最短路径问题
- 格式:doc
- 大小:352.00 KB
- 文档页数:4
专题—最短路径问题一.选择题(共7小题)1.如图所示,四边形OABC为正方形,边长为3,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(1,0),P是OB上的一动点,则“求PD+PA和的最小值”要用到的数理依据是()A.“两点之间,线段最短”B.“轴对称的性质”C.“两点之间,线段最短”以及“轴对称的性质”D.以上答案都不正确解:∵四边形OABC为正方形,∴A、C两点关于直线OB对称(轴对称的性质),∴连接CD,则CD即为PD+PA和的最小值(两点之间,线段最短),∴用到的数理依据是“两点之间,线段最短”以及“轴对称的性质”.故选:C.2.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P是x轴上使得|PA﹣PB|的值最大的点,Q是y轴上使得QA+QB的值最小的点,则OP•OQ=()A.5B.4C.3D.2解:连接AB并延长交x轴于点P,由三角形的三边关系可知,点P即为x轴上使得|PA﹣PB|的值最大的点,∵点B是矩形ACPD的中心,∴点P即为AB延长线上的点,此时P(3,0)即OP=3;作A点关于y轴的对称点A′连接A′B交y轴于点Q,则A′B即为QA+QB的最小值,∵A′(﹣1,2),B(2,1),设过A′B的直线为:y=kx+b,则,解得,∴Q(0,),即OQ=,∴OP•OQ=3×=5.故选:A.3.已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40°B.100°C.140°D.50°解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故选:B.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF 分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.5.如图,点P是∠AOB内的一点,且OP=5,且∠AOB=30°,点M、N分别是射线OA、OB上的动点,则△PMN周长的最小值为()A.5B.6C.8D.10解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=5.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=5,故选:A.6.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B 的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()A.B.C.D.解:根据垂线段最短,得出MN是河的宽时,MN最短,即MN⊥直线a(或直线b),只要AM+BN最短就行,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河的b边岸于N,作MN垂直于河岸交a边的岸于M点,所得MN即为所求.故选:D.二.填空题(共9小题)7.如图所示,点A在直线a外,点B在直线a上,在直线a上找一点P,使AP+BP 最小的点P有1个,其位置是B点.解:由题意得使AP+BP最小的点P有1个,其位置是B点,故答案为:1,B点.8.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N为OB上一动点,当PM+PN最小,∠PMO=45°.解:∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.9.四边形ABCD中,∠BAD=136°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为88度.解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD 分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=136°,∴∠A′+∠A″=180°﹣∠BAD=44°∴∠AMN+∠ANM=2×44°=88°.故答案为:8810.如图,∠AOB=30°,点P是它内部一点,OP=2,如果点Q、点R分别是OA、OB上的两个动点,那么PQ+QR+RP的最小值是2.解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA 交于点Q,与OB交于点R,此时△PQR的周长最小.从图上可看出△PQR的周长就是P1P2的长,∵∠AOB=30°,∴∠P1OP2=60°.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2.∴△PQR周长的最小值是2.即PQ+QR+RP的最小值是2故答案为:2.11.已知:在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是CD和BC上的点.求作:点M、N,使△AMN的周长最小.作法:如图2,(1)延长AD,在AD的延长线上截取DA´=DA;(2)延长AB,在AB的延长线上截取BA″=BA;(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.请回答:这种作法的依据是①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短.解:根据线段垂直平分线的性质和两点之间线段最短作图;故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);③两点之间线段最短12.