重庆大学(专硕)数理统计
- 格式:pdf
- 大小:108.03 KB
- 文档页数:3
()(){}{}()22222111221121221164~,~(8),89111,01(1)11~(0,1)1.28 1.280.281(2)0.261 1.8360.2619818ni i n X N S S X S n X X X X E X X n n n n n D X X DX DX DX X X N n n n P X X P U X P X S P μχσμ=-=--=--=---⎛⎫-=+==⇒- ⎪⎝⎭->=>=⎛ -⎧⎫ <-+<=<⎨⎬ ⎩⎭⎝∑解:由题可知(,)且与相互独立(){}22222222241164. 1.836896464 = 2.08814.688=~(9)991188= 2.08814.688=0.90.01=0.89423948i i i S X X P S S P X X χχχμ=⎧⎫⎫⎪⎪⎪⎪⎪⎪+<⎨⎬⎪⎪⎪⎪⎪⎪⎭⎩⎭⎧⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪--⎪⎪⎪ ⎪<+<+⎨⎬ ⎪ ⎪⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎩⎭<<-⎛⎫- ⎪⎝⎭=⋅∑,其中原式()()()()(){}24882255448822554821584~(0,1)=~4998244~(4)8944 2.132= 2.132=0.1i ii i i i i i i i i ii i N X X X t t X XP X XP t μμχμμμμμμ======⎛⎫ ⎪⎛⎫⎛⎫ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭⎛⎫⎛⎫⎛⎫-- ⎪⎪⎪⎝⎭⎝⎭==--⎧⎫⎛⎫⎪⎪-≤-≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭∑∑∑∑∑∑∑∑∑()则,()()()(){}222222222891(4)=8~1~(1,8)6498911=(1,8)58.82(8,1)10.90.158.8258.82XXX F FSSXP P F P FSμμμχμ-⎛⎫⎪--==⎧⎫-⎪⎪⎧⎫<<=<=-=⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭(),则也可以用T分布与F分布的关系.0020001111()()1ln(1)11,,ˆˆˆ1ln(1),,ln(1)ln(1)2(;,...,)(;)ln (;,...,)=01ˆ=()()似然方程:得到参数的极大似然估计,再由i A nnx n n xn i i i n P X A F A e p p A EX DX A EX p EX X A EX p X p L x x f x e e d L x x nnx d Xλλλλλλλλλλλλλλλ---==<==-=-=-===--=∴=--=--====-∏∏ 0000010000ln(1)ˆln(1)ˆln(1)ˆ(3)=ln(1)=ln(1)==ˆln (;,...,)ln(1){[ln(1)][]}ln(1)ˆ()ln(1)ˆˆ极大似然估计的不变性,推出的极大似然估计为是的无偏估计且是的无偏估计是有效n A p A X p p EA E X p p EX A AA d L x x p n n nx X p d p n AA p AA A λλλλλλ-=-=----⎡⎤----⎣⎦∴-=-=-----=--∴ ()202ˆlim ln(1)ˆlim lim 0ˆ估计又是相合估计量n n n EA A p DA n Aλ→∞→∞→∞⎧=⎪⎨-⎪==⎩∴221212121222122222222221222121.422,2~222(1)(1)~01~(2) (1)(1)(1)(1)2=222X YX Y X YX X X X Nn mX X n S m SU N n mn S m S n S m S X X Sn mX Xtωσσμμμμμμχχσσσσ+++++-+--==++----+-+++-+-+==的无偏估计为且(,+)(,)又且与独立,记则()()()()()()()121212212121211221212122222=22=22222=12122t n mP t t n mX XP t n m t n mP X X t n m S X X t n m SX X t n m Sαααααωαμμμμαμμα-----+-⎧⎫≤+-⎨⎬⎩⎭⎧⎫⎪⎪+-+⎪⎪+-≤≤+-⎨⎬⎪⎪⎪⎪⎩⎭⎧⎪+-+-≤+≤+++-⎨⎪⎩-+-+±+-因此构造的置信区间为{}{}121201212120121212121212.222=022,22=02=02=0=的无偏估计为,在:成立的条件下,大于某个常数应该是小概率事件,因此构造拒绝域:以下确定常数由X X H X X c K X X c cP X X c P P t t μμμμμμμμμμα+++++>+>+⎧⎫⎪⎪⎪=>+⎬⎪⎪⎭⎧⎫⎪⎪⎪⎪=>+=⎨⎬⎪⎪⎪⎪⎩⎭()()122n m c t n m S ααω--+-⇒=+-拒绝域为:3133011331122333333111~(1,).