平面向量易错题解析
- 格式:doc
- 大小:2.16 MB
- 文档页数:16
在平面向量的复习中,首先要掌握其基本概念与运算.如果不能正确理解向量的基础知识,或在某些概念及公式的理解上存在模糊认识,就会造成一些表面看起来正确而实际上错误的判断,使解题思路走入误区,现例举如下:1.已知2,3a b ==,a 与b 的夹角为45°,当向量a b λ+与a b λ+的夹角为锐角 时,求实数A 的范围.错解:由已知cos 453a b a b ==,∵a b λ+与a b λ+的夹角为锐角,∴()()0a b a b λλ++>,即222(1)0a b a b λλλ+++=,2293(1)0λλλ+++>解得λ>λ<∴实数λ的范围是1111()(,66--+∞-∞ 分析:解题时忽视了a b λ+与a b λ+的夹角为0的情况,也就是()()0a b a b λλ++>既 包括了a b λ+与a b λ+的夹角为锐角,也包括了a b λ+与a b λ+的夹角为0,而a b λ+与a b λ+的夹角为0不合题意. 正解:由已知cos 453a b a b ==,又a b λ+与a b λ+的夹角为锐角∴()()0a b a b λλ++>,且()a b a b λμλ+≠+,由()()0a b a b λλ++>,即222(1)0a b a b λλλ+++=,231130λλ++>解得λ>或λ< 由()a b a b λμλ+≠+得1,μλμλ≠≠,即1λ≠,综上所述实数λ的范围是(1,)(,6+∞-∞。
2.已知O 为ABC ∆所在平面内一点且满足230OA OB OC ++=,则AOB ∆与AOC ∆的 面积之比为 ( )A .1 B.32.23C D .2错解:0,2OA OB OC OB OC ++=∴=- ∴O 在BC 边上,且2OB OC =,又△AOB 与△AOC 高相等,∴AOB ∆与AOC ∆的 面积之比为2,∴选D .分析: 缺乏联想能力,将常用结论记错是本题错误的原因,实际上只有O 为△ABC 的重心的情况下,才有0OA OB OC ++=,而本题无此已知条件.正解: 在AB 上取一点D ,使2AD DB =,D ∴分AB 的比2λ=,得1233OD OA OB =+,又由已知12,33OC OA OB OD OC =-∴=-,∴O 为CD 的中点,不妨设AOC S S ∆=,则AOD S S =(∵两者等底同高),2AD BD =, 13,22BOD AOB S S S S ∆∆∴==,△AOB 的面积与△AOC 的面积之比为3:2,选B . 3. 在边长为1的正三角形ABC 中,求AB BC BC CA CA AB ++的值.错解:cos60cos60AB BC BC CA CA AB AB BC BC CA ++=+1113cos602222CA AB +=++=. 分析:两向量夹角的定义的前提是其起点要重合.向量AB 与BC ,BC 与CA ,CA 与 AB 的夹角通过平移后发现都不是60°,而是120°.这是由于对两向量夹角的定 义理解不透造成的.正解:cos120cos120cos120AB BC BC CA CA AB AB BC BC CA CA AB ++=++1113()()()2222=-+-+-=-. 注意:向量a 与b 的夹角为锐角的充要条件是0a b >且a 与b 不共线.这里,a 与b 不 共线不能忽略.4. 向量a 、b 都是非零向量,且向量3a +b 与7-5a b 垂直,4-a b 与7-2a b 垂直,求a 与b 的夹角.错解:由题意,得(3)(7)0-5=a +b a b ,① ()(7)0-4-2=a b a b ,②将①、②展开并相减,得24623a b =b ,③∵≠0b ,故12a =b ,④ 将④代入②,得22=a b ,则=a b , 设a 与b 夹角为θ,则2112cos 2θ2===b a b a b b. ∵0180θ≤≤,∴60θ=.分析:上面解法表面上是正确的,但却存在着一个理解上的错误,即由③得到④,错把 数的乘法的消去律运用在向量的数量积运算上.由于向量的数量积不满足消去 律,所以即使≠0b ,也不能随便约去.正解:设向量a 、b 的夹角为θ,由上面解法有22a b =b ,代入①式、②式均可得 22=a b ,则=a b ,∴1cos 2θ==a b a b . 又∵0θ≤≤180,∴60θ=.5. 已知,,A B C 三点的坐标分别为(12)-,,(35)-,,(52)-,,试判断ABC ∆的形状。
专题07平面向量易错点一:注意零向量书写及三角形与平行四边形适用前提(平面向量线性运算)1.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB的长度,记作||AB .(3)特殊向量:①零向量:长度为0的向量,其方向是任意的.②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.④相等向量:长度相等且方向相同的向量.⑤相反向量:长度相等且方向相反的向量.2.向量的线性运算和向量共线定理(1)向量的线性运算运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律a b b a +=+ ②结合律()a b c ++ =()a b c ++减法求a 与b 的相反向量b -的和的运算叫做a与b的差三角形法则()a b a b -=+-数乘求实数λ与向量a的积的运算(1)||||||a a λλ=(2)当0λ>时,a λ 与a的方向相同;当0λ<时,a λ 与a的方向相同;当0λ=时,0a λ=()()a a λμλμ= ()a a aλμλμ+=+()a b a bλλλ+=+共线向量定理向量()0a a ≠ 与b 共线,当且仅当有唯一的一个实数λ,使得b a λ=.共线向量定理的主要应用:(1)证明向量共线:对于非零向量a ,b ,若存在实数λ,使a b λ=,则a 与b 共线.