如图,在四边形ABCD中,∠DAB=130°,∠D=∠B=90°,点M,N分别是CD,BC上两个动点,当△AMN的周长最小时,∠AMN+∠ANM的度数为100°.解:如图,作点A关于BC的对称点A′,关于CD的对称点A″,连接A′A″与BC、CD的交点即为所求的点M、N,∵∠BAD=130°,∠B=∠D=90°,∴∠A′+∠A″=180°﹣∠130°=50°,由轴对称的性质得:∠A′=∠A′AM,∠A″=∠A″AN,∴∠AMN+∠ANM=2(∠A′+∠A″)=2×50°=100°.故答案为:100°13.如图,△ABC中,∠A=15°,AB是定长.点D,E分别在AB,AC上运动,连结BE,ED.若BE+ED的最小值是2,则AB的长是4.解;作点B关于AC的对称点B',过B作BF⊥AB',∵点B关于AC的对称点B',∴∠B'AE=∠CAB=15°,∵BF⊥AB',∵BF即为BE+ED的最小值,即BF=2,∴AB=4,故答案为:414.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR周长最小,则最小周长是12解:设∠PO A=θ,则∠POB=30°﹣θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM.作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN.连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形.∵OA是PE的垂直平分线,∴EQ=QP;同理,OB是PF的垂直平分线,∴FR=RP,∴△PQR的周长=EF.∵OE=OF=OP=12,且∠EOF=∠EOP+∠POF=2θ+2(30°﹣θ)=60°,∴△EOF是正三角形,∴EF=12,即在保持OP=12的条件下△PQR的最小周长为12.故答案为:12三.解答题(共9小题)15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B两村供水.若铺设水管的工程费用为每千米1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.解:连接AB,作AF⊥BD于点F,则BF=BD﹣AE=0.5km,∴AF=1.2,作A关于直线L的对称点A′,连接A′B到L交于点C,则C点为水厂所在地,如图,过B作BD⊥L于D,作A′G⊥BD于点G,∵BG=BD+DG=3.5,A′G=AF=1.2,CD=2÷3.5×1.2=,EC=1.2﹣=,∴AC+BC=A′C+BC=A′B=3.7km,∴总费用为3.7×1.8=6.66万元.16.如图,一个人从C点骑马出发到D点,但他必须先到河岸边l1的P1点去让马饮水,然后再到河岸边l2的P2点去,再次让马饮水,最后骑马到D点,他应如何选择饮水点P1,P2.才能使所走的路程CP1+P1P2+P2D最短?解:如图,作点C关于l1的对称点C′,点D关于l2的对称点D′,连接C′D′,交于l1,l2于点P1,点P2,连接CP1,P1P2,P2D,所以路程CP1+P1P2+P2D最短.17.八(二)班举行元旦文艺晚会,桌子摆成两条直线(如图中所示的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的小花先拿桔子再拿糖果,然后送给D处的小红,最后回到C处.请你帮助她设计一条行走路线,使其所走的总路程最短(尺规作图,并写出作法,不需说明理由)解:如图所示,小花所走的行走路线为:CM﹣MN﹣ND,所走的总路程最短.18.尺规作图:(1)如图①,江边A,B两个村庄准备集资建造一个自来水厂,请你确定一个厂址,使得从自来水厂到A,B两村所用的水管最短.(2)如图②,P是∠A0B内部一点,试在角的两边上各找一个点E,F,使△PEF 的周长最小.解:(1)如图①,过A点关于江边的对称点C,再连接CB,BC与江边的交点Q 即为自来水厂厂址;(2)如图②,作点P关于OA对称的点M,作点P关于OB对称的点N,连接MN,与OA交于点E,与OB交于点F,此时△PEF的周长最小.19.如图,为了做好2013年沈阳全运会起降的交通安全工作,某交警执勤小队从A处出发,先到公路l1上设卡检查,再到公路l2上设卡检查,最后再到B 地执行任务,他们应如何走才能使总路程最短?【解答】解:如图所示,交警小队沿A→C→D→B走才能使总路程最短.20.如图所示,A、B为公路l同旁的两个村庄,在l上找一点P.(1)当P到A、B等距离时,P在何处?(2)当P到两村距离之和最小时,P在何处?解:(1)因为点P到两个村庄A,B的距离相等,所以P应建在AB的垂直平分线和l的交点处,理由是到线段两个端点距离相等的点在线段的垂直平分线上,如图1:,(2)作点A关于直线l的对称点,连接A′B交直线于点P,点P就是设置的点,如图2:21.如图,A、B两城市之间有一条国道,国道的宽为a,现要在国道上修建一座垂直于国道的立交桥,使通过A、B两城市路程最近,请你设计建桥的位置,并说明理论依据.解:如图,过点B作BC垂直国道,且使BC等于国道宽a,连接AC交国道边缘与M,作MN∥BC即可.理由:两点之间线段最短.22.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处才能使从A到B的路径AMNB最短?在下图中画出路径,不写画法但要说明理由.(假定河的两岸是平行的直线,桥要与河垂直.)解:如图,作BB'垂直于河岸GH,使BB′等于河宽,连接AB′,与河岸EF相交于M,作MN⊥GH,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故NB=MB′.根据“两点之间线段最短”,AB′最短,即AM+BN最短.故桥建立在MN处符合题意.23.如图,平面上有直线a及直线a外的三点A、B、P.(1)过点P画一条直线m,使得m∥a;(2)若直线a、m表示一条河的两岸,现要在这条河上建一座桥(桥与岸垂直),使得从村庄A经桥过河到村庄B的路程最短,试问桥应建在何处?画出示意图.解:(1)如图1所示,(2)如图2,作AA'垂直于河岸a,使AA′等于河宽,连接BA′,与另一条河岸相交于M,作MN⊥直线a,则MN∥AA′且MN=AA′,于是MNAA′为平行四边形,故MA′=NA.根据“两点之间线段最短”,BA′最短,即AN+BM最短.故桥建立在M、N处符合题意.。
