一部分来测试连续小波分析的特性。
连续小波分析只需要一个小波函数cwt。
在这一部分将学到如下内容:l 加载信号l 对信号执行连续小波变换l 绘制小波系数l 绘制指定尺度的小波系数l 绘制整个尺度小波系数中的最大值l 选择显示方式l 在尺度和伪频率之间切换l 细节放大l 在普通或绝对模式下显示系数l 选择执行小波分析的尺度使用命令行执行连续小波分析这个例子是一个包含噪声的正弦波1. 加载信号4. 选择分析的尺度cwt函数的第二个参数可以设定任意小波分析的尺度,只要这些尺度满足如下要求l 所有尺幅必须为正实数l 尺度的增量必须为正l 最高的尺度不能超过由信号决定的一个最大值如下面的代码可以执行从2开始的偶数尺度计算c = cwt(noissin,2:2:128,'db4','plot');显示结果如下这幅图像很明确的表示出了信号的周期性。
使用图形接口做连续小波分析1. 开启一维连续小波工具,只需输入如下命令wavemenu出现如下小波工具箱主菜单选择Continuous Wavelet 1-D菜单项,出现如下一维信号分析连续小波分析工具2. 加载信号选择菜单File->Load Signal,在Load Signal对话框里选择noissin.mat文件,它在matlab安装目录的toolbox/wavelet/wavedemo文件夹下,点击OK加载信号。
五种常见小波基函数及其matlab实现Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar函数的定义如下:1021121(t)-10t t ≤≤≤≤ψ=其他Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2.(t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a=的多分辨率系统中,Haar 小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:2/24=sin ()j e aψ-ΩΩΩΩ()jHaar 小波的时域和频域波形[phi,g1,xval] = wavefun('haar',20); subplot(2,1,1);plot(xval,g1,'LineWidth',2); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(2,1,2); plot(g3,'LineWidth',2);xlabel('f') title('haar 频域')Daubechies(dbN)小波Daubechies 小波是世界著名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N(Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令kN k kN kyp C∑-=+=11-(y),其中C kN k+1-为二项式的系数,则有)2)p(sin2(cos)(2220ωωω=m其中:e h jk N k kωω-12021)(m ∑-==Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
2. 在频域)(ωψ在=0ω处有N 阶零点。
3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。
Allnodes 计算树结点appcoef 提取一维小波变换低频系数appcoef2 提取二维小波分解低频系数bestlevt 计算完整最佳小波包树besttree 计算最佳(优)树biorfill 双正交样条小波滤波器组biorwavf 双正交样条小波滤波器centfrq 求小波中心频率cgauwavf Complex Gaussian小波cmorwavf coiflets小波滤波器cwt 一维连续小波变换dbaux Daubechies小波滤波器计算dbwavf Daubechies小波滤波器dbwavf(W) W='dbN' N=1,2,3,...,50 ddencmp 获取默认值阈值(软或硬)熵标准depo2ind 将深度-位置结点形式转化成索引结点形式detcoef 提取一维小波变换高频系数detcoef2 提取二维小波分解高频系数disp 显示文本或矩阵drawtree 画小波包分解树(GUI)dtree 构造DTREE类dwt 单尺度一维离散小波变换dwt2 单尺度二维离散小波变换dwtmode 离散小波变换拓展模式dyaddown 二元取样dyadup 二元插值entrupd 