第六节 催化裂化反应-再生系统
- 格式:ppt
- 大小:2.86 MB
- 文档页数:25
万吨年催化裂化反应—再生系统计算摘要催化裂化装置主要由反应—再生系统、分馏系统、吸收稳定系统和能量回收系统构成,其中反应—再生系统是其重要组成部分,是装置的核心。
设计中以大庆原油的混合蜡油与减压渣油作为原料,采用汽油方案,对装置处理量为250万吨/年(年开工8000小时)的催化裂化反应—再生系统进行了一系列计算。
根据所用原料掺油量低,混合后残炭值较低,其硫含量和金属含量都较小且由产品分布和回炼比较小,抗金属污染能力强,催化剂的烧焦和流化性能较好及在此催化剂作用下,汽油辛烷值较高这些特点,故采用汽油方案。
设计中,采用了高低并列式且带有外循环管的烧焦罐技术,并对烧焦罐式再生器和提升管反应器进行了工艺计算,其中再生器的烧焦量达32500㎏/h,烧焦罐温度为680℃,稀相管温度为720℃,由于烟气中CO含量为0,则采用高效完全再生。
在烧焦罐中,烧焦时间为1.8s,罐中平均密度为100㎏/m3,烧焦效果良好。
在提升管反应器设计中,反应温度为505℃,直径为1.62 m,管长为29 m,反应时间为3s,沉降器直径为2 m,催化剂在两器中循环,以减少催化剂的损失,提高气—固的分离效果,在反应器和再生器中分别装有旋风分离器,旋风分离器的料腿上装有翼阀,在提升管和稀相管出口处采用T型快分器。
由设计计算部分可知,所需产品产率基本可以实现。
关键词:催化裂化,反应器,再生器,提升管,烧焦罐,完全再生AbstractThe catalytic cracker constitutes reaction-regeneration system、fraction system、 absorption-stabilization system and power-recovery system. The most important and core part of the unit is reaction-regeneration system. The DaQing Crude wax oil and vacuumdistillation residue are taken as feedstock. This paper is a series of processing calculation mainly about reaction-regeneration system. With gasoline scheme, capacity is designed to be 150 Mt/a under the condition of 8000 hours’ operating time.After being mixed the contents of blending residuum, sulphur and metal as well as the carbon residue in feedstock are low. As the even distribution of product, superior properties of resisting metal pollution and the catalyst’s coke burning and fluidization as well as the higher octane number of gasoline with the function of this catalyst, the gasoline scheme are taken.In the design, technology of coke-burning drum with outsider-circulation tube is applied. The drum is of high-low parallel style. The processing calculation is about reproducer of coke-burning drum style and riser, coke-burning capacity is 32500㎏/h, the temperatures of coke-burning drum and dilute phase riser are respectively 680℃and 720℃. Accounting that there is no carbon monoxide in off-gase. The high efficient regeneration is applied. In the coke-burning drum, the scorching time is 1.8s and its average density is 100 ㎏/m3, thus the effect of coke-burning is good. The temperature of riser is 505℃. Its diameter is 1.62m and the length is 29m. While its reaction time is 3s and the diameter of settling vessel is 2m. Catalysts circulate in the drum and reactor. In order to reduce the loss of catalyst and improve the effect of gas-solid separation, cyclones are equipped in both reactor and reproducer. There is trickle vavle on the dipleg of the latter, whilethe T-rapid separation unit is fitted in the exit of riser and dilute phase riser. From the date, the unit can substantially reach the required yield. Keywords: Catalystic cracking, Reactor, Reproducer, Riser, Coke-burning drum毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
