离子能否大量共存的判断
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
关于离子能否大量共存的几种情况离子是带电的原子或分子,它们可以形成化合物或溶解在液体中。
离子能否大量共存取决于溶液的化学性质、离子间的相互作用以及环境条件等因素。
下面将分别介绍几种情况下离子的共存情况。
1.相同电荷的离子当溶液中存在相同电荷的离子,比如正离子或负离子,它们之间会互相排斥,不容易大量共存。
这是因为离子之间带电的相互作用会使其彼此靠近,但同电荷离子彼此间的电荷排斥力会抵消或减弱离子间的吸引力。
这种情况下,离子通常以分散状态存在,难以形成稳定的晶体结构。
2.不同电荷的离子不同电荷的离子可以通过静电作用吸引在一起,形成离子晶体或离子化合物。
这种情况下,正离子和负离子之间存在强烈的电荷吸引力,使它们能够紧密结合,并形成具有规则结构的晶格。
例如,常见的氯化钠(NaCl)晶体就是由正离子钠离子(Na+)和负离子氯离子(Cl-)共同组成的。
3.配位化合物在一些特殊情况下,离子可以形成稳定的配位化合物。
在这种情况下,一个中心离子可以通过配位键与多个周围离子形成配位团体。
配位化合物中的离子通常以固定的几何排列存在,且可以共存多个离子种类。
例如,铁离子(Fe2+)和氰离子(CN-)可以形成具有红色的氰合铁离子(Fe(CN)64-)配合物。
4.离子溶解度离子的溶解度也会影响其能否大量共存的情况。
溶解度是指单位体积溶液中最多可以溶解的离子的数量。
如果溶液中的离子浓度达到了其溶解度限制,离子可能会发生沉淀反应,无法继续共存。
这种情况下,离子通常以固态形式存在,而不是溶解在溶液中。
总的来说,离子能否大量共存取决于其电荷性质、相互作用和环境条件。
相同电荷的离子通常无法大量共存,而不同电荷的离子可以通过电荷吸引力形成稳定的晶体结构或配位化合物。
此外,溶液中离子的溶解度也会限制其共存能力。
深入研究离子共存的情况对于理解物质的结构和性质具有重要意义。
离子大量共存的判断
离子大量共存是指多种离子在同一介质中同时存在,其中某些元素的含量相当丰富,在介质中的百分比超过总体离子的十分之一。
多种离子的大量共存,是地壳演化过程中的常见现象,也是地球不断变化的重要原因之一。
离子大量共存的判断主要是从物质的组成构成、性质及数量变化来考察的。
首先应该考虑介质中元素的组成构成,大多数介质都是由以氢气和氧为主成分,其他元素则以少量形式存在,比如氟、氯、氮、碳、硅、硫、锶、镁、镍等。
其次,考察物质的性质,携带有正负电荷,它们会受到重力和空气的作用而发生化学反应,这就是复杂环境中物质之间大量共存的原因。
空气中的大量的氧离子和氧气的极性会联合作用吸收氢离子,从而使氢离子共存在绝大部分空气环境中,这就是为什么空气中几乎所有的离子能够大量存在的原因。
最后一点应该考虑的就是,物质的存在数量发生改变。
物质的数量和比例有变化,如果其中某些物质的比例大大超过其它物质,那么就有可能出现离子大量共存的情况。
判断溶液中离子能否大量共存方法:所谓几种离子在同一溶液中能大量共存,就是指离子之间不发生任何反应;若离子之间能发生反应,则不能大量共存.同一溶液中若离子间符合下列任意一个条件就会发生离子反应,离子之间便不能在溶液中大量共存.(1)生成难溶物或微溶物:如Ba2+与CO32-、Ag+与Br-、Ca2+与SO42-和OH-、OH-与Cu2+等不能大量共存.(2)生成气体或挥发性物质:如NH4+与OH-,H+与CO32-、HCO3-、S2-、HSO3-、SO32-等不能大量共存.2.附加隐含条件的应用规律:(1)溶液无色透明时,则溶液中肯定没有有色离子.常见的有色离子是Cu2+、Fe3+、Fe2+、MnO4-等.(2)强碱性溶液中肯定不存在与OH-起反应的离子.(3)强酸性溶液中肯定不存在与H+起反应的离子.典型例题:[[例1]下列各组中的离子,能在溶液中大量共存的是:A.K+、Ag+、NO3-、Cl-B.Ba2+、Na+、CO32-、OH-C.Mg2+、Ba2+、OH-、NO3-D.H+、K+、CO32-、SO42-E.Al3+、Fe3+、SO42-、Cl-F.K+、H+、NH4+、OH-[分析]A组中:Ag++Cl-=AgCl↓B组中,Ba2++CO32-=BaCO3↓C组中,Mg2++2OH-=Mg(OH)2↓D组中,2H++CO32-=CO2↑+H2OE组中,各种离子能在溶液中大量共存。
F组中,NH4+与OH-能生成难电离的弱电解质NH3·H2O,甚至有气体逸出。
