椭圆题型总结较难
- 格式:doc
- 大小:1.37 MB
- 文档页数:20
椭圆题型总结一、 椭圆的定义和方程问题 (一) 定义:PA+PB=2a>2c1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( )A 。
充分不必要条件 B.必要不充分条件 C 。
充要条件 D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P 的轨迹是( )A 。
椭圆 B.圆 C.直线 D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( )A.椭圆B.圆C.直线D.点4. 已知1F 、2F 是平面α内的定点,并且)0(221>=c c F F ,M 是α内的动点,且a MF MF 221=+,判断动点M 的轨迹。
5. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。
(二) 标准方程求参数范围1. 若方程13522=-+-k y k x 表示椭圆,求k 的范围。
(3,4)U(4,5) 2.轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A.充分而不必要条件 B 。
必要不充分条件 C 。
充要条件 D 。
既不充分又不必要条件3. 已知方程112522=-+-m y m x 表示焦点在Y 轴上的椭圆,则实数m 的范围是 。
4. 已知方程222=+ky x 表示焦点在Y 轴上的椭圆,则实数k 的范围是 . 5. 方程231y x -=所表示的曲线是 .6. 如果方程222=+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围. 7. 已知椭圆06322=-+m y mx 的一个焦点为)2,0(,求m 的值。
椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。
2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。
3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。
4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。
5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。
6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。
以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。
高中数学椭圆大题题型归纳总结(145分推荐)一、解答题(本大题共30小题,共360.0分)1.已知椭圆M:x29+y2b2=1(b>0)的一个焦点为(2,0),设椭圆N的焦点恰为椭圆M短轴上的顶点,且椭圆N过点.(1)求N的方程;(2)若直线与椭圆N交于A,B两点,求|AB|.2.已知椭圆E:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为√32,过点P(1,0)作直线交椭圆于点C,D(与A,B均不重合).当点D与椭圆E的上顶点重合时,|AD|=√5.(1)求椭圆E的方程(2)设直线AD,BC的斜率分别为k1,k2,求证:k1k2为定值.3.已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为√22,直线y=k(x−1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为√103时,求k的值.4.已知F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,焦距为4,且C过点P(√3,1).(1)求C的方程;(2)过点F作两条互相垂直的直线l1,l2,若l1与C交于A,B两点,l2与C交于D,E两点,记AB的中点为M,DE的中点为N,试判断直线MN是否过定点,若过定点,请求出定点坐标;若不过定点,请说明理由.5.已知椭圆C1:x2a2+y2b2=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合,过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=43|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点.若|MF|=5,求C1与C2的标准方程.6. 若椭圆C :x 2a 2+y 2a 2=1(a >b >0)的顶点到直线l 1:y =x 的距离分别为√2和√22. (1)求椭圆C 的标准方程(2)设平行于l 1的直线l 交C 于A ,B 两点,且OA ⊥OB ,求直线l 的方程.7. 设椭圆C :x 2a 2+y2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,椭圆的上顶点为点B ,点A 为椭圆C 上一点,且3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ . (1)求椭圆C 的离心率;(2)若b =1,过点F 2的直线交椭圆于M ,N 两点,求线段MN 的中点P 的轨迹方程.8. 已知椭圆C :x 2a 2+y2b 2=1(a >b >0)的焦距为2,且长轴长与短轴长之比为√2:1. (Ⅰ)求椭圆方程;(Ⅱ)若不与坐标轴平行的直线l 与椭圆相切于点P ,O 为坐标原点,求直线OP 与直线l的斜率之积.9.