电磁场与波期末考试试题A卷含答案
- 格式:doc
- 大小:273.00 KB
- 文档页数:6
=0E 说明静电场做功与路径无关。
院(系):专业:年级:学生姓名:学号:-------------------------------------------------密----------------------------------封-----------------------------线---------------------------------------------------------第 1 页(共 页) A =) 0 j2πˆe z x E e -=化方向为 产生全透射现象时,入射波为ˆ(,)x E z t e =------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------得分评阅人四、简答题:(3小题,每题5分,共15分)1.电磁波的相速度是如何定义的?自由空间中的相速度是多少?试比较分析理想介质和导电媒质中相速度的不同之处?电磁波的等相位面在空间中的移动速度称为相位速度,简称相速。
在自由空间中相速的值为3乘以10的8次方米每秒2.写出无源自由空间中复矢量的麦克斯韦方程中的两个旋度方程。
3.设自由空间中平面电磁波的电场为ˆ(,)cos(-)mxE z t e E t kz=ω,简述其传播特性。
波是横向的,波的传播方向与场的方向相互垂直,被称为TEM波。
传播时不发生任何旋转,传播方向固定。
场向量大小满足E=cB,说明电磁波中起主要作用的往往是电场力。
j ˆe y kz H e -=------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------第 3 页(共 页) j20πˆz x E e e -=的均匀平面波从由空气垂直入射到理想介质4r =,r μ求反射系数和透射系数;。
电磁场与电磁波期末试题一、选择题(10×2=20分)1.产生电场的源为( C )A 位移电流和传导电流;B 电荷和传导电流;C 电荷和变化的磁场;D 位移电流和变化的磁场。
2.在有源区,静电场电位函数满足的方程是( A )A 泊松方程;B 亥姆霍兹方程;C 高斯方程;D 拉普拉斯方程。
3. 如果真空中有一个点电荷q 放在直角坐标系的原点,则坐标),,(z y x 处的电位=Φ( D )A 22241z y xq++πε; B 222041z y x q++πε; C 22241zy x q ++πε; D 22241zy x q ++πε。
4. 某金属在频率为1MHz 时的穿透深度为60m μ,当频率提高到4 MHz 时,其穿透深度为( B )A 15m μ;B 30m μ;C 120m μ;D 240m μ。
5. 在正弦电磁场中,位移电流应与该处电场的方向一致,其相位( C ) A 与电场相同; B 与电场相反; C 超前电场90°; D 滞后电场90°。
6. 一个半径为a 的导体球,球外为非均匀电介质,介电常数为a r 0εε=,设导体球的球心与坐标原点重合,则导体球与无穷远点的电容为( B )A a 04πε; B a 08πε; C a 012πε; D a 02πε。
7.对于非磁性介质,平行极化的均匀平面斜入射到介质分界面上,发生全透射的条件为( B )A 反射波平行极化;B 入射角等于布儒斯特角;C 入射角等于临界角;D 入射波为左旋园极化。
8.麦克思韦提出的( D )的概念,使在任何状态下的全电流都可保持连续A 传导电流;B 时变电流;C 运流电流;D 位移电流。
9. 如图所示的一个电量为q 的点电荷放在060导体内坐标),(d a 处,为求解导体包围空间的电位,需要( C )个镜像电荷A 1个;B 3个;C 5个;D 8个。
10. 已知良导体的电导率磁导率和介电常数分别为σμ和ε,则频率为ω的平面电磁波入射到该导体上时的集肤深度为( A ) Aωμσ2; B 2ωμσ; Cωμσ21;D σωμ2。