更新小波包的熵值fbspwavf B样条小波gauswavf Gaussian小波get 获取对象属性值idwt 单尺度一维离散小波逆变换idwt2 单尺度二维离散小波逆变换ind2depo 将索引结点形式转化成深度—位置结点形式intwave 积分小波数isnode 判断结点是否存在函数指含义istnode 判断结点是否是终结点并返回排列值iswt 一维逆SWT(Stationary Wavelet Transform)变换iswt2 二维逆SWT变换leavesmexihat 墨西哥帽小波meyer Meyer小波meyeraux Meyer小波辅助函数morlet Morlet小波nodease 计算上溯结点nodedesc 计算下溯结点(子结点)nodejoin 重组结点nodepar 寻找父结点nodesplt 分割(分解)结点noleavesntnodentreeorthfill 正交小波滤波器组plot 绘制向量或矩阵的图形qmf 镜像二次滤波器rbiowavfread 读取二进制数据readtree 读取小波包分解树scal2frqsetshanwavfswt 一维SWT(Stationary Wavelet Transform)变换swt2 二维SWT变换symauxsymwavf Symlets小波滤波器thselect 信号消噪的阈值选择thodestreedpth 求树的深度treeord 求树结构的叉数函数指令含义upcoef 一维小波分解系数的直接重构upcoef2 二维小波分解系数的直接重构upwlev 单尺度一维小波分解的重构upwlev2 单尺度二维小波分解的重构wavedec 单尺度一维小波分解wavedec2 多尺度二维小波分解wavedemo 小波工具箱函数demowavefun 小波函数和尺度函数wavefun2 二维小波函数和尺度函数wavemenu 小波工具箱函数menu图形界面调用函数wavemngr 小波管理函数waverec 多尺度一维小波重构waverec2 多尺度二维小波重构wbmpenwcodemat 对矩阵进行量化编码wdcbmwdcbm2wden 用小波进行一维信号的消噪或压缩wdencmpwentropy 计算小波包的熵wextendwfilters 小波滤波器wkeep 提取向量或矩阵中的一部分wmaxlev 计算小波分解的最大尺度wnoise 产生含噪声的测试函数数据wnoisest 估计一维小波的系数的标准偏差wp2wtree 从小波包树中提取小波树spbmpenwpcoef 计算小波包系数wpcutree 剪切小波包分解树wpdec 一维小波包的分解wpdec2 二维小波包的分解wpdencmp 用小波包进行信号的消噪或压缩wpfun 小波包函数wpjoinwprcoef 小波包分解系数的重构wprec 一维小波包分解的重构wprec2 二维小波包分解的重构wpsplt 分割(分解)小波包wpthcoef 进行小波包分解系数的阈值处理wptreewpviewcfwrcoef 对一维小波系数进行单支重构wrcoef2 对二维小波系数进行单支重构wrev 向量逆序write 向缓冲区内存写进数据wtbowthcoef 一维信号的小波系数阈值处理wthcoef2 二维信号的小波系数阈值处理wthresh 进行软阈值或硬阈值处理wthrmngr 阈值设置管理wtreemgr 管理树结构。
MATLAB小波函数总结在MATLAB中,小波函数是一种弧形函数,广泛应用于信号处理中的压缩,降噪和特征提取等领域。
小波函数具有局部化特性,能够在时频域上同时分析信号的瞬时特征和频率信息。
本文将总结MATLAB中常用的小波函数及其应用。
一、小波函数的基本概念小波变换是一种时间-频率分析方法,通过将信号与一组基函数进行卷积得到小波系数,从而实现信号的时频分析。
小波函数具有紧致性,能够在时域和频域具有局域性。
MATLAB提供了一系列的小波函数,用于不同的应用场景。
1. Haar小波函数Haar小波函数是最简单的一类小波函数,它是一种基于矩阵变换的正交小波函数。
具体而言,Haar小波函数形式如下:ψ(x)=1(0≤x<1/2)-1(1/2≤x<1)0(其他)Haar小波函数的最大优点是构造简单,仅由两个基本函数构成,且可以有效地表示信号的边缘和跳变。
2. Daubechies小波函数Daubechies小波函数是一类紧支小波函数,能够在时域和频域上实现精确的表示。
MATLAB提供了多个Daubechies小波函数,如db1、db2、db3等,其选择取决于所需的时频分析精度。
3. Symlets小波函数Symlets小波函数是Daubechies小波函数的一种变形,它在保持带通特性的基础上增加了支持系数的数量,提高了时频分析的精度。