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为√22,短轴的一个端点到椭圆的一个焦点的距离为2√2.(1)求椭圆C的方程;(2)若直线y=x−1与椭圆C交于不同的A、B两点,求△AOB(O为坐标原点)的面积.10.已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F(1,0),离心率为√22.直线l过点F且不平行于坐标轴,l与C有两交点A,B,线段AB的中点为M.(Ⅰ)求椭圆C的方程;(Ⅱ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅲ)延长线段OM与椭圆C交于点P,若四边形OAPB为平行四边形,求此时直线l的斜率.11.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A、B两点(A、B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.12.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10,过原点O作直线OP的垂线l交椭圆C于A,B两点.(1)求椭圆C的方程;(2)求△ABP的面积.13. 已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,且经过点H(−2,1).(1)求椭圆C 的方程;(2)过点P(−3,0)的直线与椭圆C 相交于A ,B 两点,直线HA ,HB 分别交x 轴于M ,N 两点,点G(−2,0),若PM ⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,求证:1λ+1μ为定值.14. 设椭圆C :x 2a 2+y 2b 2=1(a >b >0),O 为原点,椭圆的右顶点和上顶点分别为A 、B ,点D(0,2),椭圆C 的离心率为√22,且∠OAB =∠ODA .(1)求椭圆C 的方程;(2)不与x 轴平行的直线l 与椭圆C 交于不同点P 、Q ,已知点P 关于x 轴对称点为点M ,点Q 关于原点的对称点为点N ,且D 、M 、N 三点共线,求证:直线l 过定点.15. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,短轴的一个端点到椭圆的一个焦点的距离为2√2. (1)求椭圆C 的方程;(2)若直线y =x −1与椭圆C 交于不同的A 、B 两点,求△AOB(O 为坐标原点)的面积.16. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,焦距为2. (1)求椭圆C 的方程;(2)设A ,B 为椭圆C 上两点,O 为坐标原点,k OA ⋅k OB =−12.点D 在线段AB 上,且AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,连接OD 并延长交椭圆C 于E ,试问|OE||OD|是否为定值?若是定值,求出定值;若不是定值,请说明理由.17. 设椭圆C:x 2a 2+y2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.18. 已知F(c,0)是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =x −c 交椭圆C 于M ,N 两点,交y 轴于点A ,AM ⃗⃗⃗⃗⃗⃗ =α1MF ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =β1NF ⃗⃗⃗⃗⃗⃗ ,α1+β1=−6. (1)求椭圆C 的离心率e ;(2)B 是椭圆C 上的点,O 是坐标原点,OB ⃗⃗⃗⃗⃗⃗ =α2OM ⃗⃗⃗⃗⃗⃗⃗ +β2ON⃗⃗⃗⃗⃗⃗ ,求α22+β22的值.19. 已知椭圆C :x 24+y 2=1,F 为右焦点,圆O :x 2+y 2=1,P 为椭圆C 上一点,且P 位于第一象限,过点P 作PT 与圆O 相切于点T ,使得点F ,T 在OP 的两侧. (1)求椭圆C 的焦距及离心率. (2)求四边形OFPT 面积的最大值.20.已知椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,P是椭圆E上的一动点,且|PF1|的最小值是1,当PF1垂直长轴时,|PF1|=32.(1)求椭圆E的方程;(2)是否存在斜率为−1的直线l与以线段F1F2为直径的圆相交于A、B两点,与椭圆E相交于C、D两点,且|CD|⋅|AB|=24√27若存在,求出直线l的方程;若不存在,说明理由.21.已知A,B为椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点,P是椭圆C上一点(异于A,B),满足k PA⋅k PB=−49,且a=6.斜率为−1的直线l交椭圆C于S,T两点,且|ST|=4.(1)求椭圆C的方程及离心率.(2)如图,设直线l1:y=x+m与椭圆C交于M,N两点,求四边形MSNT面积的最大值.22.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴长等于焦距,且经过点P(0,1).(1)求椭圆E的方程;(2)设过点F且不与坐标轴垂直的直线与E交于A、B两点,线段AB的中点为C,D是y轴上一点,且CD⊥AB.求证:线段CD的中点在x轴上.23.已知椭圆C:x2a2+y2b2=1(a>b>0)长轴的两个端点分别为A(−2,0),B(2,0),离心率为√32.(1)求椭圆C的方程;(2)P为椭圆C上异于A,B的动点,直线AP,PB分别交直线x=−6于M,N两点,连接NA并延长交椭圆C于点Q.