(2)证明三点共线:若存在实数λ,使AB AC λ=,则A ,B ,C 三点共线.(3)求参数的值:利用共线向量定理及向量相等的条件列方程(组)求参数的值.平面向量线性运算问题的求解策略:(1)进行向量运算时,要尽可能地将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量,三角形的中位线及相似三角形对应边成比例等性质,把未知向量用已知向量表示出来.(2)向量的线性运算类似于代数多项式的运算,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在线性运算中同样适用.(3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.解决向量的概念问题应关注以下七点:(1)正确理解向量的相关概念及其含义是解题的关键.(2)相等向量具有传递性,非零向量的平行也具有传递性.(3)共线向量即平行向量,它们均与起点无关.(4)相等向量不仅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈.(6)非零向量a 与||a a 的关系:||a a是a方向上的单位向量.(7)向量与数量不同,数量可以比较大小,向量则不能,但向量的模是非负实数,故可以比较大小易错提醒:(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -= ,AM AN NM -= ,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.A .AB AD AC+= C .AB AD CD AD++=uu u r uuu r uu u r uuu r 变式1:给出下列命题,其中正确的命题为(A .若AB CD = ,则必有B .若1233AD AC AB =+ C .若Q 为ABC 的重心,则D .非零向量a ,b ,c 变式2:如图所示,在平行四边形(1)试用向量,a b来表示DN (2)AM 交DN 于O 点,求AO 变式3:如图所示,在矩形1.已知a 、b为不共线的向量,5AB a b =+ ,28BC a b =-+ ,()3CD a b =-uu u r r r ,则()A .ABC ,,三点共线C .A BD ,,三点共线2.如图,在平行四边形ABCD A .1233AB AD-+C .1536AB AD - 3.在四边形ABCD 中,若AC AB = A .四边形ABCD 是平行四边形C .四边形ABCD 是菱形4.已知,AD BE 分别为ABC 的边A .43a +23bC .23a 43-b 5.如果21,e e是平面α内两个不共线的向量,那么下列说法中不正确的是(①(12,R a e e λμλμ=+∈②对于平面α内任一向量③若向量1112e e λμ+ 与λ④若实数λ、μ使得1e λ+ A .①②B 6.给出下列各式:①AB 对这些式子进行化简,则其化简结果为A .4B 7.已知平面向量a ,bA .若a b ∥,则a = C .若a b ∥,b c ∥,则8.设1e 与2e 是两个不共线的向量,k 的值为()41.平面向量基本定理和性质(1)共线向量基本定理如果()a b R λλ=∈ ,则//a b ;反之,如果//a b 且0b ≠ ,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).(2)平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e e λλ+ 叫做向量a关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+ 叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==.推论2:若11220a e e λλ=+=,则120λλ==.(3)线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB AC AD λλ+=+ .在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.DACB(4)三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=;⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+;⇔存在1λμ+=,使得OC OA OB λμ=+.(5)中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+ )AC,反之亦正确.DACB2.平面向量的坐标表示及坐标运算(1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a,有且只有一对实数,x y 使a xi yj =+ ,我们把有序实数对(,)x y 叫做向量a的坐标,记作(,)a x y = .(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有向量(,)x y 一一对应向量OA 一一对应点(,)A x y .(3)设11(,)a x y = ,22(,)b x y = ,则1212(,)a b x x y y +=++ ,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y = ,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.3.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||AB ②已知11(,)a x y = ,22(,)b x y = ,则a b ±1212()x x y y =±±,,11(,)a x y λλλ= ,∥12211212向量共线(平行)的坐标表示1.