成章实验中学八年级数学期中考试试卷
- 格式:docx
- 大小:933.93 KB
- 文档页数:4
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
实验学校八年级下学期期中数学试卷一、填空题(共12小题,每小题2分,共计24分)1.为了解某班学生对“社会主义核心价值观”的知晓率,适合采用的调查方式是__________.2.掷一枚标有数字1﹣6的均匀正方体骰子,向上一面的点数是“2”的概率为__________.3.当x__________时,分式有意义.4.化简=__________.5.分式:,的最简公分母是__________.6.如图,▱ABCD中,∠B+∠D=144°,则∠D=__________°.7.在菱形ABCD中,E为AB的中点,OE=5,则菱形ABCD的边长为__________.8.如图,正方形ABCD中,E为对角线BD上一点,且BC=BE,则∠BEC=__________°.9.如图,镇江四月份某日的温度变化情况,则这天中8时到18时的温差为__________.10.已知:菱形ABCD的两条对角线AC、BD长分别为6、8,且AE⊥BC,垂足为E,则AE=__________.11.如图,由两个长为10,宽为2的矩形叠合而得到菱形ABCD,则菱形ABCD面积的最大值为__________.12.如图,平面直角坐标系中,▱OABC的顶点A坐标为(6,0),C点坐标为(2,2),若直线y=mx+2平分▱OABC的周长,则m的值为__________.二、选择题(共6小题,每小题3分,共计18分).13.下列各式:,,,(x﹣y)中,是分式的共有( )A.1个B.2个C.3个D.4个14.下列等式一定成立的是( )A.=B.=C.=D.=(a≠0)15.若a为整数,则下列事件是随机事件的是( )A.a2+2=0 B.a2>0C.|a|是一个非负数D.2a是偶数16.如图,▱ABCD绕点A逆时针旋转30°,得到▱AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=( )A.155°B.170°C.105°D.145°17.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是( )A.7 B.8 C.9 D.1018.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右依次记为A1、A2、A3、…、A n,已知第1个正方形中的一个顶点A1的坐标为(1,1),则点A2015的纵坐标为( )A.2015 B.2014 C.22014D.22015三、解答题(共8小题,共计78分)19.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?20.正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出△ABC绕点A逆时针旋转90°的△AB2C2;(3)点B1的坐标为__________,点C2的坐标为__________.21.为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了__________名同学;(2)将条形图补充完整,并求扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,估计参加书法兴趣小组的学生有多少名?22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361 摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近__________;假如你去摸一次,你摸到红球的概率是__________(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.24.如图一,菱形ABCD的边长为2,点E是AB的中点,且DE⊥AB.(1)求证:△ABD是等边三角形;(2)将图一中△ADE绕点D逆时针旋转,使得点A和点C重合,得到△CDF,连接BF,如图二,求线段BF的长.25.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=__________时,四边形MENF是正方形(只写结论,不需证明).26.已知:如图,在边长为6cm的正方形ABCD中,动点M、N从点A分别沿边A D、AB 运动至点D、B停止,动点P、Q从点C分别沿边CB、CD运动至点B、D停止,它们同时出发,设动点速度均为1cm/s,运动时间为t s,连接MN、NP、PQ、QM.(1)试说明在运动过程中,四边形MNPQ是矩形;(2)在运动过程中,当t为何值时,四边形MNPQ是正方形?(3)在运动过程中,当t为何值时,△PNB沿折痕PN翻折得到△PNB′,使得点B′恰好落在MQ上?(4)将△MNA、△PNB、△PQC、△MQD同时沿折痕MN、PN、QP、MQ翻折,得△MNA′、△PNB′△PQC′、△MQD′,若其中两个三角形重叠部分的面积为4cm2,请直接写出动点运动时间t的值.江苏省镇江市丹徒区世业实验学校2014-2015学年八年级下学期期中数学试卷一、填空题(共12小题,每小题2分,共计24分)1.为了解某班学生对“社会主义核心价值观”的知晓率,适合采用的调查方式是普查.考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:为了解某班学生对“社会主义核心价值观”的知晓率,人数较少,可以利用普查,故答案为:普查.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.掷一枚标有数字1﹣6的均匀正方体骰子,向上一面的点数是“2”的概率为.考点:概率公式.分析:点数为2的有1种情况,除以总个数6即为向上的一面的点数为2的概率.解答:解:质地均匀且六个面的正方体骰子,抛掷后六个面朝上的概率都一样是,向上的一面的点数为2的概率也是一样.故答案为:.点评:题目考查了概率的基本计算:几种情况出现的可能性都均等,有几种情况出现,每种情况出现的概率就是几分之一.3.当xx≠7时,分式有意义.考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣7≠0,解不等式即可.解答:解:由题意得:x﹣7≠0,解得:x≠7,故答案为:x≠7.