NH4++OH-=NH3·H2O或NH4++OH-=NH3↑+H2O答案:E[例2]在pH=1的无色透明溶液中,不能大量共存的离子组是:A.Al3+、Ag+、NO3-、Cl-B.Mg2+、NH4+、NO3-、Cl-C.Ba2+、K+、S2-、Cl-D.Zn2+、Na+、NO3-、SO42-[分析]题目给出两个重要条件:pH=1(即酸性和无色透明,并要求找出不能共存的离子组。
离子大量共存判断方法离子是指在化学反应中失去或获得一个或多个电子而带有电荷的化学物质,它们在自然界中广泛存在,对于环境监测和化学分析具有重要意义。
离子在水质、大气、土壤等环境介质中大量共存,因此需要准确的方法来判断不同离子的存在和浓度。
本文将介绍几种常用的离子大量共存判断方法。
首先,离子色谱法是一种常用的离子分析方法,它通过离子交换柱将不同离子分离出来,再通过检测器检测各个离子的浓度。
这种方法对于大量共存的离子具有较高的分析精度和准确性,可以同时检测多种离子,适用于水质、土壤等样品的离子分析。
其次,离子选择电极法也是一种常用的离子分析方法。
它利用特定离子选择电极对目标离子进行选择性测定,可以实现对大量共存离子的准确测定。
这种方法操作简便,对于特定离子的测定具有较高的灵敏度和选择性,适用于环境监测和生物样品的离子分析。
另外,离子交换树脂法也是一种常用的离子分析方法。
它利用离子交换树脂对不同离子进行吸附和解吸,再通过检测器对吸附的离子进行测定。
这种方法操作简便,可以同时测定多种离子,对于大量共存离子的分析具有较高的准确性和灵敏度,适用于水质、食品等样品的离子分析。
最后,原子吸收光谱法也是一种常用的离子分析方法。
它利用不同离子在特定波长下的吸收特性进行测定,可以实现对多种离子的准确测定。
这种方法对于大量共存离子的分析具有较高的准确性和灵敏度,适用于环境监测和地质样品的离子分析。
综上所述,离子大量共存的判断方法包括离子色谱法、离子选择电极法、离子交换树脂法和原子吸收光谱法等。
这些方法在离子分析中具有重要的应用价值,可以实现对大量共存离子的准确测定,对于环境监测和化学分析具有重要意义。
在实际应用中,需要根据样品的特点和分析要求选择合适的方法,并结合标准方法进行准确分析,以确保分析结果的准确性和可靠性。
溶液中离子能否大量共存的判断离子共存是高考常考的知识点,求解此类题目的方法是准确分析溶液中离子之间能否发生复分解反应、氧化还原反应(下节学习)等,若离子之间能发生上述反应,则不能大量共存,若离子之间不能发生反应,则可以大量共存。
1 因发生复分解反应而不能共存的离子(1)离子间生成难溶的物质(2)离子间生成挥发性的物质(3)离子间生成难电离的物质如H+与OH-、CH3COO-等。
2 注意事项——“隐含条件”(1)“无色透明”溶液中不存在有色离子,中学阶段常见的有色离子及其颜色:(2)酸性溶液中不能大量存在与H+反应的离子。
“酸性”的不同描述:①酸性溶液;②常温下pH <7的溶液; ③使石蕊溶液变红的溶液。
(3)碱性溶液中不能大量存在与OH -反应的离子。
“碱性”的不同描述: ①碱性溶液;②常温下pH >7的溶液; ③使石蕊溶液变蓝的溶液; ④使酚酞溶液变红的溶液。
典例详析例4-15(河南省实验中学期中)在无色、碱性溶液中能大量共存的一组离子是( )A .Ca 2+、Na +、Cl -、B .K +、Fe 2+、、C .Ba 2+、K +、、Cl -D .Na +、Ba 2+、Cl -、点拨◆解析◆OH -、Ca 2+、间能反应生成CaCO 3和H 2O ,不能大量共存,A 项不符合题意。
Fe 2+和均有颜色,且Fe 2+与、OH -均能发生反应(后续学习),B 项不符合题意。
OH -和反应生成NH 3·H 2O ,C 项不符合题意。
答案◆D 例4-16下列离子在所给溶液中能大量共存的是( )A .无色溶液中:K +、、H +、B .使酚酞溶液显红色的溶液中:Na +、、Mg 2+、-3HCO -24SO -4M nO +4NH -3NO -3HCO -4M nO -4M nO +4NH -4M nO -24SO -3NO -24SOC .使紫色石蕊溶液显红色的溶液中:、、、D .含有大量Fe 3+的溶液中:、、Na +、Cl -解析◆呈紫色,A 项错误;使酚酞溶液显红色说明溶液呈碱性,则Mg 2+不能大量存在,B 项错误;使紫色石蕊溶液显红色说明溶液显酸性,则不能大量存在,C 项错误。
判断离子是否大量共存的方法
宝子们,今天咱们来唠唠离子是否能大量共存这个事儿哈。
咱得知道,要是离子之间会发生反应,那它们就不能大量共存啦。
比如说,能生成沉淀的离子就不能好好地大量待在一起。
像钙离子和碳酸根离子,一见面就“抱”在一起形成碳酸钙沉淀了,那溶液里这俩离子就不能大量共存咯。
还有银离子和氯离子,那也是一对儿,一碰上就变成氯化银沉淀,就像两个小磁铁,“啪”地吸一块儿,然后就从溶液里出来啦。
再说说生成气体的情况。