利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a共线的向量时,可设所求向量为a λ (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入a λ 即可得到所求的向量.2.利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,则利用“若11(),a x y =,22(),b x y = ,则a b∥的充要条件是1221x y x y =”解题比较方便.3.三点共线问题.A ,B ,C 三点共线等价于AB与AC 共线.4.利用向量共线的坐标运算求三角函数值:利用向量共线的坐标运算转化为三角方程,再利用三角恒等变换求解.用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.易错提醒:(1)平面向量基本定理中的基底必须是两个不共线的向量.(2)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示(3)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相。
平面向量易错题剖析1. 引言平面向量是高中数学中的重要概念,也是解决几何问题的有力工具。
然而,由于其相对抽象和复杂的运算规则,学生在学习和应用平面向量时常常容易犯错。
本文将从常见易错题入手,分析学生易犯的错误,并给出相应的解析和建议。
2. 常见易错题及解析2.1 向量加法与减法题目:已知向量 AB ⃗⃗⃗⃗⃗ =(3−2),BC ⃗⃗⃗⃗⃗ =(−14),求向量 AC ⃗⃗⃗⃗⃗ 。
错误解答:有些学生会直接将 AB ⃗⃗⃗⃗⃗ 和 BC ⃗⃗⃗⃗⃗ 的坐标分别相加得到 (22),认为 AC ⃗⃗⃗⃗⃗ =(22)。
解析:向量加法要求将两个向量的对应分量相加得到新的向量。
正确的计算方法是:AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(3−2)+(−14)=(3+(−1)−2+4)=(22)。
因此,正确答案为 AC ⃗⃗⃗⃗⃗ =(22)。
建议:学生在解答向量加法题目时,应注意将两个向量的对应分量相加,并仔细检查计算过程中的正负号和运算符号是否正确。
2.2 向量的数量积题目:已知向量 AB ⃗⃗⃗⃗⃗ =(−13),AC ⃗⃗⃗⃗⃗ =(4−2),求向量 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ 的值。
错误解答:有些学生会直接将两个向量的对应分量相乘得到 (−4−6),然后将其对应分量相加得到 (−4)+(−6)=−10,认为 AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =−10。
解析:向量的数量积(内积)是将两个向量的对应分量相乘,并将乘积相加得到一个数。
正确的计算方法是:AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =((−1)×4)+(3×(−2))=−4+(−6)=−10。
因此,正确答案为 AB ⃗⃗⃗⃗⃗ ⋅AC⃗⃗⃗⃗⃗ =−10。
建议:学生在解答向量的数量积题目时,应注意将两个向量的对应分量相乘,并仔细检查计算过程中的正负号和运算符号是否正确。
2.3 向量的模题目:已知向量 AB ⃗⃗⃗⃗⃗ =(2−1),求向量 AB ⃗⃗⃗⃗⃗ 的模。
【最新】数学《平面向量》专题解析一、选择题1.平面向量a →与b →的夹角为π3,()2,0a →=,1b →=,则2a b →→-=( )A .23B .6C .0D .2【答案】D 【解析】 【分析】根据向量的模的计算和向量的数量积的运算即可求出答案. 【详解】()2,0a →=Q ,||2a →∴=22222(2)||4||444421cos 43a b a b a b a b π→→→→∴-=-=+-⋅=+-⨯⨯⨯=r r r r ,|2|2a b ∴-=r r,故选:D 【点睛】本题考查了向量的模的计算和向量的数量积的运算,属于中档题.2.如图,在ABC ∆中,12AN NC =u u u r u u u r,P 是线段BN 上的一点,若15AP mAB AC =+u u u r u u u r u u u r ,则实数m 的值为( )A .35B .25C .1415D .910【答案】B 【解析】 【分析】根据题意,以AB u u u r ,AC u u ur 为基底表示出AP u u u r 即可得到结论. 【详解】由题意,设()NP NB AB AN λλ==-u u u r u u u r u u u r u u u r,所以,()()113AP AN NP AN AB AN AB AN AB AC λλλλλ-=+=+-=+-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r, 又15AP mAB AC =+u u u r u u u r u u u r ,所以,1135λ-=,且m λ=,解得25m λ==. 故选:B. 【点睛】本题考查了平面向量的线性运算的应用以及平面向量基本定理的应用,属于基础题.3.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b rr,则()a b R λλ=∈rr;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r ,则A ,B ,C为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④ B .①②④C .①②⑤D .