点评:此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.4.化简=x﹣1.考点:约分.专题:计算题.分析:将分式分子因式分解,再将分子与分母公共的因式约分,即可求解.解答:解:==x﹣1.故答案为:x﹣1.点评:此题主要考查了分式的约分,分子与分母能因式分解的必须首先因式分解再约分是解决问题的关键.5.分式:,的最简公分母是2x(x+1)2.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:分式,的分母分别是2(x+1)2、x(x+1),则它们的最简公分母是2x(x+1)2.故答案是:2x(x+1)2.点评:本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.6.如图,▱ABCD中,∠B+∠D=144°,则∠D=72°.考点:平行四边形的性质.分析:根据平行四边形对角相等可得∠B=∠D,再由∠B+∠D=144°可得答案.解答:解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠B+∠D=144°,∴∠D=72°.故答案为:72.点评:此题主要考查了平行四边形的性质,关键是掌握平行四边形的对角相等.7.在菱形ABCD中,E为AB的中点,OE=5,则菱形ABCD的边长为10.考点:菱形的性质.分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD即菱形的边长.解答:解:在菱形ABCD中,OB=OD,∵E为AB的中点,∴OE是△ABD的中位线,∵OE=5,∴AD=2OE=2×5=10,∴菱形ABCD的边长为10.故答案为:10.点评:本题考查了菱形的对角线互相平分的性质,菱形的四条边都相等的性质,以及三角形的中位线平行于第三边并且等于第三边的一半的性质,求出菱形的边长AD是解题的关键.8.如图,正方形ABCD中,E为对角线BD上一点,且BC=BE,则∠BEC=67.5°.考点:正方形的性质.分析:由正方形的性质得到BC=CD,∠DBC=∠BDC=45°,根据BE=BC,根据三角形的内角和定理求出∠BEC=∠BCE=67.5°.解答:解:∵正方形ABCD,∴BC=CD,∠DBC=∠BDC=45°,∵BE=BC,∴∠BEC=∠BCE=67.5°,故答案为:67.5点评:本题主要考查对正方形的性质,三角形的内角和定理,等腰三角形的性质等知识点的理解和掌握,能根据这些性质求出∠DCE的度数是解此题的关键,题型较好,难度适中.9.如图,镇江四月份某日的温度变化情况,则这天中8时到18时的温差为15.5℃.考点:折线统计图.分析:根据折线统计图,可得最高温度、最低温度,根据有理数的减法,可得答案.解答:解:由统计图,得最高温度是20℃,最低温度是4.5℃;温差是20﹣4.5=15.5℃,故答案为:15.5℃.点评:本题考查了折线统计图,利用统计图获得最高气温、最低气温是解题关键.10.已知:菱形ABCD的两条对角线AC、BD长分别为6、8,且AE⊥BC,垂足为E,则AE=4.8.考点:菱形的性质.分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD==×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=4.8.故答案为:4.8.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.11.如图,由两个长为10,宽为2的矩形叠合而得到菱形ABCD,则菱形ABCD面积的最大值为.考点:菱形的性质.分析:菱形的一条对角线为矩形的对角线时,面积最大,作出图形,设边长为x,表示出BE=10﹣x,再利用勾股定理列式计算求出x,然后根据菱形的四条边都相等列式进行计算即可得解出边长,再计算面积即可.解答:解:如图,菱形的一条对角线与矩形的对角线重合时,面积最大,设AB=BC=x,则BE=10﹣x,在Rt△BCE中,BC2=BE2+CE2,即x2=(10﹣x)2+22,解得x=,所以S菱形ABCD=×2=.故答案为:.点评:本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的四条边都相等的性质,判断出面积最小与最大时的情况是解题的关键,作出图形更形象直观.12.如图,平面直角坐标系中,▱OABC的顶点A坐标为(6,0),C点坐标为(2,2),若直线y=mx+2平分▱OABC的周长,则m的值为﹣.考点:中心对称;一次函数的性质;平行四边形的性质.分析:连接CA、OB交于点G,根据题意得到直线y=mx+2经过点G,根据点A坐标为(6,0),C点坐标为(2,2)求出点G的坐标,代入计算即可.解答:解:连结CA、OB交于点G,则点G的坐标为(4,1),∵直线y=mx+2平分▱OABC的周长,∴直线y=mx+2经过点G,则1=4m+2,解得m=﹣.故答案为:﹣.点评:本题考查的是一次函数的性质、平行四边形的性质和中心对称的性质,掌握平行四边形是一个中心对称图形和中心对称图形的性质是解题的关键.二、选择题(共6小题,每小题3分,共计18分).13.下列各式:,,,(x﹣y)中,是分式的共有( )A.1个B.2个C.3个D.4个考点:分式的定义.分析:根据分式的定义可得答案,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.解答:解:,,,(x﹣y)中,是分式的有:,(x﹣y),共2个,故选B.点评:本题主要考查了分式的定义,弄清分式的定义,注意π为常数是解答此题的关键.14.下列等式一定成立的是( )A.=B.=C.=D.=(a≠0)考点:分式的基本性质.分析:A:的分子乘以n,分母乘以m,变成了,m和n不一定相等,所以不一定成立,据此判断即可.B:分式的分子与分母同时减去一个不等于0的数,分式的值不一定不变,据此判断即可.C:分式的分子与分母同时加上一个不等于0的数,分式的值不一定不变,据此判断即可.D:根据分式的基本性质判断即可.解答:解:∵的分子乘以n,分母乘以m,变成了,m和n不一定相等,∴不一定成立,例如:,∴选项A不正确;∵分式的分子与分母同时减去一个不等于0的数,分式的值不一定不变,例如,∴选项B不正确;∵分式的分子与分母同时加上一个不等于0的数,分式的值不一定不变,例如,∴选项C不正确;∵(a≠0)∴选项D正确.故选:D.