最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。
在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。
通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。
最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。
图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。
在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。
最短路径即是在图中找到一条路径,使得该路径上的边权和最小。
在解决最短路径问题的过程中,存在着多种算法可以应用。
最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。
Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。
该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。
除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。
例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。
Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。
一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。
在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。
利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。
第21讲 最短路径问题一、方法剖析与提炼引例:如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,则最小距离为___________m 。
【解答】1000。
【解析】如图,作点B 关于公路l 的对称点B′,连接AB′交公路于点C ,CA+CB最短距离就是AB′的长度。
根据勾股定理可以求得AB′=1000m 。
【解法】同侧的两点,通过轴对称变换成异侧,利用两点之间线段最短确定最小距离。
【解释】通过生活中的实际例子,让学生感受最短路径来源于生活,并引出求最短路径常用的方法,利用轴对称变换找对称点及两点之间线段最短(即饮马问题)。
学习时可作如下归纳:(1)在初中范围内和边的不等量有关的知识有哪些,引出两点之间线段最短,三角形两边之和大于第三边;(2)在此图中哪种变换方式比较适合将马路同侧的两条线段变换到异侧,并且保持线段长度不变,旨在复习轴对称、平移、旋转等变换特点;(3)在移动变换中,有没有可能将两条线段置于共线的情形,即最短路径。
例1:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,求DN+MN 的最小值。
【解答】连结BD 交AC 于点O ,根据正方形的对称性可知,B 点即为D 的对称点。
连结BM 交AC 于点N ,则BM 的值为DN+MN 的最小值。
所以BM=10。
【解析】如图,点B 即为点D 关于AC 的对称点,连接BM ,BM 的长度即为DN+MN的最小距离。
在Rt△BCM 中,根据勾股定理可求得BM=10。
【解法】此题 DN ,MN 这两条线段中,M ,D 两点固定,只有N 一个点是移动的,故只需确定点N ,使得距离之和最短即可。
【解释】此例从最基本的图形出发,让学生易于接受,敢于探索。
学生依据正方形自身拥有的轴对称性找到对称点,将同侧两条线段利用翻折变成异侧的两条线段,利用两点之间线段最短找到最短路径。
13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。
最短路径问题(珍藏版)
【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题- 即已知起始结点,求最短路径的问题.
②确定终点的最短路径问题- 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.
③确定起点终点的最短路径问题- 即已知起点和终点,求两结点之间的最短路径.
④全局最短路径问题- 求图中所有的最短路径.
【问题原型】“将军饮马”,“造桥选址”,“费马点”.
【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.
【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.