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁场与电磁波期末测验题一、判断题:(对的打√,错的打×,每题2分,共20分)1、标量场在某一点梯度的大小等于该点的最大方向导数。
(√)2、真空中静电场是有旋矢量场。
(×)3、在两种介质形成的边界上,电场强度的切向分量是不连续的。
(×)4、当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。
(√)5、在理想导体中可能存在恒定电场。
(×)6、真空中恒定磁场通过任一闭合面的磁通为零。
(√)7、时变电磁场是有旋有散场。
(√)8、非均匀平面波一定是非TEM 波。
(×)9、任意取向极化的平面波可以分解为一个平行极化波与一个垂直极化波的合成 (√)10、真空波导中电磁波的相速大于光速。
(√)二、简答题(10+10=20分)1、简述静电场中的高斯定律及方程式。
答:真空中静电场的电场强度通过任一闭合曲面的电通等于该闭合曲面所包围的电荷量与真空介电常数之比。
⎰=⋅S S E 0d εq2、写出麦克斯韦方程的积分形式。
答:S D J l H d )(d ⋅∂∂+=⋅⎰⎰S l t S B l E d d ⋅∂∂-=⋅⎰⎰S lt 0d =⋅⎰S S Bq S=⋅⎰ d S D三、计算题(8+8+10+10+12+12)1 若在球坐标系中,电荷分布函数为⎪⎩⎪⎨⎧><<<<=-b r b r a a r 0, ,100 ,03ρ试求b r a a r <<<< ,0及b r >区域中的电通密度D 。
解 作一个半径为r 的球面为高斯面,由对称性可知r e D s D 24d rq q s π=⇒=⋅⎰ 式中q 为闭合面S 包围的电荷。
那么在a r <<0区域中,由于q = 0,因此D = 0。
在b r a <<区域中,闭合面S 包围的电荷量为()3333410d a r v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a r -=- 在b r >区域中,闭合面S 包围的电荷量为()3333410d a b v q v -⨯==-⎰πρ 因此, ()r e D 2333310r a b -=- 2 试证位于半径为a 的导体球外的点电荷q 受到的电场力大小为222302232)(4)2(a f f a f a q F ---=πε 式中f 为点电荷至球心的距离。
北京工业大学电控学院2009――2010学年第 2 学期《电磁场与电磁波》 课程试卷A适用专业: 电子工程、通信工程 考试方式:闭卷 考试时间 :2009年6 月 29 日班级学号 姓名: 成绩 得分登记(由阅卷教师填写)考生须知:答卷前务必首先写清班级学号和姓名,否则无成绩;一、简答题(30分)1.写出静电场的电位泊松方程,并给出其两种理想介质分界面的边界条件。
2ρϕε∇=-; 在两种完纯介质分界面上电位满足的边界条件:12ϕϕ= 1212snnϕϕεερ∂∂-=-∂∂2.讨论均匀平面波在无界空间传播时本征阻抗与波阻抗的区别。
3.写出均匀平面波在无界良导体中传播时相速的表达式。
4.写出时谐电磁场条件下亥姆霍兹方程。
5.写出传输线输入阻抗公式。
6.证明电场矢量和磁场矢量垂直。
证明:任意的时变场(静态场是时变场的特例)在一定条件下都可以通过Fourier展开为不同频率正弦场的叠加。
垂直。
也与垂直与垂直。
与乘定义,可知根据E H H X∴=⨯-=⨯-∂∂-=⨯∇B B E B E k B j E k j tBE ωω7.写出线性各向同性的电介质、磁介质和导电介质的本构关系式。
EJ H B EDσμε=== 8.写出均匀平面波在两介质分界面的发射系数和投射系数表达式。
9.写出对称天线的归一化方向函数。
10.解释TEM 、TE 、TM 波的含义。
二、计算题1. (10分)已知矢量222()()(2)x y z x axz xy by z z czx xyz =++++-+-E e e e ,试确定常数a 、b 、c 使E 为无源场。
