连杆制造工艺介绍(秦晓辉)
- 格式:ppt
- 大小:811.50 KB
- 文档页数:31
连杆加工的工艺流转过程连杆加工的工艺流程是制造发动机和其他内燃机关键组件中不可或缺的一环。
连杆作为发动机的重要组成部分,连接活塞和曲轴,承受着高强度和高压力的工作条件。
对于连杆的加工过程需要严格的控制和高度的精确性。
本文将深入探讨连杆加工的工艺流程,从原料选择到最终成品的制造过程,为读者提供一个全面理解连杆加工的视角。
一、原料选择:连杆的制造通常采用高强度和高刚性的金属材料,例如钢、铸铁或铝合金。
原料的选择取决于具体应用和工作环境需求。
钢材通常用于高功率发动机,因其优异的强度和刚性。
铸铁在低功率发动机中使用更为广泛,因为其成本相对较低。
铝合金则适用于高性能发动机,因为其轻质化和耐腐蚀性。
二、铸造:连杆的制造一般通过铸造工艺来实现。
铸造过程中,将熔化的金属注入模具中,待其冷却固化后,得到初步成型的连杆毛坯。
在铸造过程中,需要注意控制合金的成分和温度,以确保连杆的强度和性能。
三、粗加工:连杆铸造模具之后,需要进行粗加工。
粗加工的目的是去除连杆毛坯上的多余金属和提供加工的基准面。
这一过程涉及到切削、车削、镗削和铣削等操作。
通过粗加工,可以将连杆毛坯转变为近似形状的雏形,为后续的精加工做好准备。
四、热处理:连杆在粗加工之后,需要进行热处理以提高其硬度和强度。
常见的热处理工艺包括淬火、回火和正火等。
淬火是指将材料迅速冷却,使其获得较高的硬度。
回火则是在淬火之后,将材料加热至较低温度,以减缓硬度,提高韧性。
正火则是将材料加热至适当温度,使其达到一种均匀组织状态,同时提高硬度和韧性。
通过热处理,可以使连杆具备更好的机械性能和抗疲劳性能。
五、精加工:精加工是连杆加工的核心环节,也是最为复杂和关键的部分。
精加工的工艺包括车削、铣削、磨削和钻孔等操作。
在这一过程中,需要高度精确的设备和工艺,以确保连杆的尺寸和表面质量符合要求。
精加工也包括轴颈、各种孔和活塞销孔等细节的加工,这些细节对于整个连杆的性能和工作可靠性至关重要。
发动机连杆制造新工艺摘要连杆是汽车发动机的关键零部件,对强度有较高的要求。
就传统连杆制造工艺而言,连杆属于制造工艺比较复杂的一种零件。
本文主要介绍了一种发动机连杆制造新工艺—连杆分离面胀断法,并以一款发动机连杆进行实例说明。
其原理是利用材料裂纹扩展的特性,在大头孔内侧预加工2条对称的初始应力槽(裂解槽),形成初始断裂源。
在裂解专用设备上对连杆大头孔施加垂直于断裂面的正应力,连杆大头在瞬时载荷的作用下裂痕扩展,使连杆体盖在几乎不发生变形情况下,沿着应力槽向纵深规则断裂。
裂解分离后的连杆盖与连杆体能精确复位。
利用其断裂面犬牙交错的特征,在断裂面完全啮合的条件下,完成上螺栓工序及其它后续切削加工工序。
这种工艺不但改变了连杆传统的加工方法而且提高了发动机的产品质量,是我国连杆制造领域的一次重大变革,具有十分显著的经济效益和社会效益本文将从发动机连杆制造新工艺的特点和优点、发动机连杆材料的选择和设备选择、发动机连杆应力槽加工、以及发动机连杆制造流程六个方面进行重点论述,同时对本课题的研究意义及国内外现状和我国连杆胀断工艺面临的问题与前景给予简要介绍。
关键词:连杆;分离面;胀断工艺目录摘要 (Ⅰ)1.绪论 (1)1.1 研究的目的和意义 (1)1.1.1研究目的 (1)1.1.2研究意义 (2)1.2 本文的框架结构 (3)2.本课题主要研究内容 (4)2.1 发动机连杆制造新工艺的特点 (4)2.1.1连杆胀断技术原理 (4)2.1.2连杆胀断工艺与传统工艺的区别 (5)2.2 胀断发动机连杆工艺的优点 (8)2.3 胀断连杆材料的选择及连杆选材 (10)2.4 应力槽加工方法及连杆应力槽加工方式 (11)2.4.1应力槽加工方式 (11)2.4.2应力槽加工深度 (12)2.5 发动机连杆胀断设备选择及控制参数 (13)2.5.1 发动机连胀断设备选择 (13)2.5.2 胀断时主要控制参数 (14)2.6 发动机连杆制造流程 (15)2.6.1 连杆生产纲领 (15)2.6.2 连杆毛坯的制造方法 (16)2.6.3 连杆毛坯机加余量尺寸 (17)2.6.4 连杆机加基准选择 (17)2.6.5 连杆机加工艺流程 (18)3.胀断连杆制造的国内外情况 (21)4.我国胀断连杆产业面临的问题和前景...........错误!未定义书签。