【十二个基本问题】
全国初中数学资料群群号:101216960。
最短路径问题分两种情况,分别为阶段k=3和k=4:一、阶段:k=3显然,从始点A 到终点E 只有两条路径:A →1B →1D →E,路径距离是10;A →3B →3D →E,路径距离是9.二、阶段:k=4决策:逆序递推k d 1(,)k k x x +表示第k 阶段由初始状态k x 到下一阶段初始状态1k x +的距离。
()k k f x 表示从第k 阶段的k x 到终点E 的最短距离。
(1)阶段k=4有三个初始状态1D 、2D 、3D若最短路径经过1D ,41()f D =3若最短路径经过2D ,42()f D =1若最短路径经过3D ,43()f D =5(2)阶段k=3有两个初始状态1C 、2C若最短距离经过1C ,31()f C =min {311(,)d C D +41()f D ,312(,)d C D +42()f D ,313(,)d C D +43()f D }=min {5,6,8}=5若最短距离经过2C ,同理,32()f C =min {4,5,7}=4(3)阶段k=2有三个初始状态123B B B 、、若最短距离经过1B ,21()f B =min {211(,)d B C +31()f C ,212(,)d B C +32()f C }=min{9,7}=7 若最短距离经过2B ,22()f B =min {221(,)d B C +31()f C ,222(,)d B C +32()f C }=min {6,7}=6若最短距离经过3B ,23()f B = min {231(,)d B C +31()f C ,232(,)d B C +32()f C }=min{8,9}=8(4)阶段k=11()f A =min {11(,)d A B +21()f B ,12(,)d A B +22()f B ,13(,)d A B +23()f B }=min {10,8,9}=8故当经过四个阶段时,最短路径距离为8.综合一、二两种情况,可以明显得出最短路径距离是8,其相对应的最佳路径为A →2B →1C →1D →E。
最短路径问题归纳总结本文介绍了数学中的最短路径问题,该问题是图论研究中的一个经典算法问题,旨在寻找图中两结点之间的最短路径。
具体的算法形式包括确定起点的最短路径问题、确定终点的最短路径问题、确定起点终点的最短路径问题和全局最短路径问题。
其中,“将军饮马”、“造桥选址”和“费马点”是该问题的原型。
解决该问题需要涉及知识包括“两点之间线段最短”、“垂线段最短”、“三角形三边关系”、“轴对称”和“平移”等。
在解题思路方面,可以通过找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
本文还列举了十二个基本问题,包括确定起点的最短路径问题、确定终点的最短路径问题、确定起点终点的最短路径问题、全局最短路径问题、将军饮马、造桥选址等。
对于每个问题,本文都给出了详细的作法和图形原理,以及需要用到的知识原理。
问题6】给定直线m和直线n,求在它们上面的两个点M和N,使得XXX的值最小。
根据垂线段最短的原理,将点A向右平移a个长度得到A',作A'关于直线m的对称点A'',连A''B,交直线MN于点M,直线NB于点N,使得MN⊥m且MN=a。
则AM+MN+BN的最小值为A''B+MN。
在直线l上求两点M、N(M在左),使MN=a,并使AM+MN+NB的值最小。
将N点向左平移a个单位得到M。
问题7】给定两条直线l1和l2,求在它们上面的两个点A和B,使得PA+AB的值最小。
根据垂线段最短的原理,作点P关于l1的对称点P',作P'B⊥l2于B,交l2于A。
则PA+AB的最小值为线段P'B的长。
在l1上求点A,在l2上求点B,使PA+AB值最小。
问题8】给定两条直线l1和l2,求在它们上面的两个点A和B,使得AM+MN+NB的值最小。
根据两点之间线段最短的原理,作点A关于l2的对称点A',作点B关于l1的对称点B',连A'B'交l2于M,交l1于N。
最短路径算法——Dijkstra算法一、最短路径问题最短路问题是图论理论的一个经典问题。
寻找最短路径就是在指定网络中两结点间找一条距离最小的路。
最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。
最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。
经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。
在带权图(即网络)G=(V,E)中,若顶点v i,v j是图G的两个顶点,从顶点v i到v j 的路径长度定义为路径上各条边的权值之和。
从顶点v i到v j可能有多条路径,其中路径长度最小的一条路径称为顶点v i到v j的最短路径。
求最短路径具有很高的实用价值,在各类竞赛中经常遇到。
一般有两类最短路径问题:一类是求从某个顶点(即源点)到其他顶点(即终点)的最短路径;另一类是求图中每一对顶点间的最短路径。
