MATLAB主成分分析法
- 格式:doc
- 大小:118.00 KB
- 文档页数:3
主成分分析(PCA)算法介绍及matlab实现案例主成分分析经常被⽤做模型分类时特征的降维,本篇⾸先介绍PCA的步骤,并根据步骤撰写对应的MATLAB代码,最后指明使⽤PCA的步骤。
我们在做分类时,希望提取的特征能够最⼤化将数据分开,如果数据很紧密,模型就⽐较难将其分开,如果数据⽐较离散,那么就⽐较容易分开,换句话说,数据越离散,越容易分开。
那怎么让数据离散呢?离散⼜⽤什么指标衡量呢?统计学的知识告诉我们,数据越离散,⽅差越⼤。
因此,PCA的问题就变为:寻找⼀个坐标轴,使得数据在该坐标轴上⾯离散度最⾼。
也就是寻找⼀个基使得所有数据在这个基上⾯的投影值的⽅差最⼤。
那具体怎么做呢?科学家们已经帮我们做好了,如下步骤:设有m个样本,每个样本有n个特征,组成m⾏n列的矩阵1)将每⼀列特征进⾏均值化处理,特征归⼀化,也称为数据中⼼平移到坐标原点2)求取协⽅差矩阵3)求取协⽅差矩阵的特征值和特征向量4)将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵,取前K列组成系数矩阵matlab代码function [coffMatrix,lowData,eigValSort,explained,meanValue] = myPCA(data)%data为row⾏col列矩阵,row为样本数量,col为特征列,每⼀列代表⼀个特征[row , col] = size(data);% 求出每⼀列的均值meanValue = mean(data);% 将每⼀列进⾏均值化处理,特征归⼀化,数据中⼼平移到坐标原点normData = data - repmat(meanValue,[row,1]);%求取协⽅差矩阵covMat = cov(normData);%求取特征值和特征向量[eigVect,eigVal] = eig(covMat);% 将特征向量按对应特征值⼤⼩从上到下按⾏排列成矩阵[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');coffMatrix = eigVect(:,IX);% 排序后的特征向量就是新的坐标系lowData = normData * coffMatrix;% 分量得分explained = 100*B/sum(B);%特征值eigValSort = B;%%% [U,S,V] = svd(data);end我们在实际应⽤PCA的时候需要注意保留以下⼏个值。
主成分分析方法在许多实际问题中,多个变量之间就是具有一定的相关关系的。
因此,我们就会很自然地想到,能否在各个变量之间相关关系研究的基础上,用较少的新变量代替原来较多的变量,而且使这些较少的新变量尽可能多地保留原来较多的变量所反映的信息?事实上,这种想法就是可以实现的,这里介绍的主成分分析方法就就是综合处理这种问题的一种强有力的方法。
一、主成分分析的基本原理主成分分析就是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来瞧,这就是一种降维处理技术。
假定有n 个地理样本,每个样本共有p 个变量描述,这样就构成了一个n×p 阶的地理数据矩阵:111212122212p p n n np x x x x x x X x x x ⎧⎪⎪=⎨⎪⎪⎩L L L L L LL (1)如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p 维空间中加以考察,这就是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又就是彼此独立的。
那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。
如果记原来的变量指标为x 1,x 2,…,x p ,它们的综合指标——新变量指标为z 1,z 2,…,zm(m≤p)。
则11111221221122221122,,.........................................,p p p p m m m mp p z l x l x l x z l x l x l x z l x l x l x =+++⎧⎪=+++⎪⎨⎪⎪=+++⎩L L L (2)在(2)式中,系数l ij 由下列原则来决定:(1)z i 与z j (i≠j ;i,j=1,2,…,m)相互无关;(2)z 1就是x 1,x 2,…,x p 的一切线性组合中方差最大者;z 2就是与z 1不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者;……;z m 就是与z 1,z 2,……z m-1都不相关的x 1,x 2,…,x p 的所有线性组合中方差最大者。
matlab主成分分析主成分分析(PrincipalComponentAnalysis,PCA)是一种用来降低复杂数据集的维度的常用统计工具。
它的主要目的是把一组可能相关的变量(比如一组测量的实验数据)降维到一个更低维的表示中,从而找出数据中有意义的规律。
主成分分析可以从大量变量中选择出主导变量,可以用来剔除噪声,消除数据间的相关性,提取隐藏变量,简化数据集,以及建立统计模型。