解 由(2)(2)(122)0x az xy b z cx xy ∇=++++-+-= E ,得2,1,2a b c ==-=-2.已知标量函数22223326u x y z x y z =+++--。
(1)求u ∇;(2)在哪些点上u ∇等于零。
解 (1)(23)(42)(66)xyzx y z u u u u x y z xyz∂∂∂∇=++=++-+-∂∂∂e e e e e e ;(2)由(23)(42)(66)0x y z u x y z ∇=++-+-=e e e ,得 32,12,1x y z =-==3. 两块很大的平行导体板,板间距离为d ,且d 比极板的长和宽都小得多。
学生姓名__________ 学号_________________院系___________ 班级___________-------------------------------密------------------------------封----------------------------线---------------------------------烟台大学 ~ 学年第一学期普通物理(电磁学)试卷A(考试时间为120分钟)题号 1 2 3 4 5 6 7 8 9 10 总分 得分阅卷人合分人一、简答题 (38分)1、 (6分) 长度为L 的圆柱体底面半径为r ,以x 轴为对称轴,电场ˆ200E x=K,写出通过圆柱体全面积的电通量。
2、 (6分) 导体在磁场中运动产生动生电动势,从电源电动势的角度来看,是存在一种非静电力可以将正电荷从低电位处移动到高电位处,表示为:∫+−⋅=l d K GG ε。
试解释动生电动势中这种非静电力K G来源。
3、 (10分) 空间某一区域的磁场为ˆ0.080T B x=K,一质子以55ˆˆ210310v x y =×+×K的速度射入磁场,写出质子螺线轨迹的半径和螺距。
(质子质量271.6710kg p m −=×, 电荷191.610C e −=×)4、 (6分) 如图所示,写出矩形线圈与长直导线之间的互感。
5、 (10分) 写出麦克斯韦方程组的积分形式,并解释各式的物理意义。
二、计算题 (62分)1、 (16分) 球形电容器由半径为1R 的导体球和与它同心的导体球壳构成,壳的内半径为2R ,其间有两层均匀电介质,分界面的半径为r ,介电常数分别为1ε和2ε,求 (1)电容C ;(2)当内球带电Q −时,各个表面上的极化电荷面密度eσ′。
2、(12分) 电缆由一导体圆柱和一同轴的导体圆筒构成。
使用时,电流I 从一导体流去,从另一导体流回,电流都均匀分布在截面上。
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
电磁波与电磁场期末复习题(试题+答案)电磁波与电磁场期末试题一、填空题(20分)1.旋度矢量的散度恒等与零,梯度矢量的旋度恒等与零。
2.在理想导体与介质分界面上,法线矢量n r由理想导体2指向介质1,则磁场满足的边界条件:01=?B n ρρ,s J H n =?1ρρ。
3.在静电场中,导体表面的电荷密度σ与导体外的电位函数?满足的关系式n ??=?εσ-。
4.极化介质体积内的束缚电荷密度σ与极化强度P 之间的关系式为P ?-?=σ。
5.在解析法求解静态场的边值问题中,分离变量法是求解拉普拉斯方程的最基本方法;在某些特定情况下,还可用镜像法求拉普拉斯方程的特解。
6.若密绕的线圈匝数为N ,则产生的磁通为单匝时的N 倍,其自感为单匝的2N 倍。
7.麦克斯韦关于位移电流的假说反映出变化的电场要产生磁场。
8.表征时变场中电磁能量的守恒关系是坡印廷定理。
9.如果将导波装置的两端短路,使电磁波在两端来回反射以产生振荡的装置称为谐振腔。
10.写出下列两种情况下,介电常数为ε的均匀无界媒质中电场强度的量值随距离r 的变化规律:带电金属球(带电荷量为Q )E = 24r Qπε;无限长线电荷(电荷线密度为λ)E =r2。
