数学建模方法-主成分分析和MATLAB应用
- 格式:pdf
- 大小:147.86 KB
- 文档页数:8
主成分分析(PCA)算法介绍及matlab实现案例主成分分析经常被⽤做模型分类时特征的降维,本篇⾸先介绍PCA的步骤,并根据步骤撰写对应的MATLAB代码,最后指明使⽤PCA的步骤。
我们在做分类时,希望提取的特征能够最⼤化将数据分开,如果数据很紧密,模型就⽐较难将其分开,如果数据⽐较离散,那么就⽐较容易分开,换句话说,数据越离散,越容易分开。
那怎么让数据离散呢?离散⼜⽤什么指标衡量呢?统计学的知识告诉我们,数据越离散,⽅差越⼤。
因此,PCA的问题就变为:寻找⼀个坐标轴,使得数据在该坐标轴上⾯离散度最⾼。
也就是寻找⼀个基使得所有数据在这个基上⾯的投影值的⽅差最⼤。
那具体怎么做呢?科学家们已经帮我们做好了,如下步骤:设有m个样本,每个样本有n个特征,组成m⾏n列的矩阵1)将每⼀列特征进⾏均值化处理,特征归⼀化,也称为数据中⼼平移到坐标原点2)求取协⽅差矩阵3)求取协⽅差矩阵的特征值和特征向量4)将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵,取前K列组成系数矩阵matlab代码function [coffMatrix,lowData,eigValSort,explained,meanValue] = myPCA(data)%data为row⾏col列矩阵,row为样本数量,col为特征列,每⼀列代表⼀个特征[row , col] = size(data);% 求出每⼀列的均值meanValue = mean(data);% 将每⼀列进⾏均值化处理,特征归⼀化,数据中⼼平移到坐标原点normData = data - repmat(meanValue,[row,1]);%求取协⽅差矩阵covMat = cov(normData);%求取特征值和特征向量[eigVect,eigVal] = eig(covMat);% 将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');coffMatrix = eigVect(:,IX);% 排序后的特征向量就是新的坐标系lowData = normData * coffMatrix;% 分量得分explained = 100*B/sum(B);%特征值eigValSort = B;%%% [U,S,V] = svd(data);end我们在实际应⽤PCA的时候需要注意保留以下⼏个值。
主成分分析方法在许多实际问题中,多个变量之间就是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法就是可以实现的,这里介绍的主成分分析方法就就是综合处理这种问题的一种强有力的方法。
一、主成分分析的基本原理主成分分析就是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来瞧,这就是一种降维处理技术。
假定有n 个地理样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的地理数据矩阵:111212122212p p n n np x x x x x x X x x x ⎧⎪⎪=⎨⎪⎪⎩L L L L L LL (1)如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这就是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又就是彼此独立的。
那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm(m≤p)。
则11111221221122221122,,.........................................,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L (2)在(2)式中,系数l ij 由下列原则来决定:(1)z i 与z j (i≠j ;i,j=1,2,…,m)相互无关;(2)z 1就是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2就是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 就是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。
主成分分析报告matlab程序主成分分析报告 Matlab 程序在数据分析和处理的领域中,主成分分析(Principal Component Analysis,PCA)是一种常用且强大的工具。
它能够将多个相关变量转换为一组较少的不相关变量,即主成分,同时尽可能多地保留原始数据的信息。
在 Matlab 中,我们可以通过编写程序来实现主成分分析,这为我们的数据处理和理解提供了极大的便利。
主成分分析的基本思想是找到数据中的主要方向或模式。
这些主要方向是通过对数据的协方差矩阵进行特征值分解得到的。
最大的特征值对应的特征向量就是第一主成分的方向,第二大的特征值对应的特征向量就是第二主成分的方向,以此类推。
在 Matlab 中,我们首先需要导入数据。
假设我们的数据存储在一个名为`data` 的矩阵中,每一行代表一个观测值,每一列代表一个变量。
```matlabdata = load('your_data_filetxt');%替换为您的数据文件路径```接下来,我们需要对数据进行中心化处理,即每个变量减去其均值。