本讲主要讲述一种单源最短路径(Single source shortest path)算法——Dijkstra 算法,用于解决非负权有向图的单源最短路径问题。
二、Dijkstra算法2.1 Dijkstra算法Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。
主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。
Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率偏低。
Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。
2.2 Dijkstra算法思想对于图G=(V,E),假设(u,v)是E中的边,c u,v是边的长度(即边权)。
如果把顶点集合V划分为两个集合S和T:S中所包含的顶点,他们到u的距离已经确定;T中所包含的顶点,他们到u的距离尚未确定。
最短路径问题
2.3.1最短路径的定义
最短路径问题是运动规划的一个主要的课题。
运动规划问题由二部分组成,分别是最短路径和轨迹规划,其中路径问题归结起来就是连接起点和终点的一条曲线,而与之相匹配的路径规划问题就是形成这样一种路径的策略。
最短路径问题在生活生产的方方面面都会遇到,已经在很多领域都有着充分的运用。
比如现在中国最前端的领域就有涉及,比如:机器人在行动的时候必须做到自主无碰;无人机在飞行的时候必须做到避障突防;巡航导弹在飞行的时候必须做到躲避雷达的范围性探知;在我们的现实生活之中有:全球定位系统导航;各个城市内部不同的道路网规划等。
2.3.2最短路径的一般步骤
最短路径问题总结起来一般有下面三个步骤:
(1)环境建模。
其中,环境建模可以说是最短路径的一个不容忽视的一步,环境建模的目的是建立在实际上可以让计算机来操作进一步来最短路径的环境模型,也就是把现实之中的物理空间转化成算法从而可以形成抽象空间,实现相互间的映射。
(2)路径搜索。
路径搜索就是在环境模型已经完成了之后,运用之前已经建立好的算法,进而去寻找一条最优的的路径,使得我们所建立目标函数能够获得我们所期望的最优值。
(3)路径平滑。
通过之前已经建立好的算法,找到的最优的的路径在实际情况之中,并不一定实际上可行路径,需要后期继续作进一步处理,并且进行平滑的操作,才能使之前找到的最优的的路径成为一条在现实之中可以行走的路径。
八年级上册最短路径难题讲解
八年级上册最短路径问题是一个重要的数学问题,涉及到图论和几何知识。
以下是几个经典的最短路径问题及相应的解题思路:
1. 将军饮马问题:两个将军分别在河的两岸,他们想要到河的对面饮马。
河水流速很快,不能逆流而上。
他们应该选择怎样的路径才能使其中一位将军到河对岸的总时间最短?
解题思路:在这种情况下,两个将军都可以选择直接过河,但是这样会花费较长的时间。
为了使总时间最短,他们可以选择在河岸的某一位置相遇,然后一起走到河对岸。
这样,他们可以节省掉单独过河的时间。
2. 造桥选址问题:有两个人分别在河的两岸,他们想要通过建造一座桥来互相通行。
为了使造桥的成本最低,他们应该选择怎样的桥址?
解题思路:在这种情况下,最短的路径就是直接在两岸之间建造一座桥。
因此,他们应该选择在河的中心建造桥,这样可以使得桥的长度最短,同时也可以节省造桥的成本。
3. 费马点问题:在三角形中,任意选取三个点,要求找到一个点到其他三个点的距离之和最短的位置。
解题思路:首先,我们可以将这个问题转化为求三角形三个顶点的中点。
然后,我们可以利用三角形的性质来证明这个结论。
具体来说,我们可以证明任意一个点到其他三个点的距离之和都大于等于三角形三个顶点的中点到其他三个点的距离之和,当且仅当这个点是三角形三个顶点的中点时取等号。
因此,三角形的费马点就是其三个顶点的中点。
以上是最短路径问题的几个经典例子及相应的解题思路。
通过这些例子,我们可以了解到最短路径问题的基本概念和方法,以及如何利用几何和图论的知识来解决这些问题。
最短路径问题概念
最短路径问题是一个经典的算法问题,在计算机科学和数学领域
中被广泛应用。
该问题是寻找从起点到目标节点之间的路径,使得路
径上经过的边权重之和最小。
通常来说,最短路径问题可以分为单源
最短路径问题和全源最短路径问题。
单源最短路径问题是指从一个给定的起点节点到图中所有其他节
点之间的路径中,找到一条最短路径的问题。
目前,最著名的解决方
法是Dijkstra算法。
该算法是一种贪心算法,它从起点开始,按照顶
点到起点的距离递增的顺序,逐渐扩展到整个图,以此找到最短路径。
具体实现时,需要用一个数组来存储到每个节点的最短路径长度,同
时也需要记录一个路径数组,用于存储路径信息。
全源最短路径问题是指在一个加权有向图中,查找任意两个节点
之间的最短路径。
在这种情况下,最常用的算法是Floyd-Warshall算法。
这种算法是基于动态规划的思想,它采用了一个二维数组来保存
节点之间的距离,同时利用矩阵乘法的技术来对各节点之间的距离进
行更新。
一旦该算法求解完成,任何两个节点之间的最短距离都可以
快速找到。