点评:此题主要考查了分式的基本性质,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.15.若a为整数,则下列事件是随机事件的是( )A.a2+2=0 B.a2>0C.|a|是一个非负数D.2a是偶数考点:随机事件.分析:随机事件就是可能发生也可能不发生的事件,依据定义即可判断.解答:解:A、是不可能事件,选项错误;B、正确;C、是必然事件,选项错误;D、是必然事件,选项错误.故选B.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.如图,▱ABCD绕点A逆时针旋转30°,得到▱AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=( )A.155°B.170°C.105°D.145°考点:平行四边形的性质;旋转的性质.分析:根据旋转的性质得出AB=AB′,∠BAB′=30°,进而得出∠B的度数,再利用平行四边形的性质得出∠C的度数.解答:解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∴AB=AB′,∠BAB′=30°,∴∠B=∠AB′B=(180°﹣30°)÷2=75°,∴∠C=180°﹣75°=105°.故选C.点评:此题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∠B=∠AB′B=75°是解题关键.17.如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是( )A.7 B.8 C.9 D.10考点:矩形的性质;线段垂直平分线的性质;勾股定理.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.解答:解:∵矩形ABCD中,G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故选A.点评:本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右依次记为A1、A2、A3、…、A n,已知第1个正方形中的一个顶点A1的坐标为(1,1),则点A2015的纵坐标为( )A.2015 B.2014 C.22014D.22015考点:一次函数图象上点的坐标特征;正方形的性质.专题:规律型.分析:求出A1、A2、A3、A4的坐标即可总结出规律.解答:解:∵A1坐标为(1,1),A2(2,2),A3(4,4),A4(8,8),∴点A2015的纵坐标为22014.故选C.点评:本题考查了一次函数图象上点的坐标特征,解答此题的关键是熟知一次函数图象上点的坐标特点,可用取特殊值的方法求定点坐标寻找规律解答.三、解答题(共8小题,共计78分)19.(1)不改变分式的值,使分式的分子与分母的最高次项的系数是整数;(2)不改变分式的值,使分式的分子与分母的最高次项的系数是正数.(3)当x满足什么条件时,分式的值①等于0?②小于0?考点:分式的基本性质.分析:(1)根据分式的性质:分式的分子分母都乘以或除以同一个不为零的数,分式的值不变,可得答案;(2)根据分式的分子、分母、分式改变其中任意两个的符号,分式的值不变,可得答案;(3)根据解分式方程,可得答案;根据解不等式,可得答案.解答:解:(1)原式=;(2)原式=﹣;(3)①=0得2﹣3x=0,解得x=;②<0,得2﹣3x<0,解得x>.点评:本题考查了分式的性质,分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变;分式的分子、分母、分式改变其中任意两个的符号,分式的值不变.20.正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)作出△ABC绕点A逆时针旋转90°的△AB2C2;(3)点B1的坐标为(4,﹣1),点C2的坐标为(﹣3,﹣1).考点:作图-旋转变换.专题:作图题.分析:(1)根据关于原点中心对称的点的坐标特征,画出点A、B、C的对应点A1、B1、C1即可得到△A1B1C1;(2)利用网格特点,根据旋转的性质画出点B、C旋转后的对应点B2、C2即可得到△AB2C2;(3)利用所画图形,写出B1点和C2点的坐标.解答:解:(1)如图,△A1B1C1为所作;(2)如图,△AB2C2为所作;(3)点B1的坐标为(4,﹣1),点C2的坐标为(﹣3,﹣1).故答案为(4,﹣1),(﹣3,﹣1).点评:本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了200名同学;(2)将条形图补充完整,并求扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,估计参加书法兴趣小组的学生有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据参加绘画小组的人数是90,所占的百分比是45%,即可求得调查的总人数;(2)利用360°乘以对应的比例即可求得圆心角的度数;(3)利用总人数1000乘以对应的比例即可求解.解答:解:(1)调查的总人数是90÷45%=200(人),故答案是200;(2)参加乐器小组的人数是200﹣90﹣20﹣30=60(人);扇形统计图中书法部分的圆心角的度数是360°×=36°.(3)该校参加书法兴趣小组的学生约有1000×=100(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,某学习小组做了摸球实验,他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是几次活动汇总后统计的数据:摸球的次数s 150 200 500 900 1000 1200摸到白球的频数n 51 64 156 275 303 361摸到白球的频率0.34 0.32 0.312 0.306 0303 0.301(1)请估计:当次数s很大时,摸到白球的频率将会接近0.3;假如你去摸一次,你摸到红球的概率是0.7(精确到0.1).(2)试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.考点:利用频率估计概率.专题:应用题.分析:(1)从表中的统计数据可知,摸到白球的频率稳定在0.3左右,而摸到红球的概率为1﹣0.3=0.7;(2)根据红球的概率公式得到相应方程求解即可;(3)言之有理即可.