氢离子和碳酸根离子就是这样,它们在溶液里会发生反应,产生二氧化碳气体跑掉。
这就好比两个小调皮,凑一起就制造出小气泡飞走啦,所以这俩离子在溶液里不能大量共存哦。
还有一种情况呢,是生成弱电解质。
比如说氢离子和醋酸根离子,它们会结合成醋酸这种弱电解质。
这就好像两个小伙伴凑一块儿变成了一个比较弱小的组合,不能像原来那样自由自在地大量存在于溶液里啦。
另外,离子之间发生氧化还原反应的话,也不能大量共存。
像三价铁离子和碘离子,三价铁离子这个小坏蛋,它会把碘离子氧化,那这俩离子就没法在溶液里大量和平共处啦。
还有一种特殊情况要注意哦,那就是发生络合反应。
比如说三价铁离子和硫氰根离子,它们会形成络合物,就像两个小物件组合成了一个新的小玩意儿,这样的话它们在溶液里也不能大量共存啦。
宝子们,判断离子是否大量共存其实没那么难,就把这些情况都记在小脑袋瓜里,以后再遇到这种题就不怕啦。
只要看到离子之间有这些“小九九”,就知道它们不能大量共存啦。
加油哦,宝子们!。
离子能否大量共存问题的分析与判断判断离子能否大量共存实际上就是判断离子之间能否反应,只要离子间相互反应,那么就不能大量共存,否则就能大量共存。
下面讨论离子能否共存的原因与判断方法:一、常见的离子不能大量共存的原因:(1)发生复分解反应生成难溶物、挥发性物质和难电离物质时不能大量共存。
如:①若阴阳离子能相互结合生成难溶物或微容物性盐,就不能大量共存。
如常见的Ba2+、Ca2+ 与CO32-、SO32-、SO42-、PO43-、SiO32-等;再如常见的Ag+ 与Cl-、Br-、I-、PO43-、CO32-、SO42-、S2-等。
②弱碱的阳离子不能与OH-大量共存。
如常见的Fe2+、Fe3+、Cu2+、NH4+、Ag+、Mg2+、Al3+、Zn2+等与OH-不能大量共存。
③弱酸根阴离子不能与H+ 大量共存。
如常见的CH3COO-、F-、CO32-、SO32-、S2-、PO43-等与H+ 不能大量共存。
④弱酸的酸式阴离子与H+ 或OH-均不能大量共存。
如常见的HCO3-、HSO3-、HS-、H2PO4-、HPO42-等既不能与H+ 大量共存也不能与OH-大量共存。
(2)若离子间能发生氧化还原反应,也不能大量共存。
如:①在酸性条件下,MnO4-具有较强的氧化性,与常见的Cl-、Br-、I-、S2-等能发生氧化还原反应,而不能大量共存;同样,NO3-在酸性条件下也具有较强的氧化性,与Br-、I-、S2-、Fe2+、SO32-等不能大量共存。
②在中性条件下,NO3-与I-、Fe2+ 等可以大量共存。
③无论是在酸性或碱性条件下,ClO-都具有氧化性,与常见的还原性离子如I-、Fe2+、S2-、SO32-等均不能大量共存。
(3)若阴、阳离子间发生“双水解”反应,有的促进反应进行,不能大量共存。
常见的能发生“双水解”反应离子归纳如下:① Al3+与HS-、S-、CO32-、HCO3-、AlO2-、SiO32-、ClO-等;② Fe3+与CO32-、HCO3-、AlO2-、ClO-等;③ NH4+与AlO2-、SiO32-等;发生“双水解”反应时,由于水解彻底,可用“===”连接反应物和产物,水解生成的难容物或挥发性物质要加沉淀符号“↓”或气体反符号“↑”。
离子能否大量共存问题的分析与判断判断离子能否大量共存实际上就是判断离子之间能否反应,只要离子间相互反应,那么就不能大量共存,否则就能大量共存。
下面讨论离子能否共存的原因与判断方法:一、常见的离子不能大量共存的原因:(1)发生复分解反应生成难溶物、挥发性物质和难电离物质时不能大量共存。
如:①若阴阳离子能相互结合生成难溶物或微容物性盐,就不能大量共存。
如常见的Ba2+、Ca2+ 与CO32-、SO32-、SO42-、PO43-、SiO32-等;再如常见的Ag+ 与Cl-、Br-、I-、PO43-、CO32-、SO42-、S2-等。
②弱碱的阳离子不能与OH-大量共存。
如常见的Fe2+、Fe3+、Cu2+、NH4+、Ag+、Mg2+、Al3+、Zn2+等与OH-不能大量共存。
③弱酸根阴离子不能与H+ 大量共存。
如常见的CH3COO-、F-、CO32-、SO32-、S2-、PO43-等与H+ 不能大量共存。
④弱酸的酸式阴离子与H+ 或OH-均不能大量共存。
如常见的HCO3-、HSO3-、HS-、H2PO4-、HPO42-等既不能与H+ 大量共存也不能与OH-大量共存。
(2)若离子间能发生氧化还原反应,也不能大量共存。
如:①在酸性条件下,MnO4-具有较强的氧化性,与常见的Cl-、Br-、I-、S2-等能发生氧化还原反应,而不能大量共存;同样,NO3-在酸性条件下也具有较强的氧化性,与Br-、I-、S2-、Fe2+、SO32-等不能大量共存。