~(3)220.220.230.20.20.80.20.104220.4因为所以,类错误(弃真):为真类错误(纳伪):为真i i i i i i i i i i i i i i X B p X B p P X H P X p P X p P X p C C P X H P X p αβ=======I ⎧⎫⎧⎫=≥=≥=⎨⎬⎨⎬⎩⎭⎩⎭⎧⎫⎧⎫===+==⎨⎬⎨⎬⎩⎭⎩⎭=+=II ⎧⎫⎧=<=<=⎨⎬⎨⎩⎭⎩∑∑∑∑∑∑∑313311223333120.4120.430.410.40.60.40.648i i i i i i P X p P X p P X p C C ===⎫⎬⎭⎧⎫=-≥=⎨⎬⎩⎭⎧⎫⎧⎫=-==-==⎨⎬⎨⎬⎩⎭⎩⎭=--=∑∑∑()()221221111211=200ˆnE i i i n n nEi i i i i i i i i ni ii nii S y x dS y x x y x x d x yxββββββ======-=--=⇒-==∑∑∑∑∑∑解:()利用最小二乘估计使残差平方和最小参数的最小二乘估计量为2211222111111221111ˆ2=~(,)ˆˆˆ~(,)111ˆ===11ˆ(),由正态分布的性质推知服从正态分布ni ii i i i ni ii nnni i iiiinnni i i i i ii i i ni i nn i i i i i x YY x N x xN E D E E x Y x EY x x x x xD D x Y x x ββεβσβββββββ============+⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭⎛⎫⎛ ⎪ ⎪ == ⎪ ⎪⎝⎭⎝∑∑∑∑∑∑∑∑∑∑∑()()()()()222211221222111112211ˆ~(,)ˆˆˆ3=ˆˆˆ2(,)ˆ(,)(,)因此,()nii ni ii n i i nnE i iiiiii i nni i i i i ii i ni ii ii i i i nniii i xDY xN x ES E Y x D Y x E Y x D Y x DY D x Cov Y x x Yx Cov Y x Cov Y x C xxσσβββββββββ==========⎫⎪⎪=⎪ ⎪⎭⎡⎤-=-+-⎣⎦⎡⎤=-=+-⎣⎦==∑∑∑∑∑∑∑∑∑∑()222221112222222222221111(,)(,)221则ni i i i i i i nni iii i nni i Enni i iii i x x ov Y x Y Cov Y Y xxx x ESn n n xxσσσσσσσσ==========+-=+-=-∑∑∑∑∑∑∑因素:车型水平:3种不同的车型A,B,C方差分析前提假设:正态性,方差齐次性,独立性对比分位数:0.95(2,9) 4.26F F >=,拒绝原假设0123:H μμμ==,认为这三种车型耗油量有显著差异。
硕⼠⽣《数理统计》例题及答案《数理统计》例题1.设总体X 的概率密度函数为: 221)(ββx ex f -=)0(>β试⽤矩法和极⼤似然法估计其中的未知参数β。
解:(1)矩法由于EX 为0,πββββββββββββ2002222221][)()2(2)()2(212)(222222222=+-=-=-+-∞+-∞+--∞+-∞++∞∞-dx exeed xx d xedxex dxx f x EX x x x x xπβ22221=-=X E EX DX 令2S DX =得:S πβ2=(2)极⼤似然法∑===-=-∏ni i i x nni x e21111ββββ∑=--=ni ixn L 1221ln ln ββ231ln 2n i i d L n x d βββ==-+∑ 令0ln =βd L d 得∑==n i i x n 122?β2. 设总体X 的概率密度函数为:<≥--=ααβαββαφx x x x ,0),/)(exp(1),;(其中β>0,现从总体X 中抽取⼀组样本,其观测值为(2.21,2.23,2.25,2.16,2.14,2.25,2.22,2.12,2.05,2.13)。
试分别⽤矩法和极⼤似然法估计其未知参数βα和。
解:(1)矩法经统计得:063.0,176.2==S Xβαβαβφαβαααβαα+=-=+-=-===∞+--∞+--∞+----∞+--∞+∞+∞-??x x x x x edx exeexd dx ex dx x x EX ][)(1 )()(222][)(1222222βαβαβαβαβααβαα++=+=+-=-==--∞+∞+----∞+--∞+??EX dx ex ex ed x dx ex EX x x x x222)(β=-=EX EX DX令==2S DX X EX 即==+22SXββα故063.0?,116.2?===-=S S X βα(2)极⼤似然法 )(111),;(αββ===∏X nnX ni eex L i)(ln ln αββ---=X nn L)(ln ,0ln 2αββββα-+-=??>=??X nn L n L 因为lnL 是L 的增函数,⼜12,,,n X X X α≥L所以05.2?)1(==X α令0ln =??βL 得126.0?)1(=-=X X β 3.已知总体ξ的分布密度函数为:+≤≤-=其它,011,21);(θθθx x f(1)⽤矩法估计其未知参数θ;(2)⽤极⼤似然法估计其未知参数θ。