```matlabcentered_data = data repmat(mean(data), size(data, 1), 1);```然后,计算协方差矩阵。
```matlabcov_matrix = cov(centered_data);```接下来进行特征值分解。
```matlabV, D = eig(cov_matrix);````V` 是特征向量矩阵,`D` 是对角矩阵,其对角元素是特征值。
我们对特征值进行从大到小的排序,并相应地对特征向量进行重新排列。
```matlablambda, index = sort(diag(D),'descend');sorted_V = V(:, index);```此时,`sorted_V` 的每一列就是一个主成分的方向。
为了计算每个观测值在主成分上的得分,我们可以使用以下代码:```matlabprincipal_components = centered_data sorted_V;```我们还可以计算每个主成分解释的方差比例。
主成分分析法(PCA)在实际问题中.我们经常会遇到研究多个变量的问题.而且在多数情况下.多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性.势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量.既能够代表原始变量的绝大多数信息.又互不相关.并且在新的综合变量基础上.可以进一步的统计分析.这时就需要进行主成分分析。
I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法.找出几个综合变量来代替原来众多的变量.使这些综合变量能尽可能地代表原来变量的信息量.而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量.重新组合为一组新的相互无关的综合变量来代替原来变量。
通常.数学上的处理方法就是将原来的变量做线性组合.作为新的综合变量.但是这种组合如果不加以限制.则可以有很多.应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F .自然希望它尽可能多地反映原来变量的信息.这里“信息”用方差来测量.即希望)(1F Var 越大.表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的.故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息.再考虑选取2F 即第二个线性组合.为了有效地反映原来信息.1F 已有的信息就不需要再出现在2F 中.用数学语言表达就是要求0),(21 F F Cov .称2F 为第二主成分.依此类推可以构造出第三、四……第p 个主成分。
(二)主成分分析的数学模型 对于一个样本资料.观测p 个变量p x x x ,,21.n 个样品的数据资料阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x X 212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量).即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=ppp p p p pp p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠.p j i ,,2,1, =) ②1F 的方差大于2F 的方差大于3F 的方差.依次类推 ③.,2,1122221p k a a a kp k k ==+++于是.称1F 为第一主成分.2F 为第二主成分.依此类推.有第p 个主成分。
§10.利用Matlab 编程实现主成分分析1.概述Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是最有活力的软件。
它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。
它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。
Matlab 语言在各国高校与研究单位起着重大的作用。
主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
1.1主成分分析计算步骤① 计算相关系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为∑∑∑===----=nknk j kj i ki nkj kj i ki ij x x x x x x x x r 11221)()())(( (2)因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。
② 计算特征值与特征向量首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥pλλλ ;然后分别求出对应于特征值i λ的特征向量),,2,1(p i e i =。
这里要求i e =1,即112=∑=pj ij e ,其中ij e 表示向量i e 的第j 个分量。
③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为),,2,1(1p i pk ki=∑=λλ累计贡献率为),,2,1(11p i pk kik k=∑∑==λλ一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。