Matlab一种常用的计算机科学编程语言,拥有强大的数学和图形处理功能,能够解决各种复杂的计算问题。
Matlab内置函数和第三方工具箱可以被用来实现主成分分析。
Matlab 中原生的主成分分析实现可以分为两步:一是数据准备,二是主成分分析。
数据准备是主成分分析过程中非常重要的一步,可以使用Matlab 中的函数实现。
主要包括提取变量、清洗数据和数据标准化三个部分。
提取变量可以通过从原始数据中选择需要的变量来实现,即将原始数据拟合到需要的维度中;清洗数据是指将原始数据中含有错误或者不可信的数据剔除;数据标准化则是指将原始数据的连续型变量转换成统一的数值范围,以便于分析。
主成分分析是从输入数据中学习到一组新的变量,这些变量能够说明输入数据中大部分的变量变化。
Matlab中主成分分析可以通过调用标准统计工具箱(Statistics and Machine Learning Toolbox)中的pca函数来实现,该函数能够从原始数据中抽取有意义的变量。
通过pca函数,可以在输入数据中学习到有意义的变量,并得到它们的系数和贡献率,以此说明主成分分析后数据的变化程度。
主成分分析的应用非常广泛,涉及到很多不同的领域。
如在统计学中用以进行常规数据分析,在计算机视觉中用来进行图像分析,在生物学中用于基因表达等。
Matlab供了强大的数学和图形处理能力,能够满足上述应用领域的需求,使用者可以通过原生函数和第三方工具箱快捷的实现主成分分析。
当然,主成分分析也有一些缺点,如把复杂的变量降维可能会损失一些原始数据的信息,也存在隐藏的偏差,因而也会影响分析的准确性。
主成分分析报告matlab程序主成分分析报告 Matlab 程序在数据分析和处理的领域中,主成分分析(Principal Component Analysis,PCA)是一种常用且强大的工具。
它能够将多个相关变量转换为一组较少的不相关变量,即主成分,同时尽可能多地保留原始数据的信息。
在 Matlab 中,我们可以通过编写程序来实现主成分分析,这为我们的数据处理和理解提供了极大的便利。
主成分分析的基本思想是找到数据中的主要方向或模式。
这些主要方向是通过对数据的协方差矩阵进行特征值分解得到的。
最大的特征值对应的特征向量就是第一主成分的方向,第二大的特征值对应的特征向量就是第二主成分的方向,以此类推。
在 Matlab 中,我们首先需要导入数据。
假设我们的数据存储在一个名为`data` 的矩阵中,每一行代表一个观测值,每一列代表一个变量。
```matlabdata = load('your_data_filetxt');%替换为您的数据文件路径```接下来,我们需要对数据进行中心化处理,即每个变量减去其均值。
```matlabcentered_data = data repmat(mean(data), size(data, 1), 1);```然后,计算协方差矩阵。
```matlabcov_matrix = cov(centered_data);```接下来进行特征值分解。
```matlabV, D = eig(cov_matrix);````V` 是特征向量矩阵,`D` 是对角矩阵,其对角元素是特征值。
我们对特征值进行从大到小的排序,并相应地对特征向量进行重新排列。
```matlablambda, index = sort(diag(D),'descend');sorted_V = V(:, index);```此时,`sorted_V` 的每一列就是一个主成分的方向。
为了计算每个观测值在主成分上的得分,我们可以使用以下代码:```matlabprincipal_components = centered_data sorted_V;```我们还可以计算每个主成分解释的方差比例。
主成分分析法(PCA)在实际问题中.我们经常会遇到研究多个变量的问题.而且在多数情况下.多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性.势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量.既能够代表原始变量的绝大多数信息.又互不相关.并且在新的综合变量基础上.可以进一步的统计分析.这时就需要进行主成分分析。
I. 主成分分析法(PCA)模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法.找出几个综合变量来代替原来众多的变量.使这些综合变量能尽可能地代表原来变量的信息量.而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量.重新组合为一组新的相互无关的综合变量来代替原来变量。
通常.数学上的处理方法就是将原来的变量做线性组合.作为新的综合变量.但是这种组合如果不加以限制.则可以有很多.应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F .自然希望它尽可能多地反映原来变量的信息.这里“信息”用方差来测量.即希望)(1F Var 越大.表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的.故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息.再考虑选取2F 即第二个线性组合.为了有效地反映原来信息.1F 已有的信息就不需要再出现在2F 中.用数学语言表达就是要求0),(21 F F Cov .称2F 为第二主成分.依此类推可以构造出第三、四……第p 个主成分。