一、问题提出和问题分析今天的重庆,肩负着中央赋予的历史重任——着力打造西部地区的重要增长极、长江上游地区的经济中心、成为统筹城乡发展的试验者、在西部地区率先实现全面建设小康社会的目标。
2010年初,又一重要规划将重庆发展提升到国家战略——重庆被确定为国家五大中心城市之一,是中西部地区唯一入选的城市。
这说明,重庆未来的发展不可限量。
自1997年直辖以来,重庆市的经济社会发展极为迅猛。
全市的GDP由1997年的1360.24亿元增长至2010年的7894.2亿元,而整个社会的发展进步也有目共睹。
在重庆过去、现在和未来的发展进程中,在重庆的各种发展规划的要求下,建设必将成为山城的另一个符号。
过去十多年中的大规模、大范围的建设成就了现在的重庆,而重庆未来的发展将需要更多的建设。
作为重庆建设中最重要的一环,建筑业在重庆显然有着重要的地位。
建筑业这种专门从事土木工程、房屋建设和设备安装以及工程勘察设计工作的生产部门,为重庆的发展建设提供着众多的基础设施,满足着居住、工业、商业、办公等各种城市需求。
数据显示,在过去的数年中,重庆市建筑业的总产值占全市GDP的7%-8%,是名副其实的支柱产业。
因此建筑业的发展情况,可以从侧面反映出整个重庆社会经济的发展情况,对重庆建筑业的研究就有了很大的现实意义。
建筑企业是建筑业的主体。
众多的建筑企业的良好发展构成了建筑业的良好发展。
对于建筑企业来说,要实现企业的良好经营和发展,必须要有良好的收入来支撑。
在建筑企业收入的众多影响因素中,企业的劳动生产率无疑是值得关注的一个。
企业都在致力于提高自身的劳动生产效率,而不断提高的劳动生产率,可使得企业的生产经营行为更具效率,因而获得更多的收入,实现更好的发展。
所以,研究重庆市建筑企业劳动生产率与企业收入的关系,可从一个角度来了解重庆市建筑企业的发展情况,从而了解到了重庆建筑业的发展以至于重庆市的经济发展情况。
为了找出二者之间的关系或者规律性,本文采用2001-2010这十年中重庆建筑企业劳动生产率和企业平均收入的数据,通过数学分析,找出二者关系。
重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
2.从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
3.从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为6 的次数记为X ,则(3)P X >= 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y 的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Z f --(z )。
9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453nii P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。
重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。
从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。
从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。
4.一个有5个选项的考题,其中只有一个选择是正确的。
假定应 考人知道正确答案的概率为p 。
如果他最后选对了,则他确实知道答案的概率为541pp +。
5.重复抛一颗骰子5次得到点数为 6 的次数记为X ,则(3)P X > = 13/3888 。
6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。
7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。
8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Zf --(z )。
9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453n i i P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。
10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。