连杆加工工艺文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-二、连杆的加工工艺1、连杆的功用、结构特点、工作条件及工艺特点连杆是汽车发动机主要的传动机构之一,它将活塞与曲轴连接起来,把作用于活塞顶部的膨胀气体压力传给曲轴,使活塞的往复直线运动可逆的转化为曲轴的回转运动,以输出功率。
以下均已实习所见4125B 型柴油发动机连杆为例。
连杆是一种细长的变截面非圆杆件。
由从大头到小头逐步变小的工字型截面的连杆体及连杆盖、螺栓、螺母等组成。
基本上都由活塞销孔端(小头)、曲柄销孔端(大头)及杆身三部分组成。
为了便于安装,大头孔设计成两半,然后用连杆螺栓连接。
连杆在工作中主要承受以下三种动载荷:①汽缸内的燃烧压力(连杆受压);②活塞连杆组的往复运动惯性力(连杆受拉);③连杆高速摆动时产生的横向惯性力(连杆受弯曲应力);连杆的工艺特点:外形复杂,不易定位;连杆的大小头是由细长的杆身连接,故刚性差,易弯曲、变形;尺寸精度、形位精度和表面质量要求高。
2、主要加工表面和技术要求连杆的主要加工表面有:大小头孔、大小头端面、大头剖分面以及连杆螺栓孔等。
(1)大小端孔的精度:小头孔尺寸精度IT7,Ra≤1.6um,圆柱度公差0.015mm;小头铜套孔尺寸精度IT6,Ra≤0.4um,圆柱度公差0.005mm;大头孔尺寸精度 IT6,Ra≤0.8um,圆柱度公差0.012mm。
(2)大小端孔中心线在两个互相垂直方向的平行度:在垂直面平行度公差0.04mm,在水平面内平行度公差0.06mm。
(3)大小端孔的中心距:孔中心距极限偏差±0.05mm(4)大端孔两端面对大端孔轴线的垂直度:垂直度公差0.1mm,Ra≤3.2um。
(5)连杆螺栓孔:螺栓孔中心线对盖体结合面与螺栓及螺母座面的不垂直,会增加连杆螺栓的弯曲变形和扭转变形,并影响螺栓伸长量而削弱螺栓强度。
(6)两螺栓孔中心线对连杆大头孔剖分面的垂直度公差为0.15mm,用两个尺寸为的检验心轴插入连杆体和连杆盖的孔中时,剖分面的间隙应小于0.05mm。
1.连杆各加工表面的加工方案连杆的主要加工表面为大、小头孔和两端面,较重要的加工表面为连杆体和盖的结合面及连杆螺栓孔的定位面,次要加工表面为轴瓦锁口槽、油孔、大头两侧面及体和盖上的螺栓座面等。
各主要表面的工序安排如下:(1)两端面:粗铣、粗磨、精磨(2)小头孔:钻孔、扩孔、铰孔、半精镗、精镗、压入衬套后再精镗(3)大头孔:扩孔、粗镗、半精镗、精镗、珩磨连杆的机械加工路线是围绕着主要表面的加工来安排的。
连杆的加工路线按连杆的分合可分为三个阶段:第一阶段为连杆体和盖切开之前的加工,第二阶段为连杆体和盖切开后的加工,第三阶段为连杆体和盖合装后的加工。
第一阶段的加工主要是为其后续加工准备精基准(端面、小头孔和大头外侧面);第二阶段主要加工出精基准以外的其它表面,包括大头孔的粗加工、为合装作准备的螺栓孔和结合面的粗精加工以及轴瓦锁口槽的加工等;第三阶段则主要是最终保证连杆各项技术要求的加工,包括连杆合装后大头孔的半精加工和端面的精加工及大、小头孔的精加工。
如果按主要表面的粗、精加工来划分连杆的加工阶段的话,可以按连杆合装前后来分,合装之前的工艺路线属主要表面的粗加工阶段,合装之后的工艺路线则为主要表面的半精加工、精加工阶段。
连杆两端面的加工:采用粗铣、粗磨、精磨三道工序,并将精磨工序安排在精加工大、小头孔之前,以便改善基面的平面度,提高孔的加工精度。
粗磨在转盘磨床上,使用砂瓦拼成的砂轮端面磨削。
这种方法的生产率较高。
精磨在M7130型平面磨床上用砂轮的周边磨削,这种办法的生产率低一些,但精度较高。
连杆大、小头孔的加工:连杆大、小头孔的加工是连杆机械加工的重要工序,它的加工精度对连杆质量有较大的影响。
小头孔是定位基面,在用作定位基面之前,它经过了钻、扩、铰三道工序。
钻时以小头孔外形定位,这样可以保证加工后的孔与外圆的同轴度误差较小。