(二)主成分分析的数学模型 对于一个样本资料.观测p 个变量p x x x ,,21.n 个样品的数据资料阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x X 212222111211()p x x x ,,21=其中:p j x x x x nj j j j ,2,1,21=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量).即⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=ppp p p p pp p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为:p jp j j j x x x F ααα+++= 2211p j ,,2,1 =要求模型满足以下条件:①j i F F ,互不相关(j i ≠.p j i ,,2,1, =) ②1F 的方差大于2F 的方差大于3F 的方差.依次类推 ③.,2,1122221p k a a a kp k k ==+++于是.称1F 为第一主成分.2F 为第二主成分.依此类推.有第p 个主成分。
§9. 利用Matlab 和SPSS 实现主成分分析1.直接调用Matlab 软件实现在软件Matlab 中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab 中自带程序实现。
通过直接调用Matlab 中的程序可以实现主成分分析:)(]2,var ,,[X princomp t iance score pc =式中:X 为输入数据矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m x x x x x x x x x X 212222111211(一般要求n>m )输出变量:①pc 主分量f i 的系数,也叫因子系数;注意:pc T pc=单位阵②score 是主分量下的得分值;得分矩阵与数据矩阵X 的阶数是一致的; ③variance 是score 对应列的方差向量,即A 的特征值;容易计算方差所占的百分比percent-v = 100*variance/sum(variance); ④t2表示检验的t2-统计量(方差分析要用) 计算过程中应用到计算模型:ξ+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡m T p x x x A f f f 2121 (要求p<m )例:表1为某地区农业生态经济系统各区域单元相关指标数据,运用主成分分析方法可以用更少的指标信息较为精确地描述该地区农业生态经济的发展状况。
表1 某农业生态经济系统各区域单元的有关数据样本序号 x 1:人口密度(人/km 2) x 2:人均耕地面积(ha) x 3:森林覆盖率(%) x 4:农民人均纯收入(元/人) x 5:人均粮食产量 (kg/人) x 6:经济作物占农作物播面比例(%)x 7:耕地占土地面积比率(%) x 8:果园与林地面积之比(%) x 9:灌溉田占耕地面积之比(%)1 363.912 0.352 16.101 192.11 295.34 26.724 18.492 2.231 26.262 2 141.503 1.684 24.301 1 752.35 452.26 32.314 14.464 1.455 27.066 3 100.695 1.067 65.601 1 181.54 270.12 18.266 0.162 7.474 12.489 4 143.739 1.336 33.205 1 436.12 354.26 17.486 11.805 1.892 17.534 5 131.412 1.623 16.607 1 405.09 586.59 40.683 14.401 0.303 22.932 6 68.337 2.032 76.204 1 540.29 216.39 8.128 4.065 0.011 4.861 7 95.416 0.801 71.106 926.35 291.52 8.135 4.063 0.012 4.862 8 62.901 1.652 73.307 1 501.24 225.25 18.352 2.645 0.034 3.2019 86.624 0.841 68.904 897.36 196.37 16.861 5.176 0.055 6.167 10 91.394 0.812 66.502 911.24 226.51 18.279 5.643 0.076 4.477 11 76.912 0.858 50.302 103.52 217.09 19.793 4.881 0.001 6.165 12 51.274 1.041 64.609 968.33 181.38 4.005 4.066 0.015 5.402 13 68.831 0.836 62.804 957.14 194.04 9.110 4.484 0.002 5.790 14 77.301 0.623 60.102 824.37 188.09 19.409 