③⑥【答案】A 【解析】 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r,故②错误;对于③:()()a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误; 对于④:a b a b +≥+r r r r,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=u u u r u u u r u u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.4.已知O 是平面上一定点,满足()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u r u u u r u u u r u u ur u u u r ,[0λ∈,)+∞,则P 的轨迹一定通过ABC ∆的( ) A .外心 B .垂心C .重心D .内心【答案】B 【解析】 【分析】可先根据数量积为零得出BC uuu r 与()||cos ||cos ABAC AB B AC Cλ+u u u ru u u ru u ur u u u r 垂直,可得点P 在BC 的高线上,从而得到结论.【详解】Q ()||cos ||cos AB ACOP OA AB B AC Cλ=++u u u r u u u ru u u r u u u r u u ur u u u r , ∴()||cos ||cos AB ACOP OA AB B AC C λ-=+u u u r u u u ru u u r u u u r u u ur u u u r , 即()||cos ||cos AB ACAP AB B AC Cλ=+u u u r u u u ru u u r u u ur u u u r , Qcos BA BCB BA BC ⋅=u u u r u u u r u u u r u u u r ,cos CA CB C CA CB⋅=u u u r u u u r u u u r u u u r , ∴()0||cos ||cos AB ACBC BC BC AB B AC C⋅+=-+=u u u r u u u ru u u r u u u r u u u r u u ur u u u r , ∴BC uuu r 与()||cos ||cos AB ACAB B AC Cλ+u u u r u u u ru u ur u u u r 垂直, 即AP BC ⊥uu u r uu u r ,∴点P 在BC 的高线上,即P 的轨迹过ABC ∆的垂心.故选:B . 【点睛】本题重点考查平面向量在几何图形中的应用,熟练掌握平面向量的加减运算法则及其几何意义是解题的关键,考查逻辑思维能力和转化能力,属于常考题.5.已知在平面直角坐标系xOy 中,O 为坐标原点,()0,2A ,2220OB OA +=,若平面内点P 满足3PB PA =u u u r u u u r,则PO 的最大值为( )A .7B .6C .5D .4【答案】C 【解析】 【分析】设(),P x y ,(),B m n ,根据3PB PA =u u u r u u u r可得262m x n y=-⎧⎨=-⎩,再根据2220OB OA +=可得点P 的轨迹,它一个圆,从而可求PO 的最大值. 【详解】设(),P x y ,(),B m n ,故(),PB m x n y =--u u u r ,(),2PA x y =--u u u r. 由3PB PA =u u u r u u u r可得363m x x n y y-=-⎧⎨-=-⎩,故262m x n y=-⎧⎨=-⎩,因为2220OB OA +=,故()22443420x y +-+=,整理得到()2234x y +-=,故点P 的轨迹为圆,其圆心为()0,3,半径为2,故PO 的最大值为325+=, 故选:C. 【点睛】本题考查坐标平面中动点的轨迹以及圆中与距离有关的最值问题,一般地,求轨迹方程,可以动点转移法,也可以用几何法,而圆外定点与圆上动点的连线段长的最值问题,常转化为定点到圆心的距离与半径的和或差,本题属于中档题.6.在平面直角坐标系中,()1,2A -,(),1B a -,(),0C b -,,a b ∈R .当,,A B C 三点共线时,AB BC ⋅u u u r u u u r的最小值是( )A .0B .1CD .2【答案】B 【解析】 【分析】根据向量共线的坐标表示可求得12b a =-,根据数量积的坐标运算可知所求数量积为()211a -+,由二次函数性质可得结果.【详解】由题意得:()1,1AB a =-u u u r ,(),1BC b a =--u u u r,,,A B C Q 三点共线,()()111a b a ∴⨯-=⨯--,即12b a =-,()1,1BC a ∴=-u u u r, ()2111AB BC a ∴⋅=-+≥u u u r u u u r ,即AB BC ⋅u u u r u u u r 的最小值为1.故选:B . 【点睛】本题考查平面向量的坐标运算,涉及到向量共线的坐标表示和数量积的坐标运算形式,属于基础题.7.已知ABC V 是边长为1的等边三角形,若对任意实数k ,不等式||1k AB tBC +>u u u r u u u r恒成立,则实数t 的取值范围是( ).A.,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭B.,⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭C.3⎛⎫+∞ ⎪ ⎪⎝⎭D.,3⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B 【解析】 【分析】根据向量的数量积运算,将目标式转化为关于k 的二次不等式恒成立的问题,由0<n ,即可求得结果. 