解答:解:(1)0.3,1﹣0.3=0.7;(2)估算口袋中红球有x只,由题意得0.7=,解之得x=70,∴估计口袋中红球有70只;(3)用概率可以估计未知物体的数目.(或者试验次数很大时事件发生的频率作为概率的近似值)(只要能从概率方面说的合理即可)点评:考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.组成整体的几部分的概率之和为1.23.已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题;压轴题.分析:①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD 和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.解答:证明:①∵CN∥AB,∴∠DAC=∠NCA,在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MD=MC,由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,∴AC=DN,∴四边形ADCN是矩形.点评:本题考查了矩形的判定,平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握平行四边形与矩形之间的关系,并由第一问求出四边形ADCN是平行四边形是解题的关键.24.如图一,菱形ABCD的边长为2,点E是AB的中点,且DE⊥AB.(1)求证:△ABD是等边三角形;(2)将图一中△ADE绕点D逆时针旋转,使得点A和点C重合,得到△CDF,连接BF,如图二,求线段BF的长.考点:菱形的性质;等边三角形的判定与性质;旋转的性质.分析:(1)利用线段垂直平分线的性质得出AD=BD,进而利用菱形的性质得出AD=AB,即可得出△ABD是等边三角形;(2)利用旋转的性质以及平行线的性质得出∠FDB=90°,再结合勾股定理得出得出BF的长.解答:(1)证明:如图一,∵点E是AB的中点,且DE⊥AB,∴AD=BD,∵四边形ABCD是菱形,∴AD=AB,∴AD=DB=AB,∴△ABD是等边三角形;(2)解:如图二,由(1)得:△ABD是等边三角形,则∠ADE=∠BDE,∵四边形ABCD是菱形,∴AB∥DC,∵DE⊥AB,∴∠EDC=90°,∴∠BDF=∠FDC+∠CDB=∠EDB+∠CDB=90°,∵△ADE绕点D逆时针旋转,使得点A和点C重合,得到△CDF,∴DF=ED=,BD=2,∴BF=.点评:此题主要考查了勾股定理以及旋转的性质和等边三角形的判定、菱形的性质等知识,熟练利用已知得出AD=BD是解题关键.25.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:BM=CM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.分析:(1)由正方形的性质得出∠A=∠D=90°,AB=DC,由SAS证明△ABM≌△DCM,得出对应边相等即可;(2)证明EN是△BCM的中位线,得出EN=CM=FM,EN∥FM,证出四边形MENF是平行四边形,同理:NF是△BCM的中位线,得出NF=BM,证出EN=NF,即可得出结论;(3)证明△ABM是等腰直角三角形,得出∠AMB=45°,同理∠DMC=45°,得出∠EMF=90°,即可得出结论.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS),∴BM=CM;(2)解:四边形MENF是菱形;理由如下:∵E、N、F分别是线段BM、BC、CM的中点,∴EN是△BCM的中位线,∴EN=CM=FM,EN∥FM,∴四边形MENF是平行四边形,同理:NF是△BCM的中位线,∴N F=BM,∵BM=CM,∴EN=NF,∴四边形MENF是菱形;(3)解:当AD:AB=2:1时,四边形MENF是正方形;理由如下:∵AD:AB=2:1,M是AD的中点,∴AB=AM,∴△ABM是等腰直角三角形,∴∠AMB=45°,同理:∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°,由(2)得:四边形MENF是菱形,∴四边形MENF是正方形;故答案为:2:1.点评:本题考查了正方形的性质、全等三角形的判定与性质、三角形中位线定理、等腰直角三角形的判定与性质;熟练掌握正方形的性质,并能进行推理论证是解决问题的关键.26.已知:如图,在边长为6cm的正方形ABCD中,动点M、N从点A分别沿边AD、AB 运动至点D、B停止,动点P、Q从点C分别沿边CB、CD运动至点B、D停止,它们同时出发,设动点速度均为1cm/s,运动时间为t s,连接MN、NP、PQ、QM.(1)试说明在运动过程中,四边形MNPQ是矩形;(2)在运动过程中,当t为何值时,四边形MNPQ是正方形?(3)在运动过程中,当t为何值时,△PNB沿折痕PN翻折得到△PNB′,使得点B′恰好落在MQ上?(4)将△MNA、△PNB、△PQC、△MQD同时沿折痕MN、PN、QP、MQ翻折,得△MNA′、△PNB′△PQC′、△MQD′,若其中两个三角形重叠部分的面积为4cm2,请直接写出动点运动时间t的值.考点:四边形综合题.分析:(1)首先证明△QCP≌△MAN、△AMN≌△CQP,从而得到MN=QP,MQ=NP,然后再证明∠MQP=90°;(2)由正方形的性质可知:MQ=QP,然后证明△DQM≌△CQP,从而得到QC=DQ=3;(3)如图1所示,首先证明四边形B′NBP为正方形从而得到NM=OB′=OB.,然后由勾股定理求得,MN、PB的长,然后由BC=CP+PB,列方程求解即可;(4)如图2所示;根据题意可知:四边形QCPC′、四边形B′A′D′C′、四边形MANA′均为正方形,最后根据AM+B′A′+CP=6,列方程求解即可;如图3所示:根据DM+D′C′+PB=6列方程求解.解答:证明:(1)∵动点速度均为1cm/s,∴QC=CP=AM=AN.∵ABCD为正方形,。
八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。
2021-2022学年八年级上学期期中考试数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给的4个选项中,只有一项是符合题目要求的.将唯一正确答案的序号字母选出,然后用2B铅笔将答题卡上对应题目的答案标号涂黑.