MATLAB 提供了多个Symlets小波函数,如sym2、sym3、sym4等。
4. Coiflets小波函数Coiflets小波函数是一种具有对称性和紧支特性的小波函数,可用于信号压缩和降噪等应用。
MATLAB提供了多个Coiflets小波函数,如coif1、coif2、coif3等。
二、小波函数的应用小波函数广泛应用于信号处理中的各个领域,包括信号压缩、降噪、图像处理和模式识别等。
下面将重点介绍小波函数在这些领域的应用。
1.信号压缩小波函数可以通过选择合适的小波基函数和阈值策略来实现信号的压缩。
常用工具箱MATLAB包括拥有数百个内部函数的主包和三十几种工具包。
工具包又可以分为功能性工具包和学科工具包。
功能工具包用来扩充MATLAB的符号计算,可视化建模仿真,文字处理及实时控制等功能。
学科工具包是专业性比较强的工具包,控制工具包,信号处理工具包,通信工具包等都属于此类。
开放性使MATLAB广受用户欢迎。
除内部函数外,所有MATLAB主包文件和各种工具包都是可读可修改的文件,用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。
Matlab Main Toolbox——matlab主工具箱Control System Toolbox——控制系统工具箱Communication Toolbox——通讯工具箱Financial Toolbox——财政金融工具箱System Identification Toolbox——系统辨识工具箱FuzzyLogic Toolbox——模糊逻辑工具箱Higher-Order Spectral Analysis Toolbox——高阶谱分析工具箱Image Processing Toolbox——图象处理工具箱computer vision systemtoolbox----计算机视觉工具箱LMI Control Toolbox——线性矩阵不等式工具箱Model predictive Control Toolbox——模型预测控制工具箱μ-Analysis and Synthesis Toolbox——μ分析工具箱Neural Network Toolbox——神经网络工具箱Optimization Toolbox——优化工具箱Partial Differential Toolbox——偏微分方程工具箱Robust Control Toolbox——鲁棒控制工具箱Signal Processing Toolbox——信号处理工具箱 Spline Toolbox——样条工具箱Statistics Toolbox——统计工具箱Symbolic Math Toolbox——符号数学工具箱Simulink Toolbox——动态仿真工具箱Wavele Toolbox——小波工具箱DSP systemtoolbox-----DSP处理工具箱常用函数Matlab内部常数[2]eps:浮点相对精度exp:自然对数的底数ei 或j:基本虚数单位inf 或Inf:无限大, 例如1/0nan或NaN:非数值(Not a number),例如0/0 pi:圆周率p(= 3.1415926...)realmax:系统所能表示的最大数值realmin:系统所能表示的最小数值nargin: 函数的输入引数个数nargout: 函数的输出引数个数lasterr:存放最新的错误信息lastwarn:存放最新的警告信息MATLAB常用基本数学函数abs(x):纯量的绝对值或向量的长度angle(z):复数z的相角(Phase angle)sqrt(x):开平方real(z):复数z的实部imag(z):复数z的虚部conj(z):复数z的共轭复数round(x):四舍五入至最近整数fix(x):无论正负,舍去小数至最近整数floor(x):下取整,即舍去正小数至最近整数ceil(x):上取整,即加入正小数至最近整数rat(x):将实数x化为多项分数展开rats(x):将实数x化为分数表示sign(x):符号函数(Signum function)。
MATLAB小波分析工具箱常用函数1. wfilters 函数:用于生成小波滤波器和尺度函数,可以根据指定的小波和尺度类型生成小波滤波器系数。
2. wavedec 函数:用于将信号进行小波分解,将输入信号分解为多个尺度系数和小波系数。
3. waverec 函数:用于将小波系数和尺度系数进行重构,将小波分解后的系数重构为信号。
4. cwt 函数:用于进行连续小波变换,可以获得信号在不同尺度上的时频信息。