②在中性条件下,NO3-与I-、Fe2+ 等可以大量共存。
③无论是在酸性或碱性条件下,ClO-都具有氧化性,与常见的还原性离子如I-、Fe2+、S2-、SO32-等均不能大量共存。
(3)若阴、阳离子间发生“双水解”反应,有的促进反应进行,不能大量共存。
常见的能发生“双水解”反应离子归纳如下:①Al3+与HS-、S-、CO32-、HCO3-、AlO2-、SiO32-、ClO-等;②Fe3+与CO32-、HCO3-、AlO2-、ClO-等;③NH4+与AlO2-、SiO32-等;发生“双水解”反应时,由于水解彻底,可用“===”连接反应物和产物,水解生成的难容物或挥发性物质要加沉淀符号“↓”或气体反符号“↑”。
离子大量共存判断方法离子是由带电的原子或原子团组成的化学物质。
离子的相互作用对于化学反应和物质性质起着至关重要的作用。
在某些情况下,离子可以大量共存,形成一种混合物。
下面将介绍一些常用的离子大量共存判断方法。
1. 溶解度规律:溶解度规律是描述离子在水溶液中溶解度的定性规律。
根据溶解度规律,对于能够生成溶解度积稳定的离子共存体系,它们的溶解度积会达到平衡,不再发生明显的溶解和沉淀反应。
因此,当溶液中存在多种离子时,可以通过溶解度积来判断是否会发生沉淀反应。
如果离子的溶解度积小于等于其溶解度积稳定常数,就不会发生沉淀反应;反之,如果溶解度积大于溶解度积稳定常数,就会发生沉淀反应。
通过对离子溶解度积的计算和比较,可以判断不同离子是否能够共存。
2. 离子交换反应:离子交换反应是一种常用的分析和分离离子的方法。
在离子交换反应中,树脂通常被用作吸附离子的载体。
树脂表面的功能团可以选择性地吸附并交换溶液中的离子。
通过改变溶液的pH值、温度或所加入的其他物质,可以选择性地吸附和释放某些离子。
通过观察吸附和释放的离子类型和数量,可以判断离子的共存情况。
3. 离子选择电极:离子选择电极是一种能够选择性地测量溶液中特定离子浓度的电极。
离子选择性电极通常由玻璃电极或微电极制成,其表面涂覆有选择性膜。
选择性膜可以选择性地吸附特定离子,并通过与离子间的化学反应生成电信号。
通过测量电极信号的变化,可以定量地测量溶液中特定离子的浓度,并进一步判断是否存在其他离子。
4. 应用赛尼定律:赛尼定律是描述电解质溶液中离子浓度与电导率之间关系的定量规律。
根据赛尼定律,对于存在多种离子的溶液,其电导率可以由各个离子的浓度和移动性加权求和得到。
通过测量溶液的电导率,并使用赛尼定律进行计算,可以推断溶液中各个离子的浓度,从而判断离子的共存情况。
综上所述,离子大量共存的判断方法包括溶解度规律、离子交换反应、离子选择电极和应用赛尼定律。
这些方法可以定性或定量地判断离子的存在和浓度,从而揭示离子在体系中的大量共存情况。
判断离子大量共存的四个要点1.一色(溶液的颜色)若题目要求是无色溶液,则Cu2+(蓝色)、Fe3+(棕黄色)、Fe2+(浅绿色)、MnO4-(紫红色)、Cr3+(绿色)、CrO42-(黄色)、Cr2O72-(橙红色)等有色离子不能大量共存。
2.二性(溶液的碱性、酸性)若是酸性溶液,OH-、弱酸根离子(S2-、SO32-、S2O32-、CO32-、CH3COO-、ClO-、F-、AlO2-、SiO32-、PO43-、C6H5O-等)、弱酸的酸式酸根离子(HCO3-、HSO3-、HS-、H2PO4-、HPO42-等)不能大量共存。
若是碱性溶液,则H+、弱碱阳离子(Al3+、Cu2+、Fe2+、Fe3+、Mg2+、Ag+、Zn2+、NH4+等) 、弱酸的酸式酸根离子(HCO3-、HSO3-、HS-、H2PO4-、HPO42-等)不能大量共存。
3.三特殊离子的共存除普遍规律外,还有以下三种特殊情况:(1) AlO2-与HCO3-在水溶液中均因水解呈碱性,但AlO2-的水解能力太强,含有AlO2-的水溶液中c(OH-)较大,能直接与HCO3-作用生成Al(OH)3沉淀和CO32-,故AlO2-与HCO3-不能共存于同一溶液中。
(与其类似的还有AlO2-与HSO3-、HS-、H2PO4-、HPO42-等)(2)NO3-若不是在酸性溶液中,则能与某些还原性较强的离子(如S2-、I-、Fe2+等)共存,因为NO3-只有在酸性条件下才能表现出强氧化性。
又如MnO4-在碱性条件下能氧化SO32-、S2O32-、S2-、I-,但不能氧化Cl-、Br-;在酸性条件下,MnO4-的氧化性很强,常温下就能氧化Cl-、Br-。
(3)水解能力弱的弱碱阳离子与弱酸根离子(如Mg2+与HCO3-、HSO3-以及NH4+与CO32-、CH3COO-等),这些离子水解的程度很小,它们在溶液中能大量共存;如果加热促进水解就不能大量共存。