1.如果三角形的三个内角的度数比是2:3:4,则它是()
A.锐角三角形B.钝角三角形
C.直角三角形D.钝角或直角三角形
2.下列长度的三条线段,能组成三角形的是()
A.4cm,5cm,9cm B.8cm,8cm,15cm
C.5cm,5cm,10cm D.6cm,7cm,14cm
3.点A(3,﹣1)关于x轴的对称点是()
A.(﹣1,3)B.(﹣3,﹣1)C.(3,﹣1)D.(3,1)
4.等腰三角形一个角的度数为50°,则顶角的度数为()
A.50°B.80°C.65°D.50°或80°5.如图,AB∥DF,AC⊥CE于C,BC与DF交于点E,若∠A=20°,则∠CEF等于()
A.110°B.100°C.80°D.70°
6.如图,在△ABC中,点O到三边的距离相等,∠BAC=60°,则∠BOC=()
A.120°B.125°C.130°D.140°
7.如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,若CE=5,则BC等于()
第1 页共24 页。
八年级上册数学期中考试题八年级数学期中考试的日子日益临近,感觉复习得不错的你,一定要再接再厉,发挥自己最大的潜力,下面是小编为大家精心整理的八年级上册数学期中考试题,仅供参考。
八年级上册数学期中考试题目一.选择题:(每题2分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.162.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于( )A.50°B.75°C.100°D.125°3.一个多边形的每个内角均为150°,则这个多边形是( )A.九边形B.十边形C.十二边形D.十五边形4.如图1,将三角形的一个角折叠,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α、∠β之间的关系是( )A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)5.如图2,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( )A.SASB.ASAC.AASD.SSS6.如图3,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7.如图4,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是( )A.a>1B.a=1C.a<1D.以上都有可能8.观察下列图形,是轴对称图形的是( )9.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是( )A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB10.如图5,等腰△ABC中,AB=AC,∠A=50°,CD⊥AB于D,则∠DCB等于( )A.30°B.25°C.15°D.20°11.如图6,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )A.110°B.125°C.130°D.155°12.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( )A.1个B.2个C.3个D.4个得分阅卷人二、细心填一填:(每小题2分,共20分)13.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于 .14.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF= .15.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是 .16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD=55°,则∠BAC= .17.如图7,带箭头的两条直线互相平行,其中一条直线经过正五边形的一个顶点,若∠1=45°,则∠2=.18.如图8,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(2a,a-9),则a的值为 .19.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC 的度数是 .20.在△ABC中,AC=BC=m,AB=n,∠ ACB=120°,则△ABC的面积是(用含m,n的式子表示).21.如图9,Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB于D,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=_______cm.22.如图10,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为.得分阅卷人三、认真解一解:(共56分)23.(本题5分)如图11,在△ABC中,∠C=∠ABC= ∠A,BD是边AC上的高.求∠DBC的度数.24.(本题6分)如图12,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.(本题6分)如图13,在∠ABC的内部有一点P,点P到M,N 两点的距离相等且到∠ABC两边的距离也相等.请用尺规作图作出点P,不写作法,保留痕迹.26.(本题6分)如图14,在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;(2)若点P为平面内不与C重合的一点,△PAB与△ABC全等,请写出点P的坐标.27.(本题6分)如图15,在△ABC中, AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠C的度数.28.(本题6分)如图16,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC求证:点O在∠BAC的平分线上.29.(本题6分)如图17,△ABC是等边三角形,BD是中线,过点D 作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.30.(本题7分)如图18,∠A=∠B,CE∥DA,CE交AB于E.(1)求证:△CEB是等腰三角形;(2)若AB∥CD,求证:AD=BC.31.(本题8分)如图19,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.(1)求∠BCH的度数;(2)求证:CE=BH.八年级上册数学期中考试题参考答案一.选择题:(每题2分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C B B C B A C B C D二.