催化裂化装置反应再生系统工艺流程一、反应-再生部分原料油自罐区进入原料油罐(V22201),经原料油泵(P22201A、B)升压后,通过原料油-芳烃分馏塔顶循环油换热器(E22222A~D)、原料油-芳烃分馏塔中段油换热器(E22223)、原料油-重油分馏塔顶循环油换热器(E22201A/B)、原料油-船燃油换热器(E22211A/B)换热至150℃左右进入RPT原料预处理系统,首先进电脱盐罐(V22205A、B)脱盐,然后经原料油-一中段油换热器(E22212A、B)、原料油-循环油浆换热器(E22202A、B),最终经原料油-反应进料换热器(E22224A、B)加热至240℃左右进入芳烃分馏塔,拨出船燃油后的原料经塔底循环油泵(P22213A、B)升压经塔底油蒸汽发生器(E22225A、B)换热产中压蒸气,再与低温原料油经原料油-反应进料换热器(E22224A、B)换热至220℃后,与从分馏来的回炼油混合后分六路经原料油雾化喷嘴进入重油提升管反应器(R22101A),与690℃的再生高温催化剂和550℃的芳烃提升管来的待生催化剂接触进行原料的升温、汽化及反应。
反应后的油气与待生催化剂在提升管出口经粗旋风分离器迅速分离后,经升气管密闭进入沉降器(R22101)4组重油单级旋风分离器,再进一步除去携带的催化剂细粉后离开沉降器,进入重油分馏塔(T22201A)。
重油分馏塔分馏后的塔顶油气经冷凝冷却后进入油气分离器(V22203A),分离出的粗轻燃油分四路经雾化喷嘴进入芳烃提升管反应器(R22101B),与690℃催化剂接触进行原料的升温、汽化及反应。
反应后的油气与待生催化剂在提升管出口经粗旋风分离器迅速分离后,经升气管密闭进入沉降器内轻燃油单级旋风分离器,再进一步除去携带的催化剂细粉后离开沉降器,进入芳烃分馏塔(T22201B)。
油气分离出来的待生催化剂与重油部分的待生催化剂一起进入反应沉降器的汽提段。
重油催化裂化的反应—再生系统
崔璀
【期刊名称】《《石油化工设备技术》》
【年(卷),期】1991(012)001
【摘要】镇海石化总厂炼油厂催化裂化装置原设计为120×10~4t/a 蜡油催化裂化。
为解决重油出路,提高轻油收率,于1985年从美国 S&W 公司引进重油催化技术,对原装置进行改造。
从1987年开始,利用每年的停工检修时间分期进行施工,全部改造工程于1990年6月完成,投运试车一次成功,产品质量和收率均达到了设计要求。
一、反应—再生系统改造简介1.进料喷嘴提升管/沉降器为原有设备,为适应重油催化的需要作了部分改动。
【总页数】5页(P54-58)
【作者】崔璀
【作者单位】
【正文语种】中文
【中图分类】TE626.25
【相关文献】
1.重油催化裂化装置再生系统的技术改造 [J], 焦伟州;赵振辉;刘耀宇
2.MPC 在重油催化裂化反应-再生系统控制中的应用 [J], 郭锦标;房(韦华);高维进;魏国志
3.重油催化裂化反应-再生系统的热平衡控制研究 [J], 霍彦斌;温杰
4.重油催化裂化反应-再生系统的热平衡控制 [J], 康明艳;李钒;伍丽娜
5.重油催化裂化反应-再生系统的热平衡控制 [J], 康明艳;李钒;伍丽娜;孙津清因版权原因,仅展示原文概要,查看原文内容请购买。
1再生动力学1.1催化剂上的焦炭1)焦炭的化学组成催化剂上的焦炭来源于四个方面:⑴在酸性中心上由催化裂化反应生成的焦炭;⑵由原料中高沸点、高碱性化合物在催化剂表面吸附,经过缩合反应生成的焦炭;⑶因汽提段汽提不完全而残留在催化剂上的重质烃类,是一种富氢焦炭;⑷由于镍、钒等重金属沉积在催化剂表面上造成催化剂中毒,促使脱氢和缩合反应的加剧,而产生的次生焦炭;或者是由于催化剂的活性中心被堵塞和中和,所导致的过度热裂化反应所生成的焦炭。
上述四种来源的焦炭通常被分别称为催化焦、附加焦(也称为原料焦)、剂油比焦(也称为可汽提焦)和污染焦。
实际上,这四种来源的焦炭在催化剂上是无法辩认的。
所谓“焦炭”并不是具有严格的固定组成和结构的物质。
它不是纯碳,一般主要由碳和氢组成,是高度缩合的碳氢化合物,但碳和氢的比例受多种因素的影响,有相当大的变化范围。
影响H/C的因素主要有:催化剂、原料、反应温度、反应时间及汽提条件等。
对一定的催化剂和原料,影响焦炭H/C的主要因素是反应温度和反应时间(或结焦量)。
普遍认为,反应温度越高,焦炭的H/C越小,即焦炭中氢含量越低。
反应时间加长也有同样的影响。
在硅酸铝催化剂上用多种单体烃和轻瓦斯油进行催化裂化反应试验,结果表明所得焦炭的H/C不相同,而在0.4~0.9之间变化。
除碳和氢外,焦炭中还可能含有硫、氮、氧等杂原子,这主要决定于原料的杂原子化合物的含量。
应该指出,焦炭的化学组成,是焦炭的一个重要性质,尤其是C/H,对再生器的操作,特别是对装置的热平衡具有重要意义。
但很遗憾,焦炭的C/H很难测定准确,主要是氢含量很难测准,因为一般用燃烧法测定生成的水量,而水量难以测准,而且在燃烧过程中催化剂结构本身也可能放出一部分水,因而造成实验误差。
在生产装置上,一般还是以测定烟气中CO、CO2和O2的组成,利用焦炭在空气中燃烧时的元素平衡等计算焦炭中的C/H比。
2)焦炭的结构前面谈到焦炭的化学组成是不均匀的,而焦炭的结构与其组成密切相关,可以想象,焦炭的结构也是不均匀的,实际研究结果也证明了这一点,而且结构问题比组成更为复杂。