11.电介质的极性分子在无外电场作用下,所有正、负电荷的作用中心不相重合,而形成电偶极子,但由于电偶极矩方向不规则,电偶极矩的矢量和为零。
在外电场作用下,极性分子的电矩发生转向,使电偶极矩的矢量和不再为零,而产生极化。
12.根据场的唯一性定理在静态场的边值问题中,只要满足给定的边界条件,则泊松方程或拉普拉斯方程的解是唯一的。
二、判断题(每空2分,共10分)1.应用分离变量法求解电、磁场问题时,要求整个场域内媒质必须是均匀、线性的。
(×)2.一个点电荷Q 放在球形高斯面中心处。
如果此电荷被移开原来的球心,但仍在球内,则通过这个球面的电通量将会改变。
(×)3.在线性磁介质中,由IL ψ=的关系可知,电感系数不仅与导线的几何尺寸、材料特性有关,还与通过线圈的电流有关。
电磁场与电磁波期末试卷A卷答案淮海工学院10 - 11 学年第 2 学期电磁场与电磁波期末试卷(A 闭卷)答案及评分标准题号一二三四五1 五2 五3 五4 总分核分人分值 10 30 10 10 10 10 10 10 100得分1.任一矢量A r的旋度的散度一定等于零。
(√ )2.任一无旋场一定可以表示为一个标量场的梯度。
(√ )3.在两种介质形成的边界上,磁通密度的法向分量是不连续的。
(× )4.恒定电流场是一个无散场。
(√ )5.电磁波的波长描述相位随空间的变化特性。
(√ ) 6.在两介质边界上,若不存在自由电荷,电通密度的法向分量总是连续的。
(√) 7.对任意频率的电磁波,海水均可视为良导体。
(× ) 8.全天候雷达使用的是线极化电磁波。
(× )9.均匀平面波在导电媒质中传播时,电磁场的振幅将随着传播距离的增加而按指数规律衰减。
(√ )10.不仅电流可以产生磁场,变化的电场也可以产生磁场。
(√ )二、单项选择题(本大题共10小题,每题3分,共30分) 1.设点电荷位于金属直角劈上方,如图所示,则镜像电荷和其所在的位置为[ A ]。
A 、-q(-1,2,0);q(-1,-2,0) ;-q(1,-2,0)B 、q(-1,2,0);q(-1,-2,0); q(1,-2,0)C 、q(-1,2,0);-q(-1,-2,0); q(1,-2,0);D 、-q(-1,2,0);q(-1,-2,0); q(1,-2,0)。
2.用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是[ C ]。
A 、镜像电荷的位置是否与原电荷对称;B 、镜像电荷是否与原电荷等值异号;C 、待求区域内的电位函数所满足的方程与边界条件是否保持不变;D 、镜像电荷的数量是否等于原电荷的数量。
3.已知真空中均匀平面波的电场强度复矢量为2π()120 (V/m)j z E z e e π-=x r r则其磁场强度的复矢量为[ A ]A 、2π=(/)j z y H e e A m -r r ;B 、2π=(/)j z y H e e A m r r; C 、2π=(/)j z x H e e A m -r r ; D 、2π=-(/)j z y H e eA m -r r 4.空气(介电常数为10εε=)与电介质(介电常数为204εε=)的分界面是0z =的平面。
莆田学院期末考试试卷 (A )卷2011 — 2012 学年第 一 学期课程名称: 电磁场与波 适用年级/专业: 09/电信 试卷类别 开卷( ) 闭卷(√) 学历层次 本科 考试用时 120分钟《.考生..注意:答案要全部抄到答题纸上,做在试卷上不给分.......................》.一、填空题(每空2分,共30分)1.给定两个矢量z y x a a a A 32-+=,z y a a B +-=4,则矢量A 的单位矢量为 ① ,矢量B A ⋅= ② 。
2.高斯散度定理的积分式为 ① ,它广泛的用于将一个封闭面积分变成等价的体积分,或者将一个体积分变成等价的封闭面积分。
3.已知任意一个矢量场A ,则其旋度的散度为 ① 。