填空题:(每题2分)13、7.5;14、4;15、(2,-3);16、30°或100°;17、27°;18、3;19、120°;20、 ;21、2;22、(-4,-1)三.解答题:23、解:设∠A=x,则∠C=∠ABC= x,∵BD是边AC上的高∴∠ADB=∠CDB=90°………………………………1分∴∠ABD=90°-∠A=90°-x∠CBD=90°-∠C=90°- x………………………2分∴90°-x+90°- x= x……………………………3分解得x=45°………………………………………………4分∴∠CB D=90°-∠C=90°- x=22.5°………………5分24、证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………………………………2分在△ABC和△DEF中∴△ABC≌△DEF………………………………………4分∴AC=DF………………………………………………6分25、连接MN作中垂线3分,作角平分线2分,结论1分.26、解:(1)图2分,坐标1分A1(4,1),B1(1,1),C1(4,3);(2)3分,坐标为(-2,3),(-2,-1),(-4,-1)27、解:设∠C=x∵AB=AC∴∠B=∠C=x………………………………………………1分∵AD=DC∴∠DAC=∠C=x……………………………………………2分∴∠BDA=∠DAC+∠C=2x…………………………………3分∵AB=BD∴∠BAD=∠BDA=2x………………………………………4分在△ABD中,∠B∠BAD+∠BDA=x+2x+2x=180°解得x=36°∴∠C=36°……………………………………………………6分28、证明:∵BE、CD是△ABC的两条高∴OD⊥AB,OE⊥AC,∠BDO=∠CEO=90°……………1分在△BDO和△CEO中∴△BDO≌△CEO…………………………………………4分∴OD=OE……………………………………………………5分又∵OD⊥A B,OE⊥AC∴点O在∠BAC的平分线上………………………………6分29、解:∵△ABC是等边三角形,BD是中线∴∠A=∠ACB=60°,AC=BC,AD=CD= AC…………1分∵ DE⊥AB于E∴∠ADE=90°-∠A=30°……………………………………2分∴CD=AD=2AE=2……………………………………………3分∴∠CDF=∠ADE=30°∴∠F=∠ACB-∠CDF=30°…………………………………4分∴∠CDF=∠F∴DC=CF………………………………………………………5分∴BF=BCCF=2AD+AD=6…………………………………6分30、证明:(1)∵CE∥DA∴∠A=∠CEB…………………………………………………1分∵∠A=∠B∴∠CEB=∠B…………………………………………………2分∴CE=CB∴△CEB是等腰三角形…………………………………………3分(2)连接DE∵CE∥DA,AB∥CD∴∠ADE=∠CED,∠AED=∠CDE…………………………4分在△ADE和△CED中∴△ADE≌△CED…………………………………………5分∴AD=CE…………………………………………………6分∵CE=CB∴AD=CB…………………………………………………7分31、解:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠B=45°………………………………………1分∵AE是△ABC的角平分线∴∠CAE= ∠CAB=22.5°∴∠AEC=90°-∠CAE=67.5°………………………………2分∵CH⊥AE于G∴∠CGE=90°∴∠GCE=90°-∠AEC=22.5°……………………………3分(2)证明:∵∠ACB=90°,AC=BC,CD是△ABC的高∴∠ACD= ∠ACB=45°∴∠CFE=∠AEC+∠ACD=67.5°………………………4分∴∠CFE=∠AEC∴CF=CE……………………………………………………5分在△ACF和△CBH中∴△ACF≌△CBH…………………………………………6分∴CF=BH…………………………………………………7分∴CE=BH…………………………………………………6分八年级上数学期中试卷。
2020-2021学年实验中学八年级第一学期期中数学试卷一、选择题1.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.2.(3分)下列计算中,正确的是()A.(a2)3=a8B.a8÷a4=a2C.a3+a2=a5D.a2•a3=a53.(3分)一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.(3分)计算(x﹣k)(x+3)的结果中不含x的一次项,则k的值是()A.0B.3C.﹣3D.﹣25.(3分)已知一个等腰三角形两边长分别为5,6,那么它的周长为()A.16B.17C.16或17D.10或126.(3分)一副三角板,如图所示叠放在一起,则图中∠α的度数为()A.75°B.60°C.65°D.55°7.(3分)如图,已知△ABC是等边三角形,点O是BC上任意一点,OE,OF分别于两边垂直,等边三角形的高为2,则OE+OF的值为()A.1B.3C.2D.48.(3分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)如图,在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),则点C关于x轴、y轴对称的点的坐标分别为()A.(3,1),(﹣3,﹣1)B.(﹣3,1),(﹣3,﹣1)C.(3,1),(1,3)D.(﹣3,﹣1),(3,1)10.(3分)在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处B.AD的中点处C.A点处D.D点处二、填空题(共8小题;共24分)11.(3分)计算:(ab2)2÷(﹣ab)2=.12.(3分)等式(a+b)2=a2+b2成立的条件为.13.(3分)已知:如图,在△ABC中,点D在BC上,∠B=40°,∠B=∠BAD,∠C=∠ADC,则∠DAC的度数为.14.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为cm.15.(3分)若x2﹣(m﹣1)x+36是一个完全平方式,则m的值为.16.(3分)如果实数a,b满足a+b=6,ab=8,那么a2+b2=.17.(3分)教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.(3分)在数学课上,老师提出用尺规作图解决问题.已知:线段AB、线段AC,AB>AC,在AB上求作点D,使△ACD的周长等于线段AB的长.小左同学的作法如下:(1)在线段AB上截取BE=AC;(2)连接CE,作线段CE的垂直平分线交AB于点D.老师说:“小左同学的作法正确.”请回答:小左同学的作图依据是.三、解答题(共7小题:共46分,第19题10分,第20-22题,每题5分).19.(10分)计算:(1)(4a3b+6a2b2﹣ab3)÷2ab.(2)(3x+2)(2x2﹣x+1).20.