【详解】因为ABC V 是边长为1的等边三角形,所以1cos1202AB BC ⋅=︒=-u u u r u u u r ,由||1k AB tBC +>u u u r u u u r 两边平方得2222()2()1k AB kt AB BC t BC +⋅+>u u u r u u u r u u u r u u u r ,即2210k kt t -+->,构造函数22()1f k k tk t =-+-, 由题意,()22410t t ∆--<=,解得t <或t >. 故选:B. 【点睛】本题考查向量数量积的运算,以及二次不等式恒成立问题求参数范围的问题,属综合中档题.8.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.9.已知向量(1,2)a =v ,(3,4)b =-v ,则a v 在b v方向上的投影为A 13B .22C .1D 65 【答案】C 【解析】 【分析】根据a v在b v方向上的投影定义求解. 【详解】a v 在b v 方向上的投影为(1,2)(3,4)381(3,4)5a b b⋅⋅--+===-rr r , 选C. 【点睛】本题考查a v在b v方向上的投影定义,考查基本求解能力.10.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u rA .12AB AD -+u u ur u u u rB .12AB AD -u u ur u u u rC .12AB AD +u u u r u u u rD .12AB AD -u u u r u u u r【答案】A 【解析】 【分析】由平面向量的加法法则运算即可. 【详解】如图,过E 作//,EF BC 由向量加法的平行四边形法则可知1.2BE BF BC AB AD =+=-+u u u v u u u v u u u vu u uv u u u v 故选A. 【点睛】本题考查平面向量的加法法则,属基础题.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知向量m =r(1,cosθ),(sin ,2)n θ=-r,且m r ⊥n r,则sin 2θ+6cos 2θ的值为( ) A .12B .2C .22D .﹣2【答案】B 【解析】 【分析】根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2θ22226sin cos cos sin cos θθθθθ+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】因为向量m =r (1,cosθ),n =r(sinθ,﹣2),所以sin 2cos m n θθ⋅=-u r r因为m r ⊥n r ,所以sin 2cos 0θθ-=,即tanθ=2,所以sin 2θ+6cos 2θ22222626226141sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B. 【点睛】本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.13.如图,两个全等的直角边长分别为1,3的直角三角形拼在一起,若AD AB AC λμ=+u u u r u u u r u u u r,则λμ+等于( )A 323-+ B 323+ C 31 D 31+【答案】B 【解析】 【分析】建立坐标系,求出D 点坐标,从而得出λ,μ的值. 【详解】解:1AC =Q ,3AB =,30ABC ∴∠=︒,60ACB ∠=︒,以AB ,AC 为坐标轴建立坐标系,则13,122D ⎛⎫+ ⎪ ⎪⎝⎭. ()3,0AB =u u u r,()0,1AC =uu u r ,∴13,122AD ⎛⎫=+⎪ ⎪⎝⎭u u u r. Q AD AB AC λμ=+u u u r u u u r u u u r ,∴132312λμ⎧=⎪⎪⎨⎪=+⎪⎩,∴36312λμ⎧=⎪⎪⎨⎪=+⎪⎩,2313λμ∴+=+. 故选:B .【点睛】本题考查了平面向量的基本定理,属于中档题.14.已知AB 是圆22:(1)1C x y -+=的直径,点P 为直线10x y -+=上任意一点,则PA PB ⋅u u u v u u u v的最小值是( )A .21-B .2C .0D .1【答案】D 【解析】试题分析:由题意得,设,,,又因为,所以,所以PA PB ⋅u u u r u u u r的最小值为1,故答案选D.考点:1.圆的性质;2.平面向量的数量积的运算.15.设()1,a m =r ,()2,2b =r,若()2a mb b +⊥r r r ,则实数m 的值为( )A .12B .2C .13-D .-3【答案】C 【解析】 【分析】计算()222,4a mb m m +=+r r,根据向量垂直公式计算得到答案.【详解】()222,4a mb m m +=+r r,∵()2a mb b +⊥r r r ,∴()20a mb b +⋅=r r r ,即()22280m m ⋅++=,解得13m =-.故选:C .【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.16.已知P 为边长为2的正方形ABCD 所在平面内一点,则PC uuu r ()PB PD +⋅u u ur u u u r 的最小值为( ) A .1- B .3-C .12-D .32-【答案】A 【解析】 【分析】建立坐标系,写出各点坐标,表示出对应的向量坐标,代入数量积整理后即可求解. 【详解】建立如图所示坐标系,设(,)P x y ,则(0,0),(2,0),(2,2),(0,2)A B C D ,所以(2,2),(2,)(,2)(22,22)PC x y PB PD x y x y x y =--+=--+--=--u u u r u u u r u u u r,故223131()(2)(22)(2)(22)222222PC PB PD x x y y x y ⎛⎫⎛⎫⋅+=--+--=--+-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r223322122x y ⎛⎫⎛⎫=-+-- ⎪ ⎪⎝⎭⎝⎭ 所以当32x y ==时,PC uuu r ()PB PD +⋅u u u r u u u r 的最小值为1-. 