小头孔在钻、扩、铰后,在金刚镗床上与大头孔同时精镗,达到IT6级公差等级,然后压入衬套,再以衬套内孔定位精镗大头孔。
二、连杆的加工工艺1、连杆的功用、结构特点、工作条件及工艺特点连杆是汽车发动机主要的传动机构之一,它将活塞与曲轴连接起来,把作用于活塞顶部的膨胀气体压力传给曲轴,使活塞的往复直线运动可逆的转化为曲轴的回转运动,以输出功率。
以下均已实习所见4125B型柴油发动机连杆为例。
连杆是一种细长的变截面非圆杆件。
由从大头到小头逐步变小的工字型截面的连杆体及连杆盖、螺栓、螺母等组成。
基本上都由活塞销孔端(小头)、曲柄销孔端(大头)及杆身三部分组成。
为了便于安装,大头孔设计成两半,然后用连杆螺栓连接。
连杆在工作中主要承受以下三种动载荷:①汽缸内的燃烧压力(连杆受压);②活塞连杆组的往复运动惯性力(连杆受拉);③连杆高速摆动时产生的横向惯性力(连杆受弯曲应力);连杆的工艺特点:外形复杂,不易定位;连杆的大小头是由细长的杆身连接,故刚性差,易弯曲、变形;尺寸精度、形位精度和表面质量要求高。
2、主要加工表面和技术要求连杆的主要加工表面有:大小头孔、大小头端面、大头剖分面以及连杆螺栓孔等。
(1)大小端孔的精度:小头孔尺寸精度IT7,Ra≤1.6um,圆柱度公差0.015mm;小头铜套孔尺寸精度IT6,Ra≤0.4um,圆柱度公差0.005mm;大头孔尺寸精度 IT6,Ra≤0.8um,圆柱度公差0.012mm。
(2)大小端孔中心线在两个互相垂直方向的平行度:在垂直面平行度公差0.04mm,在水平面内平行度公差0.06mm。
(3)大小端孔的中心距:孔中心距极限偏差±0.05mm(4)大端孔两端面对大端孔轴线的垂直度:垂直度公差0.1mm,Ra≤3.2um。
(5)连杆螺栓孔:螺栓孔中心线对盖体结合面与螺栓及螺母座面的不垂直,会增加连杆螺栓的弯曲变形和扭转变形,并影响螺栓伸长量而削弱螺栓强度。
(6)两螺栓孔中心线对连杆大头孔剖分面的垂直度公差为0.15mm,用两个尺寸为的检验心轴插入连杆体和连杆盖的孔中时,剖分面的间隙应小于0.05mm。
中南林业科技大学6105QA发动机连杆加工工艺流程设计学院:专业:班级:姓名:学号:指导老师:1分析连杆的结构和技术要求(1)结构连杆是较细长的变截面非圆形杆件,其杆身截面从大头到小头逐步变小,以适应在工作中承受的急剧变化的动载荷。
连杆是由连杆大头、杆身和连杆小头三部分组成,连杆大头是分开的,一半与杆身为一体,一半为连杆盖,连杆盖用螺栓和螺母与曲轴主轴颈装配在一起。
为了减少磨损和磨损后便于修理,在连杆小头孔中压人青铜材套,大头孔中装有薄壁金属轴瓦。
为方便加工连杆,可以在连杆的大头侧面或小头侧面设置工艺凸台或工艺侧面。
(2)连杆的主要技术要求技术要求项目具体要求或数值满足的主要性能大、小头孔精度尺寸公差IT6级,圆度、柱度0.004~0.006保证与轴瓦的良好配合两孔中心距±0.03~0.05气缸的压缩比两孔轴线在同一个平面内在连杆轴线平面内:0.02~0. 04:100在垂直连杆轴线平面内:0.04~0.06:100减少气缸壁和曲轴颈磨损大孔两端对轴线的垂直度0.1:100减少曲轴颈边缘磨损两螺孔子(定位孔)的位置精度在两个垂直方向上的平行度:0.02~0.04/100对结合面的垂直度:0.1~0.3/100保证正常承载和轴颈与轴瓦的良好配合同一组内的重量差±2%保证运转平稳(3)连杆的工艺特点:1)连杆体和盖厚度不一样,改善了加工工艺性。
连杆盖厚度为31mm,比连杆杆厚度单边小3.8mm,盖两端面精度产品要求不高,可一次加工而成。
由于加工面小,冷却条件好,使加工振动和磨削烧伤不易产生。
连杆杆和盖装配后不存在端面不一致的问题,故连杆两端面的精磨不需要在装配后进行,可在螺栓孔加工之前。
螺栓孔、轴瓦对端面的位置精度可由加工精度直接保证,而不会受精磨加工精度的影响1)连杆小头两端面由斜面和一段窄平面组成。
这种楔形结构的设计增大其承压面积,以提高活塞的强度和刚性。
在加工方面,与一般连杆相比,增加了斜面加工和小头孔两斜面上倒角工序;用提高零件定位及压头导向精度来避免衬套压偏现象的发生,但却增加了压衬套工序加工的难度。