涉及到的有关分位数:()()()()()()()()()()()()20.950.950.950.9750.9750.9752222220.9750.0250.0250.9750.950.97520.95 1.645,16 1.746,15 1.753,16 2.12,15 2.131,1628.851527.49,16 6.91,15 6.26,1 5.02,1 3.84,27.382 5.99u t t t t χχχχχχχχ=============一、设123,,X X X 是来自总体~(0,3)X N 的样本。
记()2332i 1111,32i i i X X S X X====-∑∑,试确定下列统计量的分布:(1)3113i i X =∑;(2)23119i i X =⎛⎫⎪⎝⎭∑;(3)()23113i i X X=-∑;(4X解:(1)由抽样分布定理,311~(0,1)3i i X X N ==∑(2)因311~(0,1)3i i X N =∑,故223321111~(1)39i i i i X X χ==⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∑∑(3)由抽样分布定理,()()()2223321131211~(2)3323i i i i S X X X X χ==-=⋅-=-∑∑(4)因()222~(0,1),~23X N S χ,X 与2S独立,故()~2X t 。
二、在某个电视节目的收视率调查中,随机调查了1000人,有633人收看了该节目,试根据调查结果,解答下列问题:(1)用矩估计法给出该节目收视率的估计量;(2)求出该节目收视率的最大似然估计量,并求出估计值;(3)判断该节目收视率的最大似然估计是否是无偏估计;(4)判断该节目收视率的最大似然估计是否是有效估计。
解:总体X 为调查任一人时是否收看,记为~(1,)X B p ,其中p 为收视率(1)因EX p =,而^E X X =,故收视率的矩估计量为^Xp =(2)总体X 的概率分布为()1()1,0,1xxf x p p x -=-=1111()(1)(1)(1)ln ()ln (1)ln(1)ln ()(1)01nniii ii i nx n x x x n X n n Xi L p p p pp p p L p nX p n X p d L p nX n X dp p p==---=∑∑=-=-=-=+---=-=-∏解得收视率p 的最大似然估计量为^Xp =现有一参量为1000的样本121000,,X X X ……,,且10001633ii X==∑则6330.6331000X ==,故收视率的极大似然估计值为0.633.(3)因E X p =,故^X p =是无偏估计(4)因()ln ()(1)1(1)d L p nX n X nX p dp p p p p -=-=---,又E X p=故收视率的最大似然估计X 是p 的有效估计。
重庆大学硕士研究生“数理统计”课外作业学生:学号:201510****专业:动力工程专业重庆大学动力工程学院二O一五年十二月学号201510******* 姓名**** 学院****学院专业****专业成绩一元线性回归分析在风力发电中的应用摘要:能源短缺和环境恶化日益严重,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,风力发电的装机容量也越来越大。
风力机是风力发电机组重要的组成部分,实现风能向机械能的转化,机械能再通过直流发电机转发为电能,其中直流发电机输出的直流电压和风速紧密相关。
本文以课题研究中测得的实验数据为基础,对风力发电直流电输出和风速的线性相关关系进行计算分析,运用数理统计中一元线性回归分析及假设检验的相关知识,采用EXCEL软件进行辅助计算,最终得到了风力发电的直流电输出和风速的线性关系显著,对以后的课题研究具有一定的借鉴作用。
1 问题提出与分析在能源短缺和环境趋向恶化的今天,风能作为一种可再生的清洁能源,越来越受到世界各国的重视,也越来越多地被应用到风力发电中。
风力机和发电机是风力发电机组中将风能转化为电能的重要装置,它们不仅直接关系到输出电能的质量和效率,也影响着整电量输出和风速的相关性。
风力机是风力发电机组重要的组成部分,其实现了风动能到风轮机轴机械能的转化,机械能通过直流电动机转发为电能,其中直流电动机产生的直流电压和风力紧密相关。
风力发电的设计和评价和电量输出与风速的关系密不可分,其中对于数学知识要求很高。
本文以课题研究中实验测得的数据为基础,对风力发电直流电输出和风速是否存在线性关系进行分析,运用数理统计中一元线性回归及非参数检验的相关知识,结合EXCEL软件进行辅助计算分析,最终得到了风力发电的直流电输出和风速关系,为以后科研工作和风力发电的应用具有指导意义。
综上所述,对风力发电的直流电输出和风速的研究,具有理论与实践的重要意义。
2 数据描述本文以风力发电的直流输出和风速的关系为研究对象,采用实验中观察得出的直流电输出和风速的部分数值进行计算分析,风力发电的直流电输出y(单位:MW)和风速x(单位:nmile/h)的数据如表1所示。