故选:A .【点睛】本题考查利用坐标法求向量数量积的最值问题,涉及到向量的坐标运算,考查学生的运算求解能力,是一道中档题.17.在ABC V 中,D 为边AC 上的点,若2133BD BA BC =+u u u r u u u r u u u r ,AD DC λ=u u u v u u u v ,则λ=( )A .13B .12C .3D .2【答案】B【解析】【分析】 根据2133BD BA BC =+u u u v u u u v u u u v ,将,AD DC u u u r u u u r 都用基底()BA BC u u u r u u u r ,表示,再根据AD DC λ=u u u v u u u v 求解. 【详解】 因为2133BD BA BC =+u u u v u u u v u u u v , 所以1122,+3333AD BD BA BA BC DC BC BD BA BC =-=-+=-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 因为AD DC λ=u u u v u u u v , 所以λ=12, 故选:B【点睛】 本题主要考查平面向量的基本定理和共线向量定理,还考查运算求解的能力,属于中档题. 18.若O 为ABC ∆所在平面内任一点,且满足()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u r u u u r ,则ABC ∆的形状为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形【答案】A【解析】【分析】利用平面向量加法和减法的三角形法则以及向量数量积的性质即可进行判断.【详解】 由()()0OB OC OC OA CA AB -⋅-++=u u u r u u u r u u u r u u u r u u u r u u u r ,即()0CB AC CB CB AB ⋅+=⋅=u u u r u u u r u u u r u u u r u u u r , 所以,CB AB ⊥,即2B π∠=,故ABC ∆为直角三角形.故选:A.【点睛】 本题主要考查了平面向量加法和减法的三角形法则以及向量数量积的性质的简单应用,属于基础题.19.如图,向量a b -r r 等于A .1224e e --u r u u rB .1242e e --u r u u rC .123e e -r u u rD .123e e -+r u u r 【答案】D【解析】【分析】【详解】 由向量减法的运算法则可得123a e b e -=-+r r r u u r ,20.已知向量a v ,b v 满足2a =v ||1b =v ,且2b a +=v v ,则向量a v 与b v 的夹角的余弦值为( )A .22B .23C .28D .24【答案】D【解析】【分析】根据平方运算可求得12a b ⋅=r r ,利用cos ,a b a b a b ⋅<>=r r r r r r 求得结果. 【详解】由题意可知:2222324b a b a b a a b +=+⋅+=+⋅=r r r r r r r r ,解得:12a b ⋅=r rcos ,4a b a b a b ⋅∴<>===r r r r r r 本题正确选项:D【点睛】本题考查向量夹角的求解问题,关键是能够通过平方运算求得向量的数量积.。
必修四平面向量易错点分析本文首先帮助大家理解平移的意义,深刻认识一个平移就是一个向量,掌握平移公式,并能熟练运用平移公式简化函数解析式,其次针对向量夹角易错点进行举例分析。
一、关于平移的概念先看如图所示,右边的两个图形中,经过平移能得到左边的图形的是()。
答案不难选C,平面内一个图形,将它所有的点按照同一方向,移动同样的长度,得到同样的图,这个过程叫做图形的平移。
那么图形平移过程中,所有点都是按照同一方向移动同样的长度,所以平移所遵循的“长度”和“方向”正是向量的两个本质特征,因此从向量的角度看,一个平移就是一个向量。
下面我们研究下平移公式:设点P(x,y)按照给定的向量a=(h,k)平移后得到新点P’(x’,y’),则容易看到,公式中是用旧点的坐标和平移向量的坐标来表示新点坐标的,从向量的角度可以理解为向量坐标等于终点(新点)坐标减去起点(旧点)坐标,故公式也可变形为图形的平移公式。
如果给定向量a=(h,k),由旧解析式求新解析式时,把公式代入旧解析式中整理可得;若由新解析式求旧解析式,则把公式代入到新解析式中整理可得。
当然应当注意,上述点或图形平移,坐标轴并没有移动,平移前后均在同一坐标系上。
例1:按向量a把点A(2,1)平移后得到A′(5,-4),按此平移法,则点B(2,-1)应平移到_______。
分析得a(3,-5),B(2,-1)平移后得到B’(x’,y’) 。
由得到B’(5,-6)。
例2:已知定点A(2,1)与定直线l∶3x-y+5=0,点B在l上移动,点M在线段AB上,且分AB的比为2,求点M的轨迹方程。
分析:向量的坐标为用“数”的运算处理“形”的问题搭起了桥梁,形成了代数与几何联系的新纽带。
解:设B(x0,y0),M(x,y)∴AM=(x-2,y-1),MB=(x0-x,y0-y),由题知AM=2MB,∴,由于3x0-y0+5=0,∴。
化简得M的轨迹方程为9x-3y+5=0。
练习:1.将抛物线y=x2-3x按向量a平移,使顶点与原点重合,求向量a的坐标。