5.721 5.055 8.413 15 76.948 1.022 68.001 1 255.42 211.55 11.102 3.133 0.010 3.425 16 99.265 0.654 60.702 1 251.03 220.91 4.383 4.615 0.011 5.593 17 118.505 0.661 63.304 1 246.47 242.16 10.706 6.053 0.154 8.701 18 141.473 0.737 54.206 814.21 193.46 11.419 6.442 0.012 12.945 19 137.761 0.598 55.901 1 124.05 228.44 9.521 7.881 0.069 12.654 20 117.612 1.245 54.503 805.67 175.23 18.106 5.789 0.048 8.461 21122.7810.731 49.102 1 313.11 236.29 26.724 7.162 0.092 10.078对于上述例子,Matlab 进行主成分分析,可以得到如下结果。
MATLAB中的数据降维与主成分分析方法导言:数据降维是一种常见的数据预处理技术,通过减少数据特征的数量,将高维数据转化为低维数据,并保留原始数据的重要信息。
主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维方法,它通过线性变换将高维数据映射到低维空间,使得数据在新的坐标系下具有最大的方差。
本文将介绍MATLAB中的数据降维与主成分分析方法,并探讨其应用领域和局限性。
一、MATLAB中的数据降维函数1.1 主成分分析函数pca在MATLAB中,数据降维与主成分分析可以通过内置函数pca实现。
pca函数的基本语法如下:```matlab[coeff,score,latent,tsquared,explained] = pca(X)```其中,X是一个m×n的矩阵,其中每一行表示一个样本,每一列表示一个特征。
函数返回值中,coeff是一个n×n的矩阵,表示原始特征与主成分之间的线性关系;score是一个m×n的矩阵,表示样本在主成分上的投影;latent是一个n×1的向量,表示每个主成分的方差贡献程度;explained是一个n×1的向量,表示每个主成分的方差解释程度。
1.2 主成分分析函数pcares除了pca函数外,MATLAB还提供了另一个主成分分析函数pcares,用于计算主成分分析的残差矩阵。
pcares函数的基本语法如下:```matlab[R,SSM,SSE] = pcares(X,m)```其中,X是一个m×n的矩阵,m表示样本数,n表示特征数。
R是一个m×n的矩阵,表示主成分分析的残差矩阵;SSM是一个n×1的向量,表示主成分模型的平方和;SSE是一个n×1的向量,表示残差模型的平方和。
二、主成分分析方法的应用主成分分析方法在数据降维领域有广泛的应用。
主成分分析法MATLAB的实现在MATLAB中,主成分分析是通过`pca`函数实现的。
`pca`函数的语法如下:```[coeff,score,latent,tsquared,explained,mu] = pca(X)```- `latent`是一个长度为$p$的向量,表示每个主成分的方差。
- `tsquared`是一个长度为$n$的向量,表示每个样本在主成分上的投影平方和。
- `explained`是一个长度为$p$的向量,表示每个主成分的方差贡献率。
- `mu`是一个长度为$p$的向量,表示每个特征的平均值。
下面我们将用一个简单的例子演示如何使用MATLAB进行主成分分析。
假设我们有一个包含4个样本和3个特征的数据集:```matlabX=[1,2,3;2,4,6;3,6,9;4,8,12];```首先,我们需要对数据进行归一化处理,以保证不同特征之间的量纲一致。
```matlabX_norm = zscore(X);```然后,我们可以使用`pca`函数进行主成分分析:```matlab[coeff, score, latent, ~, explained, ~] = pca(X_norm);```在这个示例中,我们只关心`coeff`、`score`、`latent`和`explained`这四个输出。
`coeff`给出了主成分的系数,可以用于计算每个样本在每个主成分上的投影:```matlabproj = score * coeff';````latent`表示每个主成分的方差,我们可以通过对`latent`中的元素求和来得到总方差的百分比贡献:```matlabvar_contrib = cumsum(latent) / sum(latent);````explained`向量可以直接给出每个主成分的方差贡献率。
最后,我们可以绘制一个累积方差贡献率的曲线:```matlabplot(1:length(var_contrib), var_contrib, 'ro-');ylabel('Cumulative Variance Contribution');```这样,我们就完成了主成分分析的实现。
利用Matlab进行主成分分析与因子分析主成分分析和因子分析是统计学中常用的多元数据分析方法,在数据降维和变量关系探索中有着广泛的应用。
本文将介绍如何使用Matlab进行主成分分析和因子分析,并通过实例演示其具体操作与应用。