5. icwt 函数:用于进行连续小波反变换,可以将连续小波变换的结果重构为原始信号。
6. cmorlet 函数:用于生成复数 Morlet 小波。
Morlet 小波是一种基于高斯调制正弦波的小波函数。
7. modwt 函数:用于进行无偏快速小波变换,可以获取多个尺度下的小波系数。
8. imodwt 函数:用于进行无偏快速小波反变换,可以将无偏快速小波变换的结果重构为原始信号。
9. wdenoise 函数:用于对信号进行去噪处理,可以去除信号中的噪声。
10. wavethresh 函数:用于对小波系数进行阈值处理,可以实现信号压缩。
11. wenergy 函数:用于计算小波系数的能量,可用于分析小波系数的频谱特性。
12. wscalogram 函数:用于绘制小波系数的时频谱图,可以直观地显示信号的时频信息。
13. wpdec 函数:用于进行小波包分解,可以将输入信号分解为多个尺度系数和小波系数。
14. wprec 函数:用于将小波包系数和尺度系数进行重构,将小波包分解后的系数重构为信号。
15. wptree 函数:用于提取小波包树的信息,可以获得小波包树的结构和节点信息。
这些函数可以实现小波分析中主要的操作和功能。
通过使用这些函数,你可以进行小波分析、信号去噪、信号压缩等应用。
同时,你也可以根据具体的需求使用这些函数进行函数的扩展和自定义。
与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数具有多样性。
小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。
目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。
常用小波基有Haar 小波、Daubechies(dbN)小波、MexicanHat(mexh)小波、Morlet 小波、Meyer 小波等。
Haar 小波Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简单的一个小波函数,它是支撑域在[0,1]∈t 范围内的单个矩形波。
Haar 函数的定义如下:Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。
但它也有自己的优点:1. 计算简单。
2. (t)ψ不但与j (t)[j z]2ψ∈正交,而且与自己的整数位移正交,因此,在2j a =的多分辨率系统中,Haar小波构成一组最简单的正交归一的小波族。
()t ψ的傅里叶变换是:Haar 小波的时域和频域波形Daubechies(dbN)小波Daubechies 小波是世界着名的小波分析学者Inrid ·Daubechies 构造的小波函数,简写为dbN ,N 是小波的阶数。
小波(t)ψ和尺度函数(t)φ中的支撑区为12-N ,(t)ψ的消失矩为N 。
除1=N (Harr 小波)外,dbN 不具有对称性(即非线性相位)。
除1=N (Harr 小波)外,dbN 没有明确的表达式,但转换函数h 的平方模是明确的:令k N k k N k y p C ∑-=+=101-(y),其中C k N k +1-为二项式的系数,则有其中:Daubechies 小波具有以下特点:1. 在时域是有限支撑的,即(t)ψ长度有限。
2. 在频域)(ωψ在=0ω处有N 阶零点。
3. (t)ψ和它的整数位移正交归一,即⎰=δψψkk)dt -(t (t)。
1.Cwt :一维连续小波变换
格式:coefs=cwt(s,scales,'wavename')
coefs=cwt(s,scales,'wavename','plot')
scales:尺度向量,可以为离散值,表示为[a1,a2,a3……],也可为连续值,表示为[amin:step:amax]
2.dwt:单尺度一维离散小波变换
格式:[ca,cd]=dwt(x,'wavename')
[ca,cd]=dwt(x,lo-d,hi-d)
先利用小波滤波器指令wfilters求取分解用低通滤波器lo-d和高通滤波器hi-d。
[lo-d,hi-d]=wfilters('haar','d');[ca,cd]=dwt(s,lo-d,hi-d)
3.idwt:单尺度一维离散小波逆变换
4.wfilters
格式:[lo-d,hi-d,lo-r,hi-r]=wfilters('wname')
[f1,f2]=wfilters('wname','type')
type=d(分解滤波器)、R(重构滤波器)、l(低通滤波器)、h(高通滤波器)
5.dwtmode 离散小波变换模式