主成分分析法例子与matlab 中的应运可联系我邮箱 ******************1.概述主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太 多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
1.1主成分分析计算步骤① 计算相关系数矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211 (1)在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为∑∑∑===----=nk nk j kji kink j kj i kiij x xx xx x x xr 11221)()())(( (2)因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。
② 计算特征值与特征向量首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥pλλλ ;然后分别求出对应于特征值i λ的特征向量),,2,1(p i e i =。
这里要求i e =1,即112=∑=pj ij e ,其中ij e 表示向量i e 的第j 个分量。
③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为),,2,1(1p i pk ki=∑=λλ累计贡献率为),,2,1(11p i pk kik k=∑∑==λλ一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。
主成分分析法MATLAB的实现在MATLAB中,主成分分析是通过`pca`函数实现的。
`pca`函数的语法如下:```[coeff,score,latent,tsquared,explained,mu] = pca(X)```- `latent`是一个长度为$p$的向量,表示每个主成分的方差。
- `tsquared`是一个长度为$n$的向量,表示每个样本在主成分上的投影平方和。
- `explained`是一个长度为$p$的向量,表示每个主成分的方差贡献率。
- `mu`是一个长度为$p$的向量,表示每个特征的平均值。
下面我们将用一个简单的例子演示如何使用MATLAB进行主成分分析。
假设我们有一个包含4个样本和3个特征的数据集:```matlabX=[1,2,3;2,4,6;3,6,9;4,8,12];```首先,我们需要对数据进行归一化处理,以保证不同特征之间的量纲一致。
```matlabX_norm = zscore(X);```然后,我们可以使用`pca`函数进行主成分分析:```matlab[coeff, score, latent, ~, explained, ~] = pca(X_norm);```在这个示例中,我们只关心`coeff`、`score`、`latent`和`explained`这四个输出。
`coeff`给出了主成分的系数,可以用于计算每个样本在每个主成分上的投影:```matlabproj = score * coeff';````latent`表示每个主成分的方差,我们可以通过对`latent`中的元素求和来得到总方差的百分比贡献:```matlabvar_contrib = cumsum(latent) / sum(latent);````explained`向量可以直接给出每个主成分的方差贡献率。
最后,我们可以绘制一个累积方差贡献率的曲线:```matlabplot(1:length(var_contrib), var_contrib, 'ro-');ylabel('Cumulative Variance Contribution');```这样,我们就完成了主成分分析的实现。
MATLAB中的数学建模方法及应用引言数学建模作为一门重要的学科,已经成为了现代科学研究和工程实践中不可或缺的一部分。
而在数学建模过程中,数值计算和数据分析是关键步骤之一。
MATLAB作为一种强大的数学计算软件,在数学建模领域得到了广泛应用。
本文将介绍MATLAB中常用的数学建模方法,并探讨一些实际应用案例。
一、线性模型线性模型是数学建模中最基础的一种模型,它假设系统的响应是线性的。
在MATLAB中,我们可以通过矩阵运算和线性代数的知识来构建和求解线性模型。
例如,我们可以使用MATLAB中的线性回归函数来拟合一条直线到一组数据点上,从而得到一个线性模型。
二、非线性模型与线性模型相对应的是非线性模型。
非线性模型具有更强的表达能力,可以描述更为复杂的系统。
在MATLAB中,我们可以利用优化工具箱来拟合非线性模型。
例如,我们可以使用MATLAB中的非线性最小二乘函数来优化模型参数,使得模型与实际数据拟合程度最好。
三、微分方程模型微分方程模型在科学研究和工程实践中广泛应用。
在MATLAB中,我们可以使用ODE工具箱来求解常微分方程(ODE)。
通过定义初始条件和微分方程的表达式,MATLAB可以使用多种数值方法来求解微分方程模型。
例如,我们可以利用MATLAB中的欧拉法或者龙格-库塔法来求解微分方程。
四、偏微分方程模型偏微分方程(PDE)模型是描述空间上的变化的数学模型。
在MATLAB中,我们可以使用PDE工具箱来求解常见的偏微分方程模型。
通过定义边界条件和初始条件,MATLAB可以通过有限差分或有限元等方法来求解偏微分方程模型。
例如,我们可以利用MATLAB中的热传导方程求解器来模拟物体的温度分布。
五、曲线拟合与数据插值曲线拟合和数据插值是数学建模过程中常见的任务。
在MATLAB中,我们可以使用拟合和插值工具箱来实现这些任务。
通过输入一系列数据点,MATLAB可以通过多项式拟合或者样条插值等方法来生成一个模型函数。