除了上面介绍的算法之外,还有其他用于解决最短路径问题的算法,如Bellman-Ford算法等。
然而,这些算法在实际应用中仍然存在
许多问题,比如对于大规模图像,运算速度过慢,或者存在负权边的
情况时会出现错误结果等。
总体来说,最短路径问题在我们的日常生活中有着广泛的应用,
比如旅行路线的规划,语音导航的实现等等。
因此,研究如何高效地
解决最短路径问题,对于提高我们的生活质量有着重要的意义。
最短路径问题最短路径问题是图论中一个重要的研究领域,即求解两个节点之间的最短路径。
在实际生活中,最短路径问题有着广泛的应用,例如导航系统、交通规划以及网络通信等领域。
本文将介绍最短路径问题的定义、常见算法以及应用实例。
一、定义最短路径问题可以用来求解从一个节点到另一个节点的最短路径。
在图论中,最短路径通常指的是路径上的边的权重之和最小。
图可以由节点和边组成,边可以有权重,表示两个节点之间的距离或成本。
最短路径问题的目标是找到两个节点之间的路径,使得路径上的边的权重之和最小。
二、算法1. Dijkstra算法Dijkstra算法是解决最短路径问题的经典算法之一。
该算法采用贪心策略,逐步确定起点到其他节点的最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,所有其他节点的距离为无穷大。
(2)选择一个未被访问过的节点,标记为当前节点。
(3)对于当前节点的所有邻居节点,更新其距离为当前节点距离加上边的权重,并更新最短路径。
(4)继续选择未被访问过的节点中最短路径最小的节点,标记为当前节点,重复步骤(3)。
(5)重复步骤(3)和(4),直到所有节点都被访问过。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的数量。
2. Bellman-Ford算法Bellman-Ford算法是另一种解决最短路径问题的算法。
与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。
该算法通过迭代更新距离数组,逐步确定最短路径。
具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,其他节点的距离为无穷大。
(2)对于图中的每条边,重复以下步骤:a. 从边的起点到终点的距离是否可以通过起点到起点的距离加上边的权重来达到更小值。
b. 如果是,则更新终点的距离为该更小值。
(3)重复步骤(2)|V|-1次,其中V为节点的数量。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的数量,E为边的数量。
最短路径问题陈道蓄 南京大学计算机系在道路网络中确定起点到终点的最短路径,可以抽象为一个有向图模型。
图中每个节点表示一个“路口”,对任意节点u,v,存在uv-边当且仅当从u到v有“路段”直接相连(当中没有其他路口)。
也可以建立无向图模型,则任一条边对应于双向可通行的路段。
其实这样的模型并不限于道路交通问题,从本专栏前面的文章中读者已经看到许多与交通运输无关的问题都可以抽象为图模型,“最短路径”在不同应用中可能背景意义不同,但确定最短路是大量基于图模型的应用问题求解中的一个基本环节。
● 用广度优先搜索(BFS)算法求解先来考虑有向图模型上一种最简单的情况:假设每个路段长度均为1,那么,从u到v最短路的长度即为所有uv-路中包含的边数的最小值,也称为从u到v的距离。
设想房间的角上有个水龙头,其所在位置是房间地面最高点。
地面高度向房内其他地方极其平缓地均匀下降,将龙头开到适当大小,水会在地面以扇形缓缓漫开。
如果像动画片一样间隔固定时间段记录漫水区域的边界,看到的将是一道道大致平行的弧形曲线,它们反映了边界上的点与水龙头位置的大致距离。
在图中遍历所有节点常用算法包括“深度优先(DFS)”与“广度优先(BFS)”。
本专栏在前面讨论走迷宫和调度问题时,都采用了深度优先算法。
从上面的比喻很容易想到:考虑点与点的距离时该采用广度优先算法。
事实上,在本专栏在前面讨论图的连通性时,简单地用到了广度优先(尽管我们没有提到这个名词)。
图1给出一个简单的例子,指定a为起点,则广度优先搜索生成的BFS树可能如图1中右图所示。
右边结果图中每个节点名称旁标的数字表示从起点a到该点最短路的长度。
在广度优先搜索过程中,距离a较远的节点被发现的时间一定晚于较近的节点。
这个例子显示了广度优先搜索过程与最短路径的关联。
由此在每条边长度均为1的假设下,我们可以用广度优先算法解最短路问题。
为了体现前面的比喻中漫水区前缘均匀推进,算法用队列Q放置当前已经“看见”并等待处理的顶点。
最短路径问题
(导学案)
洪湖市龙口镇和里中学 龚宝金
教学目标:
1知识与技能:理解和掌握解决最短距离问题的一般思想方法 2.过程与方法:培养学生转化思想和数形结合思想
3.情感态度与价值观: 通过专项讲解,归纳出方法和规律,消除学生对此类问题的陌生感
和畏惧感,提高学生解决问题的信心和解决问题的能力。
教学重点:利用轴对称作图确定使距离最短的点 教学难点:数形结合思想与数学建模思想的培养 教学过程
一. 温故而知新1.