格式:dwtmode
dwtmode('mode')
mode:zdp补零模式,sym对称延拓模式,spd平滑模式
6.wavedec多尺度一维小波分解
格式:[c,l]=wavedec(x,n,'wname')
[c,l]=wavedec(x,n,lo-d,hi-d)
7.appcoef 提取一维小波变换低频系数
格式:A=appcoef(c,l,'wavename',N)
A=appcoef(c,l,lo-d,hi-d,N) N是尺度,可省略例:
loadleleccum;
s=leleccum(1:2000)
subplot(421)
plot(s);
title('原始信号')
[c,l]=wavedec(s,3,'db1');
ca1=appcoef(c,l,'db1',1);
subplot(445)
plot(ca1);
ylabel('ca1');
ca2=appcoef(c,l,'db1',2);
subplot(4,8,17)
plot(ca2);
ylabel('ca2');
8.detcoef 提取一维小波变换高频系数
格式:d=detcoef(c,l,N),N尺度的高频系数
d=detcoef(c,l,) 最后一尺度的高频系数
例:
loadleleccum;
s=leleccum(1:2000)
subplot(421)
plot(s);
title('原始信号')
[c,l]=wavedec(s,3,'db1');
cd1=detcoef(c,l,1);
subplot(445)
plot(cd1);
ylabel('cd1');
cd2=detcoef(c,l,2);
subplot(4,8,17)
plot(cd2);
ylabel('cd2');
9.waverec 多尺度一维小波重构
格式:x=waverec(c,l,'wavename')
x=waverec(c,l,lo-r,hi-r)
x=waverec(waverec(c,l,'wavename'),'wavename') 10.upwlev 单尺度一维小波的重构
格式:[nc,na,ca]=upwlev(c,l,'wname')
[nc,na,ca]=upwlev(c,l,lo-r,hi-r)
返回上一尺度的分解结构并提取最后一尺度的低频分量,等价于[c,l]=wavedec(x,N-1,'wavename')
11.wrcoef 对一维小波系数进行单支重构
格式:x=wrcoef('type',c,l,'wavename',N)
x=wrcoef('type',c,l,'wavename')
x=wrcoef('type',c,l,lo-r,hi-r,N)
x=wrcoef('type',c,l,lo-r,hi-r)
12.upcoef一维系数的直接小波重构
格式:y=wrcoef('o',x,'wavename',N,L)
y=wrcoef('o',x,'wavename',N)
y=wrcoef('o',x,lo-r,hi-r,N,L)
用来计算向量X(信号系数)向上N步的重构小波系数,N为正整数。
O=a低频重构,d高频重构,L是对向量中间长度L进行重构。
13.wpdec 一维小波包分解
格式:T=wpdec(X,N,'wavename',E,P)
14.wprec 一维小波包重构
格式:X=wpdec(T)
15.wpcoef 计算小波系数
格式:X=wpdec(t,n)
X=wpdec(t)
16.wprcoef 小波包分解系数的重构,一维或二维小波包分析函数,每次只
能对一个节点重构。
多个节点可重复调用来实现格式:X=wprdec(t,n)
X=wprdec(t)
17.wpfun 小波包函数
格式:[wpms,x]=wpfun('wname',num,prec)
18.wpsplt 分解小波包
格式:t=wpsplt(t,n)
[t,ca,cd]=wpsplt(t,n)
[t,ca,ch,cv,cd,]=wpsplt(t,n)
19.wpjoin 重新组合小波包
格式:t=wpjoin(t,n)
[t,x]=wpjoin(t,n)
[t,x]=wpjoin(t)
20.wpcutree 剪切小波包分解树
格式:t=wpcutree(t,L) L层对t树剪切
21.besttree 计算最佳树
格式:t=besttree(t)
[T,E]=besttree(t)、[T,E,N]=besttree(t)
22.bestlevt 计算完整最佳小波包树
格式:t=bestlevt(t)、[T,E]=bestlevt(t)
23.wp2wtree 从小波包树中提取小波树
格式:t=wp2wtree(t)。