大门大桥抗风分析报告

  • 格式:doc
  • 大小:4.65 MB
  • 文档页数:27

下载文档原格式

  / 27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大门大桥抗风分析报告

目录

概述

1.采用的规范及参考依据

2.设计基本风速、设计基准风速、主梁颤振检验风速的确定2.1 设计基本风速

2.2 主梁颤振检验风速

3.结构动力特性分析

3.1 计算图式

3.2 边界条件

3.3 动力特性分析

4.主梁抗风稳定性分析

4.1 桥梁颤振稳定性指数

4.2 主梁颤振临界风速的估算

4.3 结论

概述:

大门大桥推荐方案采用双塔双索面混凝土斜拉桥,跨度布置为135+316+ 135=586m,主跨主梁为 形断面,主塔为倒Y形索塔。在进行初步设计的过程中需要对主桥推荐方案的抗风、抗震性能进行分析。本报告对推荐方案的抗风稳定性进行分析。

分析的必要性

大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。由于缺乏桥区处风速观测资料,报告中设计风速采用的是《公路桥梁抗风设计规范》附表A中温州市的10m高设计基准风速。

由于桥址处无论是10m平均最大风速,还是瞬时最大风速均较大,而主桥推荐方案有“塔高、跨大”的特点,因此,主桥方案斜拉桥结构的抗风稳定性检算是必需的。

结论

利用ANSYS软件对推荐方案的相关环节进行相应分析,得出如下结论:

结构的抗风稳定性等级为Ⅰ级,成桥状态和施工状态的主梁的颤振临界风速大于主梁的颤振检验风速,满足抗风稳定性要求。

1.采用规范及参考依据

1.1 中华人民共和国交通部部标准《公路桥涵设计通用规范》(JTG D60-2004)1.2 中华人民共和国推荐性行业标准《公路桥梁抗风设计规范》(JTG/T

D60-01-2004)

1.3 中华人民共和国交通部部标准《公路斜拉桥设计规范》(试行)(JTJ027-96)2.设计基本风速、设计基准风速和主梁颤振检验风速的确定根据《公路桥梁抗风设计规范》(JTG/T D60-01-2004),查得温州地区距地

=33.8m/s。据《温州市大门大桥面以上10米,频率为1/100平均最大风速V

10

工程可行性研究报告》中4.3.7条桥梁抗风、抗震规定标准,大桥在施工和运营期间,需满足12级以上台风、风速分别为33.3m/s和35.9m/s下的稳定性要求。本报告中场地平均最大风速按后者取值。

桥址地表类别按A类考虑,桥面离水面高度为38.5m,根据《公路桥梁抗风设计规范》式3.2.5-1,计算得K

1

=1.38,由此,求得本桥运营阶段的设计基本

风速V

d =K1·V

10

=49.542m/s。

对于施工阶段,设计基准风速V

D

S=45.954m/s。

根据《公路桥梁抗风设计规范》第6.3.8条,主梁成桥状态颤振检验风速

[V

cr ]=1.2·μ

F

·V

d

=1.2×1.3068×49.542=77.69m/s。

主梁施工阶段颤振检验风速

[V s

cr ]= 1.2·μ

f

·V

D

S=1.2×1.3068×39.181=72.05m/s。

3.结构动力特性分析

3.1 计算图式

本方案的抗风稳定性分析中,梁、塔、墩采用梁单元建模,索采用单向受拉杆单元建模。

考虑到主梁为带实心边梁板式开口断面,其自由扭转刚度较小,若按照单脊梁(鱼骨式)模型,因为常规梁单元的限制,其不能考虑主梁约束扭转刚度的影响,因此在建模分析中常考虑作三主梁模型处理。而在ANSYS程序中提供考虑截面翘曲刚度的梁单元,通过建立单脊梁(鱼骨式)模型,能够准确计算结构的扭转频率,从而有效模拟斜拉桥开口截面主梁。

报告采用单脊梁模型,梁单元选用计入截面翘曲刚度的BEAM188单元。为比较动力特性分析结果,另采用梁格法建模分析,进行验证。见图1。

根据结构所处状态,建模包括4方面内容:本桥式方案成桥状态和施工独塔阶段、最大双伸臂阶段、最大单伸臂阶段。各计算图式如图1、2。

图1 成桥状态计算图式(单脊梁和梁格模型)

图2 最大双伸臂和独塔阶段计算图式

图3 最大单伸臂阶段计算图式

3.2 边界条件

本桥式方案的成桥状态和施工最大双、单伸臂阶段的边界条件见表3,

结构部位

成桥状态

施工最大单伸臂

阶段

x

y

z

θ

x

θ

y

θ

z

x

y

z

θ

x

θ

y

θ

z

主塔在承 1 1 1 1 1 1 1 1 1 1 1 1

注:

1.表3中,△x、△y、△z分别表示沿横桥向、竖桥向、纵桥向的线位移,θx、θy、θz分别表示绕横桥向、竖桥向、纵桥向的转角位移,1—约束,0—放松。

2.施工最大双悬臂阶段主塔在承台顶处、塔梁交接处边界条件与施工最大单悬臂阶段相同。

3.3 结构动力特性分析

3.3.1 成桥状态

表4和表5分别给出单脊梁和梁格法建模成桥状态的振型特点,单脊梁模型其相应的振型图见图5。

从表4和表5可以看出,采用188单元的单脊梁和梁格法建模分析结果很接近,同时其扭转频率值相差不到3%。单脊梁模型分析结果满足要求。

从振型图来看,因为塔、梁分离,节点无顺桥向约束,主梁顺桥向刚度比较弱,一阶振型为纵飘振型,频率值较低。同时,主塔和斜拉索对主梁的扭转制约作用比较明显,主梁抗扭刚度较高,振型靠后,出现在第十阶,对结构抗风有利。

相关主题