5离子在水溶液中能否大量共存的判断1.离子在溶液中能否大量共存的关键就是看离子间是否符合离子反应发生的条件,若反应,则不能大量共存。
(1)看离子间能否生成难溶物、微溶物。
要熟练记忆酸、碱、盐的溶解性,特别是难溶性的盐类。
(2)看离子间能否反应生成气体。
气体又有酸性气体和碱性气体两种,具体表现为易挥发弱酸的酸根与H+不能大量共存;铵盐与强碱不能大量共存。
(3)看离子间能否反应生成难电离的物质(弱酸、弱碱、水等)。
酸中的盐酸、硫酸和硝酸易电离,其他的酸一般难电离;碱中的氢氧化钠、氢氧化钾、氢氧化钙、氢氧化钡易电离,其他的碱均认为是难电离。
(4)看离子间能否发生氧化还原反应等。
2.注意题目中附加的限定性条件(1)无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(棕黄色)、Fe2+(浅绿色)、MnO-4(紫色)等。
(2)在强酸性溶液中,与H+起反应的离子不能大量存在。
(3)在强碱性溶液中,与OH-起反应的离子不能大量存在。
【典例5】在无色透明的溶液中,可以大量共存的离子组是()A.MnO-4、Fe2+、K+、Cl-B.Cu2+、Na+、Cl-、SO2-4C.Ca2+、Cl-、NO-3、K+D.Ca2+、H+、OH-、CO2-3解析MnO-4、Fe2+、Cu2+在溶液中均显一定的颜色,A、B项不合题意;D项中H++OH-===H2O,2H++CO2-3===CO2↑+H2O,Ca2++CO2-3===CaCO3↓,故D项不合题意。
答案 C理解感悟溶液中的离子共存,是一种要求较高的题型,所涉及的知识多且广,特别要求能熟练掌握一些边缘零碎知识。
同时在答题时要注意题目中的一些附加的、隐含的条件。
【典例6】某溶液的溶质可能由下列离子组成:Cl-、SO2-4、CO2-3、H+、Ba2+、Na+,某同学进行了如下实验:(1)向溶液中加入过量的BaCl2溶液,有白色沉淀产生,过滤;(2)向(1)中滤液里加入AgNO3溶液,有白色沉淀产生;(3)将(1)中的沉淀加入稀盐酸中,沉淀部分消失,有气体产生。
判断溶液中离子能否大量共存的方法在化学实验中,我们常常需要判断溶液中离子能否大量共存。
这一判断的结果,将影响我们后续实验的设计与操作,并直接影响实验结果的准确性。
本文将从离子的电解与沉淀、离子的酸碱性、离子反应的平衡性等方面,对判断溶液中离子能否大量共存的方法进行探讨。
一、离子的电解与沉淀在实验室中,会出现一些离子的混合溶液,例如氯化钠、硝酸铵混合后的溶液。
钠离子和铵离子均为可溶性盐的离子,而氯离子和硝酸根离子也同样为可溶性盐的离子。
但当这两种溶液混合在一起时,会发生反应,生成氯化铵和硝酸钠。
反应方程式如下:NaCl + NH4NO3 = NaNO3 + NH4Cl这个反应过程中,氯离子与铵离子结合为氯化铵沉淀,而钠离子与硝酸根离子结合形成了可溶性盐,因此可以判断,这两种离子在混合溶液中不能大量共存。
当然并非所有反应都会导致离子沉淀,有时候则是部分反应或者化学平衡的状态。
这时候,我们可以看反应是否倾向于向一个方向发展,以此判断是否能够大量共存。
二、离子的酸碱性在酸碱中和反应中,同样也是可以判断离子能否大量共存的。
在酸性溶液中,羟根离子会被迅速质子化,最终转化为水分子,而在碱性溶液中,氢离子本身会被迅速的氢氧离子接受形成水分子。
例如,硝酸根离子和氢氧离子在酸性溶液中,会形成硝酸。
而在碱性溶液中,氧离子会与氢离子结合形成水分子,氢氧离子则与硝酸根离子结合形成硝酸根酸。
由此可见,在酸性溶液中,硝酸根离子与氢离子无法共存;在碱性溶液中,氢氧离子与硝酸根离子也无法共存。
而在介于酸性和碱性之间的中性环境中,则需要进一步的判断。
三、离子反应的平衡性在化学反应中,很多情况下当两种溶液混合时,不同的离子会发生反应,然后达到了动态平衡。
例如,铁离子Fe3+ 与氯离子 Cl-在中性条件下的反应:Fe3+ + 3Cl- = FeCl3在这个反应过程中, Fe3+ 离子与 Cl- 离子反应形成了 FeCl3。
这时候,我们需要分析反应方程中的化学平衡常数 K,判断这个反应在平衡状态下的方向。
离子能否大量共存的判断1、离子是一种具有电荷的粒子,它们会互相吸引,因此共存可能是有限的。
2、当离子处于溶液中时,由于其空间分布的限制,电场中的离子难以持久存在,从而限制了它们的共存数量。
3、影响离子共存数量的重要因素是溶液中存在的其他物质。
离子受到溶液中其他离子的影响,它们可能会由于相互作用而形成聚合物,限制其共存的数量。
此外,一些复合物如蛋白质也可以与离子结合,从而降低溶液中离子的浓度。
4、共存的离子数量还受溶液pH值的影响。
当pH值变化时,它可能会改变离子间相互作用方式,从而减少离子共存的能力。