4.介质中恒定磁场的基本方程的积分式为 ① , ② , ③ 。
5.一个半径为a 的接地导体球,一点电荷q 位于距球心d 处,则其镜像电荷带电量为 ① ,位置位于 ② ;当点电荷q 向无限远处运动时,其镜像电荷向 ③ 运动。
6.标量场2),,(x xyz z y x +=ψ通过点P(1,1,2)的梯度为① 。
7.引入位移电流的概念后,麦克斯韦对安培环路定律做了修正,其修正后的微分式是 ① ,其物理含义是: ② 。
8.自由空间传播的电磁波,其磁场强度)sin(z t H a H m y βω-=,则此电磁波的传播方向是 ① ,磁场强度复数形式为 ② 。
二、单项选择题(每小题2分,共20分)1.自由空间中的平行双线传输线,导线半径为a ,线间距为D ,则传输线单位长度的电容为 。
A .)ln(1aaD C -=πε B. )ln(201aa D C -=πε C. )ln(2101a a D C -=πε2.如果某一点的电场强度为零,则该点的电位为 。
A.一定为零 B.不一定为零 C.为无穷大3.真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为 。
A .R1 B. 21R C. R1ln4.若某区域内的电场强度为z j y x e a j a E5.0)43(-+=,则这种波为 。
A.左旋圆极化波 B.右旋椭圆极化波 C. 左旋椭圆极化波5.当电磁波垂直入射到理想导体表面时,电磁波全部被反射,则下列哪种说法正确 。
A.发生全反射 1-=RB. 发生全反射 1=RC. 发生全透射 1=R 6.位移电流是 产生的。
A.电场变化B. 磁场变化C.电荷运动7.极化介质中电场强度由 产生。
A.自由电荷B. 极化电荷C.自由电荷和极化电荷共同8.安培环路定理的微分形式是 。
A .JB =⨯∇ B. J H =⨯∇ C. B H =⨯∇9.高斯定理q S d D S=⋅⎰中,q 为总电荷,应该是包括 。
A.整个场域中的自由电荷B. 仅由闭合曲面所包围的自由电荷C.由闭合曲面所包围的自由电荷和极化电荷 10. 是空间任意磁场的源。
A .t D J ∂∂、B.t H J ∂∂、C. tDq ∂∂、 三、简答题(每小题4分,共20分)1.求无限长直线电流I 在周围空间任一点产生的磁场强度和磁通密度。
2.叙述什么是镜像法?其关键和理论依据各是什么?3.简述麦克斯韦的位移电流假设的重要意义。
4.请写出时变电磁场的麦克斯韦方程组的微分形式,并写出其辅助方程;5.试简要说明导电媒质中的电磁波具有什么样的性质?(假设导电媒质无限大) 四、计算题(每小题10分,共30分)1.在无源的自由空间中,已知磁场强度为(1)求位移电流密度; (2)写出电通密度的瞬时值; (3)求坡印廷矢量的瞬时表达式。
2.已知自由空间中均匀平面波的电场强度为 求:(1)波的传播方向、波长和频率;(2)电场强度的瞬时值; (3)判断此平面波的极化形式。
3.一圆极化平面电磁波的电场为mV e E a j a E xj z y β-+=0)(,它沿正x +方向从空气垂直入射到14==r r με、的理想介质表面上。
求: (1)反射波和透射波的电场; (2)它们分别属于什么极化方式?莆田学院期末考试参考答案及评分标准2011 — 2012 学年第 一 学期 (A )卷课程名称: 电磁场与波 适用年级/专业: 09/电信 试卷类别 开卷( )闭卷(√) 学历层次 本科 考试用时 120 分钟一、填空题(每空2分,共30分) 1. ①1432zy x a a a -+ ② -112. ①⎰⎰⋅=⋅∇SV S d A dV A3. ① 0)/()cos(0m A z t H a H y βω-=zj y x ea j a z E 5.0)44()(-+=4.①② ③5.①q da- ② 点电荷与球心的连线上,距球心d a 2处 ③ 球心6.①z y x a a a 2327. ① ;② 变化的电场能够产生磁场 (或类似描述) 8. ① +z ;②z m y e H a H β-= 三、简答题(每小题4分,共20分)1.解:由对称性,无限长直线电流产生的磁力线是同心圆,去此同心圆作为积分路径,应用安培环路定律有故空间任一点的磁场强度为,2ϕπρa I H =磁通密度为ϕπρμa IB 20=2.答:镜像法就是暂时忽略边界的存在,在所求区域之外放置虚拟电荷来代替实际导体表面上复杂的感应电荷分布来进行计算。