简述催化裂化反应再生系统流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!催化裂化反应再生系统是石油炼制过程中的重要环节,其主要作用是将重质油转化为轻质油和气体产品。
催化裂化反应再生系统流程
1. 新鲜原料油经换热后与回炼油浆混合,经加热炉加热至180-320℃后至催化裂化提升管反应器下部的喷嘴。
2. 原料油由蒸气雾化并喷入提升管内,在其中与来自再生器的高温催化剂(600-750℃)接触,随即汽化并进行反应。
3. 油气在提升管内的停留时间很短,一般只有几秒钟。
反应产物经旋风分离器分离出夹带的催化剂后离开沉降器去分馏塔。
4. 积有焦炭的催化剂(称待生催化剂)由沉降器落入下面的汽提段。
汽提段内装有多层人字形挡板并在底部通入过热水蒸气,待生催化剂上吸附的油气和颗粒之间的空间内的油气被水蒸气置换出而返回上部。
5. 经汽提后的待生催化剂通过待生斜管进人再生器。
再生器的主要作用是烧去催化剂上因反应而生成的积炭,使催化剂的活性得以恢复。
6. 再生后的催化剂(称再生催化剂)落人淹流管,经再生斜管送回反应器循环使用。
再生烟气经旋风分离器分离出夹带的催化剂后,经双动滑阀排人大气。
过程控制综合实践催化裂化装置反应再生部分控制系统设计第十二组目录第一章系统分析 (1)一、工艺流程 (1)二、控制需求分析 (2)三、对象特性分析 (2)1.控制系统特点 (2)2.控制系统扰动 (2)3.控制难点 (2)第二章控制系统详细的设计 (3)一、系统变量设置 (3)二、控制回路设计 (3)三、安全联锁报警设计 (4)四、I/O表 (5)第三章设备选型与图纸绘制 (6)一、控制器选型 (6)二、调节阀选型 (6)三、测量变送装置选型 (7)四、PLC接线图 (7)1.CPU224接线端子图 (7)2.EM235接线端子图 (8)3.控制柜接线图 (8)4.控制柜柜门设计图 (9)五、系统图纸绘制 (9)1.P&ID图图纸规格 (9)2.P&ID图的内容 (9)3.P&ID图中设备 (10)4.P&ID图中管道 (10)5.P&ID图代号和图例 (10)6.其它 (10)第四章MATLAB仿真研究 (11)一、基于MATLAB的控制对象仿真 (11)1.参考模型FCC——Linear (11)2.对象特性的阶跃响应测试 (12)二、数字控制器的设计 (12)三、控制参数对控制性能的影响及参数整定 (13)1.PID的三个调整参数对控制系统的影响 (13)2.参数整定结果 (14)第五章MATLAB与组态王的DDE连接 (17)一、动态数据交换 (17)二、组态王DDE功能 (17)三、MATLAB与组态王建立连接 (17)第六章组态王监控软件的详细设计 (20)一、组态王监控软件的界面设计 (20)二、监控软件功能设计 (20)1.工艺流程画面 (20)2.总体实时监控画面 (21)3.各个回路独立监控画面 (21)4.数据报表画面 (22)5.报警画面及报警查询画面 (23)6.总控制室画面 (23)7.标签画面 (23)三、设计过程 (23)1.建立组态王新工程 (23)2.创建组态画面 (24)3.定义I/O设备 (24)4.构造数据库 (24)5.建立动画连接 (24)6.运行和调试 (24)第七章实验结果及分析 (25)一、系统使用流程 (25)二、实际运行效果 (25)1.阶跃响应实时曲线 (26)2.性能指标整理 (26)3.鲁棒性实验 (27)三、控制系统性能分析 (28)1.控制方案优点 (28)2.控制方案缺点 (28)3.模型改进 (29)第八章感受和建议 (30)一、设计感受 (30)二、遇到的一些问题 (30)第一章系统分析催化裂化(Fluid Catalytic Cracking)是原油二次加工的核心工艺。
催化裂化的装置简介及工艺流程概述催化裂化技术的发展密切依赖于催化剂的发展。
有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。
选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。
催化裂化装置通常由三大部分组成,即反应/再生系统、分馏系统和吸收稳定系统。
其中反应––再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下:(一)反应––再生系统新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370℃左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650℃~700℃)催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。
积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催化剂表面上的少量油气。
待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650℃~680℃)。
再生器维持0.15MPa~0.25MPa(表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。
再生后的催化剂经淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。
烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部分催化剂,烟气经集气室和双动滑阀排入烟囱。
再生烟气温度很高而且含有约5%~10%CO,为了利用其热量,不少装置设有CO锅炉,利用再生烟气产生水蒸汽。
对于操作压力较高的装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电能。