例如,当酸性溶液中的碳酸钙(CaCO3)和碳酸氢钠(NaHCO3)缓慢溶解时,它们会形成一种稳定的溶液,使溶液中离子的共存能力降低。
5、与离子共存的另一个主要因素是离子间可能存在的竞争关系。
由于离子的吸引力,它们之间存在一种竞争攻击的关系。
因此,当两种离子的浓度足够高时,就可能建立这种竞争关系,从而限制离子共存的数量。
6、温度也可能影响离子共存的数量。
高温下,溶液中离子的移动性较高,从而降低了它们在电场中的共存能力。
7、另一个控制离子共存数量的重要因素是溶液中的电导率。
由于相互作用,溶液中的离子可以构建一个紧密的电场结构,从而限制它们的共存数量。
当电场的力越强,离子的共存越少。
8、最后,溶质的物理性质也可能会影响离子共存的数量。
有些溶质会被吸附到离子的表面,增加离子间的表面张力,从而限制离子共存的数量。
总之,离子共存的数量取决于溶液中存在的其他物质、温度、pH值和电导率等多种因素,离子大量共存的可能性可能很有限。
离子能否大量共存的判断溶液中离子大量共存指离子浓度均相当大,若离子间发生反应使离子浓度有些降低,也就是离子不能大量共存。
下面是十条规律可作为离子不能大量共存的判断依据1 生成气体不能大量共存如:硫离子,硫氢根离子,亚硫酸根离子,亚硫酸氢根,碳酸根,碳酸氢根等离子都能和氢离子反应生成气体,故均不能和氢离子大量共存;而铵根和氢氧根易产生氨气,故二者也不能大量共存。
2 生成沉淀不能大量共存溶解性表中不溶或微溶物质的阴阳离子不能大量共存。
如:a 氢氧根和铁离子,亚铁离子,铜离子,锌离子,铝离子,镁离子,银离子,汞离子易发生难容的氢氧化物或氧化物而不能大量共存。
b 硫离子和亚铁离子,锌离子,铜离子,汞离子,银离子等易结合成难容的硫化物沉淀,不能共存c 银离子和氯离子,溴离子,碘离子会形成卤化银沉淀,不能共存。
d 镁离子,钙离子,钡离子,铅离子易和碳酸根,亚硫酸根,硫酸根,磷酸根生成难溶盐(硫酸镁除外)而不能共存;钙离子与氟离子,四氧化二镉不能共存;镁离子,钙离子与C17H35COO -不能共存;镁离子,钙离子,钡离子与磷酸一氢根等不能大量共存。
e 氢离子与硅酸根,硫代硫酸根,偏铝酸易发生沉淀不能共存。
f 两种离子相遇能结合生成微溶物时,也不能大量共存。
如:钙离子与氢氧根离子,硫酸根;银离子与硫酸根;铅离子与氯离子;镁离子与碳酸根离子,亚硫酸根离子;汞离子与硫酸根离子等均不能大量共存。
3 生成难电离物质不能大量共存如:氢离子与氢氧根离子,氟离子,次氯酸根,碳酸根,硫离子,硫氢根离子,亚硫酸根离子,偏铝酸根离子,磷酸根,氢青根,硫青根,醋酸根,甲酸根,四氧化二镉等易结合成难电离弱电解质,因而不能大量共存。
4 发生双水解反应不能大量共存溶解性表中“—"符号对应的阴离子和阳离子绝大多数因发生双水解而不能大量共存。
因弱碱的阳离子水解呈酸性,弱酸阴离子水解呈碱性,两类离子在溶液中相遇因中和反应促进双水解强烈进行或不能共存。
判断溶液中离子能否大量共存的规律离子共存问题历来是高考特别关注的考点,而如何判断溶液中离子能否共存也是学生学习的一个难点。
通常在水溶液中能生成沉淀、生成弱电解质、生成气体、发生氧化还原反应的离子都不能大量共存。
小编为大家整理了高中化学必修:判断溶液中离子能否大量共存的规律,希望同学们牢牢掌握。
多种离子能否大量共存于同一溶液中,归纳起来就是:一色,二性,三特殊,四反应。
1.一色--溶液颜色若限定无色溶液,则Cu2+,Fe2+,Fe3+,MnO4-等有色离子不能存在。
2.二性--溶液的酸,碱性⑴在强酸性溶液中,OH-及弱酸根阴离子(如CO32-,SO32-,S2-,CH3COO-等)不能大量存在。
⑵在强碱性溶液中,弱碱阳离子(如NH4+,Al3+,Mg2+,Fe3+等)不能大量存在。
⑶酸式弱酸根离子(如HCO3-,HSO3-,HS-)在强酸性或强碱性溶液中均不能大量存在。
3.三特殊--三种特殊情况⑴AlO2-与HCO3-不能大量共存:AlO2-+HCO3-+H2O=Al(OH)3↓+CO32-⑵“NO3-+H+”组合具有强氧化性,能与S2-,Fe2+,I-,SO32-等因发生氧化还原反应而不能大量共存⑶NH4+与CH3COO-,CO32-,Mg2+与HCO3-等组合中,虽然两种离子都能水解且水解相互促进,但总的水解程度很小,它们在溶液中能大量共存(加热就不同了)。
4.四反应--四种反应类型指离子间通常能发生的四种类型的反应,能相互反应的离子显然不能大量共存。
⑴复分解反应如Ba2+与SO42-,NH4+与OH-,H+与CH3COO-等⑵氧化还原反应如Fe3+与I-,NO3-(H+)与Fe2+,MnO4-(H+)与Br-等⑶相互促进的水解反应如Al3+与HCO3-,Al3+与AlO2-等⑷络合反应如Fe3+与SCN-等。