-------2分解题的关键是镜像电荷的大小和位置,理论依据是唯一性定理。
------2分 3.答:麦克斯韦断言位移电流的存在,说明变化的电场能够产生磁场。
这使得麦克斯韦能够语言电磁场将在空间以波的形式传播。
电磁波的存在就是现代通信的基础。
4.答:5.答:电场和磁场都与传播方向垂直,即为TEM 波;在无限大导电媒质中电磁波电场振幅沿传播方向衰减;=⋅⎰S d B SI l d H C=⋅⎰--------- 2分H B μ=tDJ H ∂∂+=⨯∇πρπρϕρϕϕπϕ2220I H I H d H l d H C=⇒===⋅⎰⎰--------- 2分 ---------4分 tD J H ∂∂+=⨯∇tB E ∂∂-=⨯∇0=⋅∇B VD ρ=⋅∇电场和磁场不同相;电磁波传播的速度不仅取决于媒质参数本身,还与信号的频率有关。
----4分四、计算题(每小题10分,共30分)1.解: 无源空间中,由安培环路定律 得(1) (2)(3)2.解:(1)传播方向为z +方向;由题得 5.0=k ,故m k56.1242===ππλ真空中,电磁波的传播速度等于光速s m c /1038⨯=;故MHz cf 9.23109.23410368=⨯=⨯==πλ (2)---------3分---------3分tDH ∂∂=⨯∇20)sin(0m Az t H a H y x a a H t D J x yy x d βωβ--=∂∂∂∂=⨯∇=∂∂=)cos(0z t H a dt H D x βωωβ-=⨯∇=⎰000)cos(ωεβωβεz t H a D E x -==)(cos )cos()cos(),(),(),(2020000z t H a z t H a z t H a t z H t z E t z S z y x βωωεββωβωωεβ-=-⨯-=⨯=--------- 4分--------- 3分--------- 3分)25.0cos(4)5.0cos(4]44Re[])44Re[(),()25.0()5.0(5.0z t a z t a ea ea e e a j a t z E y x z t j y z t j x t j z j y x +-+-=+=+=+---πωωπωωω(3) 因为 则电场强度垂直的两个分量x E 和y E 幅度相等、相位相差900,故是圆极化波。
又x E 的相位超前y E 的相位900,故为左旋圆极化波。
3.解:(1)由波阻抗计算公式εμη=和传播常数的计算公式μεω=k 得空气中,πεμη12000==,00εμωβ= 理想介质中,πεμεεμμεμη6040000111====r r βεμωεμεμω2200001===r r k故反射系数3112060120600101-=+-=+-=ππππηηηηR透射系数32120606022011=+⨯=+=πππηηηT故反射波电场为m V e E a j a E xj z y r β0)(31+-= 透射波电场为mVe E a j a E xj z y t β20)(32-+=(2)反射波沿x -方向传播,其电场两个垂直的分量y E 的相位比z E 的相位超前900,所以是右旋圆极化波;透射波沿x 方向传播,其电场两个垂直的分量y E 的相位比z E 的相位超前900,所以是左旋圆极化波。
zj x e E 5.04-=)25.0(4πj z j y eE +-=---------4分空气理想介质---------3分 ---------4分---------3分。