(5分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.21.(5分)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.22.(5分)在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB =5,求线段DE的长.23.(7分)如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14﹣6×20=48,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为.(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为(直接写出结果).24.(7分)如图,已知等腰三角形ABC中,∠BAC=30°,AB=AC,∠PAB=α,作点B关于直线AP 的对称点为点D,连接AD,连接BD交AP于点G,连接CD交AP于点E,交AB于点F.(1)如图(1)当α=15°时,①按要求画出图形,②求出∠ACD的度数,③探究DE与BF的倍数关系并加以证明;(2)在直线AP绕点A顺时针旋转的过程中(0°<a<75°),当△AEF为等腰三角形时,利用下页备用图直接求出α的值为.25.(7分)我们把正n边形(n≥3)的各边三等分,分别以居中的那条线段为一边向外作正n边形,并去掉居中的那条线段,得到一个新的图形叫做正n边形的“扩展图形”,并将它的边数记为a n.如图1,将正三角形进行上述操作后得到其“扩展图形”,且a3=12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知a3=12,a4=20,a5=30,则图4中a6=,根据以上规律,正n边形的“扩展图形”中a n=;(用含n的式子表示)(3)已知=﹣,=﹣,=﹣,…,且+++…+=,则n=.参考答案一、选择题(共10小题:共30分)1.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.解:A、幂的乘方底数不变指数相乘,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、不是同底数幂的乘法指数不能相加,故C错误;D、同底数幂的乘法底数不变指数相加,故D正确;故选:D.3.解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.4.解:(x﹣k)(x+3)=x2﹣kx+3x﹣3k=x2+(3﹣k)x﹣3k.∵(x﹣k)(x+3)的结果中不含x的一次项,∴3﹣k=0.∴k=3.故选:B.5.解:当腰为6时,则三角形的三边长分别为6、6、5,满足三角形的三边关系,周长为17;当腰为5时,则三角形的三边长分别为5、5、6,满足三角形的三边关系,周长为16;综上可知,等腰三角形的周长为16或17.故选:C.6.解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选:A.7.解:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=∠C=60°又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,∴OE=OB•sin60°=OB,同理OF=OC.∴OE+OF=(OB+OC)=BC.在等边△ABC中,高h=AB=BC.∴OE+OF=h.又∵等边三角形的高为2,∴OE+OF=2,解法二:三角形ABC的面积等于三角形AOB的面积+三角形AOC的面积,三角形ABC是等边三角形,所以三个三角形是等底,高OF+高OE等于三角形ABC的高2.故选:C.8.解:由图1将小正方形一边向两方延长,得到两个梯形的高,两条高的和为a﹣b,即平行四边形的高为a﹣b,∵两个图中的阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.9.解:∵在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),∴点C关于x轴、y轴对称的点的坐标分别为(3,1),(﹣3,﹣1).故选:A.10.解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、P、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.二、填空题(共8小题;共24分)11.解:(ab2)2÷(﹣ab)2=a2b4÷a2b2=b2.故答案为:b2.12.解:∵(a+b)2=a2+2ab+b2,∴等式(a+b)2=a2+b2成立的条件为ab=0,故答案为:ab=0.13.解:∵∠B=∠BAD=40°,∠ADC=∠B+∠BAD,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣160°=20°,故答案为20°.14.解:∵DE是AB的垂直平分线,∴AD=BD=12cm,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°,在Rt△BCD中,BC=BD=×12=6cm.故答案为:6.15.解:∵x2﹣(m﹣1)x+36是一个完全平方式,∴m﹣1=±12,故m的值为﹣11或13,故答案为:﹣11或1316.解:∵a+b=6,ab=8,∴a2+b2=(a+b)2﹣2ab=36﹣16=20,故答案为:2017.解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG ⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.解:由作法得D点线段CE的垂直平分线上,根据线段垂直平分线上的点到这条线段两端点的距离相等,∴DE=DC,而BE=AC,∴△ACD的周长=AC+AD+CD=AC+AD+DE=BE+AE=AB.故答案为线段垂直平分线上的点到这条线段两端点的距离相等.三、解答题(共7小题:共46分,第19题10分,第20-22题,每题5分).19.解:(1)原式=2a2+3ab﹣b2;(2)原式=6x3﹣3x2+3x+4x2﹣2x+2=6x3+x2+x+2.20.【解答】证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.21.解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3(x2﹣4x)+9=3+9=12.22.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE=AB=2.5.23.解:(1)根据题意得:6×8﹣2×12=48﹣24=24;故答案为:24;(2)定值为k2﹣1=(k+1)(k﹣1);证明:设十字星中心的数为x,则十字星左右两数分别为x﹣1,x+1,上下两数分别为x﹣k,x+k(k≥3),十字差为(x﹣1)(x+1)﹣(x﹣k)(x+k)=x2﹣1﹣x2+k2=k2﹣1,故这个定值为k2﹣1=(k+1)(k﹣1);(3)设正中间的数为a,则上下两个数为a﹣62,a+64,左右两个数为a﹣1,a+1,根据题意得:(a﹣1)(a+1)﹣(a﹣62)(a+64)=2015,解得:a=976.