二轮复习离子反应--离子共存三步解题法与离子推断4项基本原则1.离子大量共存的判断方法溶液中离子能否大量共存的判断准则:看离子在所给条件下能否反应。
其判断步骤:先看条件,后看反应。
(1)先看条件——题干条件①看准题干要求,需辨别的离子组是“大量共存”还是“不能大量共存”,是“可能”还是“一定”。
②看准附加条件,如溶液的颜色(若为无色溶液,则MnO 4-、Fe 3+、Cu 2+、Fe 2+等有色离子不能大量存在);溶液的酸碱性;特定离子或分子的存在等。
(2)后看反应——所给离子之间能否发生反应反应类型不能大量共存的离子复分解反应生成沉淀Ba 2+与CO 32-、SO 42-、SO 32-;SiO 32-与H +不能大量共存生成气体H +与CO 32-、HCO 3-、S 2-、SO 32-等不能大量共存生成弱电解质H +与OH -、ClO -、F -、CH 3COO -不能大量共存①澄清溶液不代表无色。
②含有大量Fe 3+的溶液,隐含是酸性溶液,并具有强氧化性。
③含有大量NO 3-的溶液,隐含酸性条件下具有强氧化性。
④含有大量AlO 2-的溶液,隐含是碱性溶液。
⑤能发生互相促进水解反应的离子也可能大量共存。
如:NH 4+与CH 3COO -、CO 32-,Mg 2+与HCO 3-等组合中,虽然存在相互促进水解情况,但水解程度较小,在溶液中仍然能大量共存。
2.化学实验与离子检验 (1)沉淀法在离子检验中的应用(3)显色法在离子检验中的应用-,Fe3++3SCN-===Fe(SCN)3Fe3+KSCN溶液红色Fe3++3SCN-===Fe(SCN)3Na+、K+Pt(Fe)丝和稀盐酸火焰分别呈黄色、紫色K+要透过蓝色钴玻璃观察焰色离子共存题目的3步解题流程离子推断中的4项基本原则题组一 离子能否大量共存的判断1.(2018·潮州模拟)常温下,下列各组离子在指定溶液中一定能大量共存的是() A .1.0 mol·L -1的KNO 3溶液:H +、Fe 2+、Cl -、SO 42-B .通入过量SO 2气体后的溶液:H +、Ca 2+、Fe 3+、NO 3-C .通入足量CO 2的溶液:H +、NH 4+、Al 3+、SO 42-D .与铝反应产生大量氢气的溶液:Na +、K +、CO 32-、NO 3-解析:选C A 项,1.0 mol·L -1的KNO 3溶液中,NO 3-、H +和Fe 2+会发生氧化还原反应,不能大量共存,错误;B 项,通入过量SO 2气体后的溶液中,SO 2能被离子组合(NO 3-、H +)和Fe 3+氧化,不能大量共存,错误;C 项,通入足量CO 2的溶液中,各离子之间不发生任何反应而能大量共存,正确;D 项,与铝反应产生大量H 2的溶液呈酸性或碱性,在酸性溶液中,H +和CO 32-反应不能大量共存,酸性溶液中存在NO 3-不能产生H 2,错误。
判断离子共存的四原则离子共存知识是高考的热点,也是每年高考的必考内容。
离子能否共存其实就是看离子之间能否发生反应,能反应,则不能大量共存;否则,能大量共存。
在判断离子能否共存时,常用到以下四大原则: 1肯定性原则肯定性原则就是根据实验现象推出溶液中肯定存在或肯定不存在的离子。
此原则常根据一色、四反应、三特等来确定溶液中存在或不存在的离子。
(1)一色:无色溶液中不存在Fe2+、Fe3+、Cu2+、MnO4-、CrO42-、Cr2O72-等有色离子。
(2)四反应:发生以下四大反应,均不能共存。
①复分解反应离子间相互反应能生成难溶物、易挥发物质、难电离物质都不能大量共存。
I. 生成难溶物:如Ba2+、Ca2+等不能与SO42-、CO32-等大量共存;Ag+与Cl-、SO42-、CO32- 等不能大量共存。
为了确定哪些物质难溶,我们最好能记住溶解性口诀表:钾钠铵硝皆可溶、盐酸盐不溶银亚汞;硫酸盐不溶钡和铅、碳磷酸盐多不溶;多数酸溶碱少溶、只有钾钠铵钡溶;几种微溶物要牢记、口诀中未有皆下沉。
II. 生成易挥发物质:如H+与CO32-、HCO3-、S2-、HS-、SO32-、HSO3-等;OH-与NH4+。
III. 生成难电离物质:如H+与F-、ClO-、PO43-、CH3COO-等弱酸根离子。
②氧化还原反应常见的四种氧化性离子有:Fe3+、NO3-、MnO4-、ClO-,常见的六种还原性离子有:Fe2+、S2-、SO32-、I-、Br-、Cl-。
其中Fe3+ 能将S2-、SO32-、I-氧化而不能大量共存;NO3-在酸性条件下能将Fe2+、S2-、SO32-、I-、Br-氧化而不能大量共存;MnO4-、ClO- 在碱性或中性条件下能将S2-、SO32-、I- 等氧化而不能大量共存,在酸性条件下可以将上述六种还原性离子都氧化而不能大量共存。