一、主成分分析主成分分析(Principal Component Analysis,PCA)是一种降维技术,通过线性变换将原始的高维数据转换为低维空间,使得新的特征变量(主成分)能够尽量保持原始数据的信息。
主成分分析的目标是找到一个能够最大程度解释观测数据方差的新投影,使得新的特征变量之间相互独立。
在Matlab中,可以使用pca函数实现主成分分析。
以一个实例来说明:假设有一组包含5个变量和100个观测样本的数据集,我们希望进行主成分分析。
```matlabdata = rand(100, 5); % 生成100行5列的随机数据[coeff, score, latent, ~, explained] = pca(data);```在上述代码中,首先生成一个100行5列的随机数据集,然后通过pca函数进行主成分分析。
函数返回的coeff代表主成分系数矩阵,score代表样本在主成分上的投影值,latent是每个主成分的方差大小,explained表示每个主成分解释的方差百分比。
主成分分析的结果可以通过绘制累计方差解释图来进行解释。
代码如下所示:```matlabbar(explained);ylabel('方差百分比(%)');title('累计方差解释');```该代码将绘制一个柱状图,横轴代表主成分,纵轴代表方差百分比,可以直观地观察到每个主成分解释的方差比例。
二、因子分析因子分析(Factor Analysis)是一种变量关系探索方法,它可以通过线性组合的方式提取潜在变量(因子),用以解释观测变量之间的相关性。
因子分析的目标是通过最小化观测变量与因子的误差,找到最简单、最能解释变量之间关系的因子。
§10.利用Matlab 编程实现主成分分析1.概述Matlab 语言是当今国际上科学界 <尤其是自动控制领域> 最具影响力、也是最有活力的软件。
它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。
它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。
Matlab 语言在各国高校与研究单位起着重大的作用。
主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
1.1主成分分析计算步骤① 计算相关系数矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211〔1在〔,r ij 〔i,j=1,2,…,p 为原变量的xi 与xj 之间的相关系数,其计算公式为∑∑∑===----=n k nk j kj i ki nk j kj i kiij x x x x x x x xr 11221)()())(( 〔2因为R 是实对称矩阵〔即r ij =r ji ,所以只需计算上三角元素或下三角元素即可。
② 计算特征值与特征向量首先解特征方程0=-R I λ,通常用雅可比法〔Jacobi 求出特征值),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥pλλλ ;然后分别求出对应于特征值i λ的特征向量),,2,1(p i e i =。
这里要求i e =1,即112=∑=pj ij e ,其中ije 表示向量i e 的第j 个分量。
③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 累计贡献率为一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m 〔m ≤p 个主成分。
④ 计算主成分载荷 其计算公式为),,2,1,(),(p j i e x z p l ij i j i ij ===λ 〔3得到各主成分的载荷以后,还可以按照〔,得到各主成分的得分⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nm n n m m z z z z z z z z z Z 212222111211〔42.程序结构及函数作用在软件Matlab 中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab 种自带程序实现。
MATLAB主成分分析1.princomp功能:主成分分析格式:PC=princomp(X)[PC,SCORE,latent,tsquare]=princomp(X)说明:[PC,SCORE,latent,tsquare]=princomp(X)对数据矩阵X进行主成分分析,给出各主成分(PC)、所谓的Z-得分(SCORE)、X的方差矩阵的特征值(latent)和每个数据点的HotellingT2统计量(tsquare)。
2.pcacov功能:运用协方差矩阵进行主成分分析格式:PC=pcacov(X)[PC,latent,explained]=pcacov(X)说明:[PC,latent,explained]=pcacov(X)通过协方差矩阵X进行主成分分析,返回主成分(PC)、协方差矩阵X的特征值(latent)和每个特征向量表征在观测量总方差中所占的百分数(explained)。
3.pcares功能:主成分分析的残差格式:residuals=pcares(X,ndim)说明:pcares(X,ndim)返回保留X的ndim个主成分所获的残差。