利用Matlab进行主成分分析与因子分析主成分分析和因子分析是统计学中常用的多元数据分析方法,在数据降维和变量关系探索中有着广泛的应用。
本文将介绍如何使用Matlab进行主成分分析和因子分析,并通过实例演示其具体操作与应用。
一、主成分分析主成分分析(Principal Component Analysis,PCA)是一种降维技术,通过线性变换将原始的高维数据转换为低维空间,使得新的特征变量(主成分)能够尽量保持原始数据的信息。
主成分分析的目标是找到一个能够最大程度解释观测数据方差的新投影,使得新的特征变量之间相互独立。
在Matlab中,可以使用pca函数实现主成分分析。
以一个实例来说明:假设有一组包含5个变量和100个观测样本的数据集,我们希望进行主成分分析。
```matlabdata = rand(100, 5); % 生成100行5列的随机数据[coeff, score, latent, ~, explained] = pca(data);```在上述代码中,首先生成一个100行5列的随机数据集,然后通过pca函数进行主成分分析。
函数返回的coeff代表主成分系数矩阵,score代表样本在主成分上的投影值,latent是每个主成分的方差大小,explained表示每个主成分解释的方差百分比。
主成分分析的结果可以通过绘制累计方差解释图来进行解释。
代码如下所示:```matlabbar(explained);ylabel('方差百分比(%)');title('累计方差解释');```该代码将绘制一个柱状图,横轴代表主成分,纵轴代表方差百分比,可以直观地观察到每个主成分解释的方差比例。
二、因子分析因子分析(Factor Analysis)是一种变量关系探索方法,它可以通过线性组合的方式提取潜在变量(因子),用以解释观测变量之间的相关性。
因子分析的目标是通过最小化观测变量与因子的误差,找到最简单、最能解释变量之间关系的因子。
Matlab中的主成分分析方法与实例分析引言主成分分析(Principal Component Analysis,PCA)是一种常用的多变量分析方法,广泛应用于数据降维、特征提取和可视化等领域。
在Matlab中,通过调用PCA函数,可以方便地实现主成分分析。
本文将介绍Matlab中的主成分分析方法,并通过实例分析展示其应用。
一、主成分分析方法概述主成分分析通过线性变换将原始数据转换为新的坐标系,使得转换后的变量彼此之间不相关。
在新的坐标系中,第一个主成分具有最大的方差,第二个主成分具有次大的方差,并且与第一个主成分无关,以此类推。
主成分分析的基本思想是将高维数据投影到低维空间上,保留数据中所包含的主要信息,尽可能地减少信息损失。
二、Matlab中的主成分分析函数在Matlab中,通过调用pca函数可以进行主成分分析。
该函数的基本用法如下:\[coeff, score, latent, tsquared, explained, mu] = pca(X)\]其中,X代表待分析的数据矩阵,coeff是主成分系数矩阵,score是数据在主成分上的投影,latent是各主成分的方差,tsquared是数据的Hotelling T平方统计量,explained是各主成分的方差贡献率,mu是数据的均值。
三、主成分分析的实例分析为了进一步说明主成分分析的应用,我们将通过一个实例来展示其具体步骤。
假设我们有一个数据集,包含了100个样本和5个特征。
首先,我们将数据加载到Matlab中,并进行标准化处理,即将每一列的均值变为0,方差变为1。
这样做可以消除不同特征之间的量纲差异。
接下来,我们调用pca函数对标准化后的数据进行主成分分析。
根据explained 中各主成分的方差贡献率,我们可以选择保留的主成分个数。
通常,我们会选择方差贡献率大于一定阈值(如80%)的主成分。
在实际应用中,保留的主成分个数需要根据具体问题进行调整。
MATLAB主成分引言主成分分析(Principal Component Analysis,简称PCA)是一种常用的数据降维技术,用于降低数据的维度并保留数据的主要信息。
在MATLAB中,我们可以使用内置的函数和工具箱来实现主成分分析,并应用于各种领域,如图像处理、模式识别和数据挖掘等。
本文将详细介绍MATLAB中主成分分析的原理、应用和实现方法。
二级标题1:主成分分析原理主成分分析的目标是找到一组新的变量,称为主成分,它们是原始数据中变化最大的方向。
主成分是原始变量的线性组合,通过选择合适的权重系数,可以使得主成分能够尽可能地解释原始数据的方差。
主成分分析的基本原理可以归纳为以下几个步骤:三级标题1:数据标准化在进行主成分分析之前,通常需要对数据进行标准化处理,以保证各个变量具有相同的尺度。
常用的标准化方法包括零均值化和单位方差化。
三级标题2:协方差矩阵计算主成分分析的关键是计算数据的协方差矩阵。
协方差矩阵描述了数据之间的相关性,它的特征值和特征向量可以帮助我们找到主成分。
三级标题3:特征值分解通过对协方差矩阵进行特征值分解,我们可以得到特征值和对应的特征向量。
特征值表示了主成分的重要性,特征向量表示了主成分的方向。
三级标题4:选择主成分根据特征值的大小,我们可以选择最大的几个特征值对应的特征向量作为主成分。
通常我们会选择能够解释大部分方差的主成分。
二级标题2:MATLAB中的主成分分析函数MATLAB提供了一些内置的函数和工具箱,用于进行主成分分析。
下面介绍几个常用的函数:三级标题1:pca函数pca函数是MATLAB中的主成分分析函数,它可以直接计算数据的主成分和主成分的方差解释比例。
使用该函数,我们可以轻松地进行主成分分析,并获取主成分的相关信息。
三级标题2:princomp函数princomp函数也是MATLAB中的主成分分析函数,它与pca函数的功能类似,但提供了更多的参数选项,可以进行更灵活的主成分分析。