在公路l 两侧有两村庄,现要在公路l 旁修建一所候车亭P ,要使候车亭到两村庄的
距离之和最短,试确定候车亭P 的位置。
★思考:本题运用了 。
随堂练习一.
1. 造桥选址问题:如图,A 、B 两地在一条河的两岸,现要在河上造一座桥MN ,桥造在何
处可使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直。
)
★思考:本题运用了 。
二.温故而知新2.
如图,在河的同侧有两村庄,现要在河边L 建一泵站P 分别向A 、B 两村庄同时供水,要使泵站P 到A 村、B 村的距离之和最短,确定泵站P 的位置。
★思考:本题运用了 。
A
B
随堂练习二:
1. 如图,已知正方形ABCD ,点M 为BC 边的中点, P 为对角线BD 上的一动点,要
使PM+PC 的值最小,请确定点P 的位置。
2. 如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边的中点,P 为对角线AC 上的一动点,要使 PM+PN 的值最小,试确定点P 的位置。
三.合作探究——拓展与延伸.
1.如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D , 使PC+CD+DP 之和最小?
2. 饮马问题: 如图牧马人从A 地出发,先到草地边某一处牧马,再到河边饮马,然后回
到B 处,请画出最短路径。
第1题图
第2题图
B
A
四、中考链接
如图,以矩形OABC 的顶点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系,已知OA=4,OC=2,点E 、F 分别是边AB 、BC 的中点, 在x 轴、y 轴上是否分别存在点N 、M ,使得四边形MNEF 的周长最小?如果存在,请在图中确定点M 、N 的位置,若不存在,请说明理由。
五 课堂小结
谈谈你的收获………
考察知识点:两点之间线段最短,点关于直线对称,线段的平移等; 数学思想:数形结合思想,化归与转化思想,数学模型思想等; 原 型:1.饮马问题, 2. 建桥选址问题;
试题变式背景: 角、三角形、菱形、矩形、正方形、梯形、坐标轴等。
数学模型:
1.实际问题:如图,在河的同侧有两村庄,现要在河边L 建一泵站P 分别向A 、B 两村庄
同时供水,要使泵站P 到A 村、B 村的距离之和最短,确定泵站P 的位置,并在图中作出表示最短距离的线段。
2.数学问题
已知直线l 和l 的同侧两点A 、B ,在直线l 上求作点P ,使PA+PB 的值最小.
l
六. 巩固练习:
1. 如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边的中点,P 为对角线AC 上的
一动点,要使 PM+PN 的值最小,试确定点P
变式1. 如图,已知菱形ABCD ,M 、N 分别为 AB 、BC 边上的点,P 为对角线AC 上
的一动点,要使 PM+PN 的值最小,试确定点P 的位置。
变式2. 如图,已知菱形ABCD 的边长为6,面积为30,∠BAD=60°,点M 为AB 边的中点,点P 为对角线AC 上的一动点,要使 PM+PB 的值最小,试确定点P 的位置,并求出PM+PB 的最小值.
变式3. 如图,已知菱形ABCD ,M 、N 分别为AB 、BC 边上的点,P 为对角线AC 上的一动点,要使 △MPN 的周长最小,试确定点P 的位置.
2. 如图,已知点P 是直线x =1若△OP A 的周长最小,
3. 如图,点A 、B 位于直线请问当MN
变式(2)B 变式1图 第1题图。