注意,ndim是一个标量,必须小于X的列数。
而且,X是数据矩阵,而不是协方差矩阵。
4.barttest功能:主成分的巴特力特检验格式:ndim=barttest(X,alpha)[ndim,prob,chisquare]=barttest(X,alpha)说明:巴特力特检验是一种等方差性检验。
ndim=barttest(X,alpha)是在显著性水平alpha下,给出满足数据矩阵X的非随机变量的n维模型,ndim即模型维数,它由一系列假设检验所确定,ndim=1表明数据X对应于每个主成分的方差是相同的;ndim=2表明数据X对应于第二成分及其余成分的方差是相同的。
第一种方法:用matlab的各个函数组合得到的结果:clc;clear;X=[28 1 1100 5 0;5 2 1200 1 2;10 9 1010 2 0;4 8 700 6 2;31 2 200 7 2;4 1 1100 0.5 1;5 1 1100 3 0;26 7 400 6 2];平均值 p=mean(X); %每一列的pq=repmat(p,8,1);b=std(X); %每一列的标准差bq=repmat(b,8,1);ding = (X-pq)./bq; %标准化矩阵dd =cov(ding); %协方差计算 or dd=ding*ding/13 [V,D]=eig(dd); %计算特征值和特征向量,V是特征向量,D是特征值 W = [0.2004 0.5401 0.4460; 0.5989 -0.7269 0.1889;0.0635 0.0608 -0.5782;0.1858 0.1340 0.5507;-0.7500 -0.3978 0.3575]; % 前三个>85%,得到的主成分系数,Y= ding *WY =0.7189 1.7805 -0.1687-1.2866 -0.4645 -1.28151.5565 -0.8752 -0.92440.0146 -1.5758 0.8769-0.5768 0.8649 2.5466-0.7725 0.0577 -1.68920.1863 0.6378 -1.4635 0.1594 -0.4250 2.1036第二种方法:用matlab的自带函数princomp得到的结果:[pc,score,latent,tsquare] = princomp(X); pc =-0.0249 0.9933 0.0934 -0.0575 0.0250-0.0028 -0.0967 0.9941 -0.0413 0.02790.9997 0.0247 0.0053 0.0037 0.0030-0.0055 0.0496 0.0421 0.9884 0.1372-0.0016 -0.0293 -0.0362 -0.1344 0.9898为什么结果不一样呢,第三种方法——用spss软件来做,结果让我更加不解,我迷茫了第一种和第二种方法应该能得到相同结果1、你第一种方法中得到的特征向量矩阵是主成分系数(标准化后变量的主成分系数),而最后计算的矩阵Y是每个样本数据的主成分得分;2、第二种方法应该对标准化矩阵用princomp处理,对原始数据直接用当然得到不同的结果3、[pc,score,latent,tsquare] = princomp()结果中pc是主成分系数,latent是特征值,应该和第一种方法中得到的特征向量和特征值相同;score是主成分得分,应该和Y相同。
Matlab中的主成分分析方法与实例分析引言主成分分析(Principal Component Analysis,PCA)是一种常用的多变量分析方法,广泛应用于数据降维、特征提取和可视化等领域。
在Matlab中,通过调用PCA函数,可以方便地实现主成分分析。
本文将介绍Matlab中的主成分分析方法,并通过实例分析展示其应用。
一、主成分分析方法概述主成分分析通过线性变换将原始数据转换为新的坐标系,使得转换后的变量彼此之间不相关。
在新的坐标系中,第一个主成分具有最大的方差,第二个主成分具有次大的方差,并且与第一个主成分无关,以此类推。
主成分分析的基本思想是将高维数据投影到低维空间上,保留数据中所包含的主要信息,尽可能地减少信息损失。
二、Matlab中的主成分分析函数在Matlab中,通过调用pca函数可以进行主成分分析。
该函数的基本用法如下:\[coeff, score, latent, tsquared, explained, mu] = pca(X)\]其中,X代表待分析的数据矩阵,coeff是主成分系数矩阵,score是数据在主成分上的投影,latent是各主成分的方差,tsquared是数据的Hotelling T平方统计量,explained是各主成分的方差贡献率,mu是数据的均值。
三、主成分分析的实例分析为了进一步说明主成分分析的应用,我们将通过一个实例来展示其具体步骤。
假设我们有一个数据集,包含了100个样本和5个特征。
首先,我们将数据加载到Matlab中,并进行标准化处理,即将每一列的均值变为0,方差变为1。
这样做可以消除不同特征之间的量纲差异。
接下来,我们调用pca函数对标准化后的数据进行主成分分析。
根据explained 中各主成分的方差贡献率,我们可以选择保留的主成分个数。
通常,我们会选择方差贡献率大于一定阈值(如80%)的主成分。
在实际应用中,保留的主成分个数需要根据具体问题进行调整。