平面向量易错题解析1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2.你通常是如何处理有关向量的模(长度)的问题?(利用22||→→=a a ;22||→→=a a ) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“22||→→=a a ”与“22||→→=a a ”了吗?[问题]:两个向量的数量积与两个实数的乘积有什么区别?(1) 在实数中:若22||→→=a a ,且ab=0,则b=0,但在向量的数量积中,若22||→→=a a ,且22||→→=a a ,不能推出22||→→=a a .(2) 已知实数22||→→=a a ,且22||→→=a a ,则a=c,但在向量的数量积中没有22||→→=a a .(3) 在实数中有22||→→=a a ,但是在向量的数量积中22||→→=a a ,这是因为左边是与22||→→=a a 共线的向量,而右边是与22||→→=a a 共线的向量.5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点?1.向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量22||→→=a a 按向量22||→→=a a =(-1,3)平移后得到的向量是_____(答:(3,0))(2)零向量:长度为0的向量叫零向量,记作:22||→→=a a ,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与22||→→=a a 共线的单位向量是22||→→=a a );(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量22||→→=a a 、22||→→=a a 叫做平行向量,记作:22||→→=a a ∥22||→→=a a ,规定零向量和任何向量平行。
平面向量易错题解析1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗?2.你通常是如何处理有关向量的模(长度)的问题?(利用22||→→=a a ;22||y x a +=)3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算)4.你弄清“02121=+⇔⊥→→y y x x b a ”与“0//1221=-⇔→→y x y x b a ”了吗?[问题]:两个向量的数量积与两个实数的乘积有什么区别?(1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=•→→b a ,不能推出→→=0b .(2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→→→→→→=⇒•=•c a c b b a . (3) 在实数中有)()(c b a c b a ••=••,但是在向量的数量积中)()(→→→→→→••≠••c b a c b a ,这是因为左边是与→c 共线的向量,而右边是与→a 共线的向量.5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。
如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))(2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的;(3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是||AB AB ±);(4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;(5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。
提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。
的相反向量是-。
如下列命题:(1)若a b =,则a b =。
(2)两个向量相等的充要条件是它们的起点相同,终点相同。
(3)若AB DC =,则ABCD 是平行四边形。
(4)若ABCD 是平行四边形,则AB DC =。
(5)若,a b b c ==,则a c =。
(6)若//,//a b b c ,则//a c 。
其中正确的是_______(答:(4)(5))2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为(),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。
如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。
3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。
如(1)若(1,1),a b ==(1,1),(1,2)c -=-,则c =______(答:1322a b -);(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e ==D. 1213(2,3),(,)24e e =-=-(答:B );(3)已知,AD BE 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==,则BC 可用向量,a b 表示为_____(答:2433a b +);(4)已知ABC ∆中,点D 在BC 边上,且−→−−→−=DB CD 2,−→−−→−−→−+=AC s AB r CD ,则s r +的值是___(答:0)4.实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()()1,2a a λλ=当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ=,注意:λa ≠0。