除此之外,S2-与SO32-在碱性条件下可以共存,但酸性条件下则会发生氧化还原反应而不能大量共存。
离子能否大量共存的判断
溶液中离子大量共存指离子浓度均相当大,若离子间发生反应使离子浓度有些降低,也就是离子不能大量共存。
下面是十条规律可作为离子不能大量共存的判断依据
1 声称气体不能大量共存
如:硫离子,硫氢根离子,亚硫酸根离子,亚硫酸氢根,碳酸根,碳酸氢根等离子都能和氢离子反应生成气体,故均不能和氢离子大量共存;而铵根和氢氧根易产生氨气,故二者也不能大量共存。
2 生成沉淀不能大量共存
溶解性表中不溶或微溶物质的阴阳离子不能大量共存。
如:
a 氢氧根和铁离子,亚铁离子,铜离子,锌离子,铝离子,镁离子,银离子,汞离子易发生难容的氢氧化物或氧化物而不能大量共存。
b 硫离子和亚铁离子,锌离子,铜离子,汞离子,银离子等
易结合成难容的硫化物沉淀,不能共存
c 银离子和氯离子,溴离子,碘离子会形成卤化银沉淀,不能共存。
d 镁离子,钙离子,钡离子,铅离子易和碳酸根,亚硫酸根,硫酸根,磷酸根生成难溶盐(硫酸镁除外)而不能共存;钙离子与氟离子,四氧化二镉不能共存;镁离子,钙离子与C17H35COO- 不能共存;镁离子,钙离子,钡离子与磷酸一氢根等不能大量共存。
e 氢离子与硅酸根,硫代硫酸根,偏铝酸易发生沉淀不能共存。
f 两种离子相遇能结合生成微溶物时,也不能大量共存。
如:
钙离子与氢氧根离子,硫酸根;银离子与硫酸根;铅离子与氯离子;镁离子与碳酸根离子,亚硫酸根离子;汞离子与硫酸根离子等均不能大量共存。
3 生成难电离物质不能大量共存如:
氢离子与氢氧根离子,氟离子,次氯酸根,碳酸根,硫离子,硫氢根离子,亚硫酸根离子,偏铝酸根离子,磷酸根,氢青根,硫青根,醋酸根,甲酸根,四氧化二镉等易结合成难电离弱电解质,因而不能大量共存。
4 发生双水解反应不能大量共存
溶解性表中"-"符号对应的阴离子和阳离子绝大多数因发生双水解而不能大量共存。
因弱碱的阳离子水解呈酸性,弱酸阴离子水解呈碱性,两类离子在溶液中相遇因中和反应促进双水解强烈进行或不能共存。
如:铝离子与碳酸根,碳酸氢根,硫离子,硫氢根,偏铝酸根;铁离子与碳酸根,碳酸氢根,硫离子(注意铁离子溶液中滴加硫离子主要反应为氧化还原);铵根与硅酸根均因双水解而不能共存。
5 发生络合反应而不能大量共存如:
铁离子与硫青根;银离子与氢青根;铝离子与氟离子;铁离子与酚基等均因结合形成稳定的络离子(难电离),而不能大量共存。
银离子遇氨水不能大量共存,会生成氢氧化银,氧化银或氢氧化二铵和银。
6 发生氧化还原反应不能大量共存
常见的有(尤其在酸性条件下)
a 铁离子与典离子,硫离子,硫氢根离子,亚硫酸根布共存。
b 亚铁离子与氢离子,硝酸根离子不共存(亚铁离子与硝酸根离子共存)。
c 高锰酸根与典离子,硫离子,硫氢根离子,亚铁离子,亚硫酸根离子,硫代硫酸根离子,四氧化二镉离子,甲酸根离子等不共存;若在酸性条件下也不能与氯离子共存。
d 次氯酸根离子具有强氧化性,不能与碘离子,硫离子,硫氢根离子,亚铁离子,亚硫酸根离子硫代硫酸根离子,四氧化二镉离子,甲酸根离子等还原性离子共存。
在酸性条件下也不能与氯离子共存。
e 硝酸跟离子在酸性条件下与碘离子,硫离子,硫氢根离子,亚硫酸根离子等不共存。
f 在酸性条件下,硫离子与亚硫酸根镁离子不共存,但非酸性溶液可以大量共存。
g 硫代硫酸根离子与氢离子不能大量共存(会发生岐化反应生成H2S2O3)
7 弱酸的酸式酸根在酸性条件或碱性条件下均不能大量共存。
如:
碳酸氢根离子,硫氢根离子,亚硫酸氢根离子,磷酸二氢根离子,磷酸氢根离子等级不能在酸性条件下共存也不能再碱性条件共存。
8 发生络离子转为难容物质的反应不能大量共存。
如:
氢氧化二铵和银离子与碘离子不能共存,发生碘化银黄色沉淀和氨气;
9 其它一些上面未列出的特例
微酸性的磷酸二氢根离子与碱性的磷酸根离子不能大量共存,否则二者将反应生成磷酸氢根离子。
偏铝酸根离子与碳酸氢根离子,偏铝酸根离子与亚硫酸氢根离子不能共存,因为虽然都是弱酸根离子水溶液显碱性,但是偏铝酸太弱,偏铝酸根的水解能力太强,含偏铝酸的水溶液氢氧根离子较多与碳酸氢根离子,亚六酸氢根离子作用生成氢氧化铝沉淀和碳酸根离子,亚硫酸根离子。
10 要注意题干中的隐蔽条件
题干中告知离子无色,应排除有色离子如:铁利埃(棕黄色),亚铁离子(浅绿),铜离子(蓝色),高锰酸根(紫色),Fe(SCN)x(红色),酚类与铁离子的化合物;题干中告知酸性(如可用pH=10 ,氢离子浓度为1 mol/L,由水提供的氢离子浓度为10 的负四次方等暗示),碱性(如可用pH=14 或
氢氧根离子浓度为0.1mol/L,由水提供的氢离子浓度为10 的负十四次方等暗示)要注意在各组离子中加进去氢离子或氢氧根离子。