故答案为:976.24.解:(1)①如图1:②∵B、D关于AP对称,∴AP垂直平分BD,a=15°,∴AD=AB,∠1=∠2=15°,∵∠BAC=30°,∴∠DAC=∠1+∠2+∠BAC=60°,∵AC=AB,∴AC=AD,∴△ACD为等边三角形∴∠ACD=60°.③DE=2BF,证明:连接EB,∵AP垂直平分BD,∴ED=EB,∴∠3=∠4,∵AB=AD,∠DAB=30°,∴∠ADB=75°,又∠ADC=60°,∴∠3=∠4=15°,∴∠5=30°,又AD=AC,AB平分∠DAC,∴AB⊥DC,∴EB=2BF,∴ED=2BF.11(2)如图2,∵AD =AC ,∴△DAC 是等腰三角形∴∠ADC =(180°﹣2a ﹣30°)÷2=75°﹣a ,∴∠AEF =∠ADC +∠DAE =75°﹣a +a =75°,当AE =AF 时,∠EAF =a =180°﹣75°×2=180°﹣150°=30°; 当AE =EF 时,∠EAF =a =(180°﹣75°)÷2=52.5°; 当EF =AF 时,∠AEF =∠EAF =a =75°(舍去).故答案为:30°或52.5°.25.解:(1)如图所示:(2)图4中a 6=6×7=42,根据以上规律,正n 边形的“扩展图形”中a n =n (n +1);(用含n 的式子表示) (3)∵=﹣,=﹣,=﹣,…,且+++…+=,∴﹣=, 解得n =99.故答案为:42,n (n +1);99.。
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
八年级期中测试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3, b = 5,那么 a + b 的值是多少?A. 8B. 9C. 10D. 113. 下列哪个数是素数?A. 12B. 13C. 15D. 184. 一个等边三角形的内角是多少度?A. 30°B. 45°C. 60°D. 90°5. 如果一个圆的半径是5cm,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 方程 2x + 3 = 7 的解是 x = 2。
()2. 任何两个奇数相加的和都是偶数。
()3. 一个等腰三角形的两个底角相等。
()4. 圆的周长和它的直径成正比。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 如果一个数加上5等于10,那么这个数是______。
2. 一个正方形的边长是6cm,那么这个正方形的面积是______平方厘米。
3. 2的平方根是______。
4. 如果一个事件是必然事件,那么这个事件发生的概率是______。
5. 在直角坐标系中,点(3, 4)的横坐标是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。
2. 什么是算术平均数?如何计算一组数据的算术平均数?3. 请解释什么是概率,并给出一个概率的例子。
4. 请简述平行线的性质。
5. 请解释什么是等差数列,并给出一个等差数列的例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,请计算这个长方形的面积。
2. 如果一辆汽车以60km/h的速度行驶,行驶了3小时,请计算这辆汽车行驶的总距离。
3. 一个班级有40名学生,其中有20名学生喜欢打篮球,请计算喜欢打篮球的学生所占的百分比。
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。
()答案:√2.任何数与0相乘,其结果一定是0。
()答案:√3.若a>b,则a^2>b^2。
()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。
答案:42.若一个正方形的边长为a,则其面积为_______。
答案:a^23.若|x|=5,则x的值为_______或_______。
答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。
(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。
答案:第10项的值为2+(101)3=2+27=29。
2.解方程:2(x3)+4=3x+1。
答案:2x6+4=3x+1,化简得x=9。
(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。
答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。
答案:8cm6.若a=3,b=-2,则a+b的值为_______。
鄂州实验中学八年级下学期期中考试数学试卷(新人教版)(时间120分钟,满分120分)一、选择题(每题3分,共30分)1、下列各式2a b -,3x x +,5yπ+,42x ,b a b a -+,)(1y x m -中是分式的共有( )A :2个B :3个C :4 个D :5个2、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A :b a b a 22=⎪⎭⎫ ⎝⎛ B :23a a a =÷ C :b a b a +=+211 D :1-=---y x y x 3、函数y =x k 的图象经过点(2,8),则下列各点不在y =xk图象上的是( )A :(4,4)B :(-4,-4)C :(8,2)D :(-2,8)4、如图,数轴上点A所表示的数是A:5、下列各组数中能够作为直角三角形的三边长的是( ) A :2,3,4 B :12,22,32 C :4,5,9 D :32,2,526、已知△ABC 中,∠A=12∠B=13∠C ,则它的三条边之比为( ). A.1:12 C .1.1:4:1 7、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )8、如图,一次函数y =kx+b(k ≠0)与反比例函数xm=y (m ≠0)的图像交于A 、B 两点,根据图像可知不等式xmb kx <+的解集为( ) A 、x <-2 B 、x <1 C 、x <-2或0<x <1 D 、-2<x <0或x >19、如图,直线l 上有三个正方形a ,b ,c ,若a ,b 的面积分别 为5和11, 则c 的面积为( )A .6B .5C . 11D .16 10、△ABC 中,边AB=15,AC=13,高AD=12,则△ABC 的周长是(A .42 B.32 C . 42或32 D .不能确定二、填空题(每题3分,共24分)11、自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.米,用科学记数法表示这个数为 米。