5.平面向量的数量积:(1)两个向量的夹角:对于非零向量,,作,OA a OB b ==,AOB θ∠=()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π时,a ,b 垂直。
(2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ叫做a 与b 的数量积(或内积或点积),记作:a •b ,即a •b =cos a b θ。
规定:零向量与任一向量的数量积是0,注意数量积是一个实数,不再是一个向量。
如(1)△ABC 中,3||=−→−AB ,4||=−→−AC ,5||=−→−BC ,则=⋅BC AB _________(答:-9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=-,c 与d 的夹角为4π,则k 等于____(答:1);(3)已知2,5,3a b a b ===-,则a b +等于____;(4)已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____(答:30)(3)在上的投影为||cos b θ,它是一个实数,但不一定大于0。
如已知3||=→a ,5||=→b ,且12=⋅→→b a ,则向量→a 在向量→b 上的投影为______(答:512) (4)a •b 的几何意义:数量积a •b 等于a 的模||a 与b 在a 上的投影的积。
(5)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥⇔•=;②当,同向时,•=a b ,特别地,222,a a a a a a =•==;当与反向时,•=-a b ;当θ为锐角时,•>0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,•<0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件; ③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。
如(1)已知)2,(λλ=→a ,)2,3(λ=→b ,如果→a 与→b 的夹角为锐角,则λ的取值范围是______(答:43λ<-或0λ>且13λ≠);(2)已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________(答:(,)43ππ);(3)已知(cos ,sin ),(cos ,sin ),a x x b y y ==a 与b 之间有关系式3,0ka b a kb k +=->其中,①用k 表示a b ⋅;②求a b ⋅的最小值,并求此时a 与b 的夹角θ的大小(答:①21(0)4k a b k k +⋅=>;②最小值为12,60θ=)6.向量的运算: (1)几何运算:①向量加法:利用“平行四边形法则”进行,但“平行四边形法则”只适用于不共线的向量,如此之外,向量加法还可利用“三角形法则”:设,AB a BC b ==,那么向量AC 叫做a 与b 的和,即a b AB BC AC +=+=;②向量的减法:用“三角形法则”:设,,AB a AC b a b AB AC CA ==-=-=那么,由减向量的终点指向被减向量的终点。
注意:此处减向量与被减向量的起点相同。
如(1)化简:①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____(答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:22);(3)若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA -=+-,则ABC 的形状为____(答:直角三角形);(4)若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0PA BP CP ++=,设||||AP PD λ=,则λ的值为___(答:2);(5)若点O 是ABC △的外心,且0OA OB CO ++=,则ABC △的内角C 为____(答:120);(2)坐标运算:设1122(,),(,)a x y b x y ==,则:①向量的加减法运算:12(a b x x ±=±,12)y y ±。
如(1)已知点(2,3),(5,4)A B ,(7,10)C ,若()AP AB AC R λλ=+∈,则当λ=____时,点P 在第一、三象限的角平分线上(答:12);(2)已知1(2,3),(1,4),(sin ,cos )2A B AB x y =且,,(,)22x y ππ∈-,则x y += (答:6π或2π-);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是 (答:(9,1))②实数与向量的积:()()1111,,a x y x y λλλλ==。
③若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标。
如设(2,3),(1,5)A B -,且13AC AB =,3AD AB =,则C 、D 的坐标分别是__________(答:11(1,),(7,9)3-); ④平面向量数量积:1212a b x x y y •=+。
如已知向量a =(sinx ,cosx ), b =(sinx ,sinx ), c=(-1,0)。
(1)若x =3π,求向量a 、c 的夹角;(2)若x ∈]4,83[ππ-,函数b a x f ⋅=λ)(的最大值为21,求λ的值(答:1(1)150;(2)2或21--); ⑤向量的模:222222||,||a x y a a x y =+==+。