(ⅰ)求证:直线AP,AN的斜率之积为定值;(ⅰ)判断M,B,Q三点是否共线,并说明理由.24. 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点F 是椭圆E 的左焦点,点A 为椭圆E 的右顶点,点B 为椭圆E 的上顶点,且S ⅰABF =√2+12.(1)求椭圆E 的方程;(2)设点P(m,0)为椭圆E 长轴上的一个动点,过点P 作斜率为ba 的直线l 交椭圆E 于S ,T 两点,证明:|PS|2+|PT|2为定值.25. 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2√23,左、右焦点分别为F 1,F 2,短轴的上端点为P ,且PF 1⃗⃗⃗⃗⃗⃗⃗ ⋅PF 2⃗⃗⃗⃗⃗⃗⃗ =−7. (1)求椭圆C 的方程;(2)若过点Q(1,0)且不与y 轴垂直的直线与椭圆C 交于M ,N 两点,是否存在点T(t,0),使得直线TM 与TN 的斜率之积为定值?若存在,求出t 的值;若不存在,请说明理由.26.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,过椭圆C右焦点并垂直于x轴的直线PM交椭圆C于P,M(点P位于x轴上方)两点,且△OPM(O为坐标原点)的面积为32.(1)求椭圆C的标准方程;(2)若直线l交椭圆C于A,B(A,B异于点P)两点,且直线PA与PB的斜率之积为−94,求点P到直线l距离的最大值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为√22,且点(2√33,−√33)在C上.(1)求椭圆C的标准方程;(2)设过F2的直线l与C交于A,B两点,若|AF1|⋅|BF1|=103,求|AB|.28.已知椭圆C:x2m2+y2=1(m>1)的左右焦点分别为F1,F2,过右焦点F2作直线l 交椭圆C于A(x1,y1),B(x2,y2),其中y1>0,y2<0,△AF1F2、△BF1F2的重心分别为G1、G2.(Ⅰ)若G1坐标为(13,16),求椭圆C的方程;(Ⅱ)设△BF1G1和△ABG2的面积为S1和S2,且43≤S1S2≤53,求实数m的取值范围.29.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为12,A,B分别是它的左、右顶点,F是它的右焦点,过点F作直线与C交于P,Q(异于A,B)两点,当PQ⊥x轴时,△APQ的面积为92.(Ⅰ)求C的标准方程;(Ⅱ)设直线AP与直线BQ交于点M,求证:点M在定直线上.30.如图,椭圆E:x2a2+y2b2=1(a>b>0)经过点A(0,−1),且离心率为√22.(1)求椭圆E的方程;(2)若经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为定值.答案和解析1.【答案】解:(1)由椭圆M :x 29+y 2b 2=1(b >0)的一个焦点为(2,0),得c =2,且b 2=a 2−c 2=9−4=5, ∴椭圆N 的焦点为(0,−√5),(0,√5). 又椭圆N 过点(√22,√3),∴椭圆N 的长轴长为(√2(√2=2√6.∴椭圆N 的半长轴长为√6,半焦距为√5,则短半轴长为1. ∴N 的方程为x 2+y 26=1;(2)联立{y =x −2x 2+y 26=1,得7x 2−4x −2=0.设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=47,x 1x 2=−27,∴|AB|=√2⋅√(x 1+x 2)2−4x 1x 2=√2⋅√(47)2−4×(−27)=127.【解析】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查弦长公式的应用,属于中档题.(1)由已知可得椭圆N 的焦点坐标,再由椭圆定义求得椭圆N 的长半轴长,结合隐含条件求得短半轴长,则椭圆N 的方程可求;(2)联立直线方程与椭圆N 的方程,化为关于x 的一元二次方程,利用根与系数的关系及弦长公式求|AB|.2.【答案】解:(1)当点D 与椭圆E 的上顶点重合时,有D (0,b ),所以|AD |=√a 2+b 2=√5.① 又因为离心率e =√a 2−b 2a=√32,② 由①②解得a =2,b =1,所以E 的方程为x 24+y 2=1.(2)由题意,易知直线CD 的斜率不为0,所以设直线CD 的方程为x =my +1,联立方程组{x 24+y 2=1,x =my +1,得(m 2+4)y 2+2my −3=0,显然Δ>0,设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=−2mm 2+4,y 1y 2=−3m 2+4. 由(1)得A (−2,0),B (2,0),所以k 1=y 2x2+2,k 2=y 1x1−2,k 1k 2=y 2(x 1−2)y 1(x 2+2)=y 2(my 1−1)y 1(my 2+3)=my 1y 2−y 2my 1y 2+3y 1=my 1y 2−(y 1+y 2)+y 1my 1y 2+3y 1=−mm 2+4+y 1−3mm 2+4+3y 1=13为定值.【解析】本题考查椭圆方程及几何意义,直线与椭圆的位置关系,考查椭圆中的定值问题,考查计算能力,属于中档题. (1)解方程√a 2+b 2=√5.①√a 2−b 2a=√32,②即得解; (2)设直线CD 的方程为x =my +1,联立方程组{x 24+y 2=1,x =my +1,得(m 2+4)y 2+2my −3=0,得到韦达定理,再利用韦达定理化简k 1k 2即得证.3.【答案】解:(1)∵椭圆一个顶点为A (2,0),离心率为√22, ∴{a =2c a =√22a 2=b 2+c 2,∴b =√2, ∴椭圆C 的方程为x 24+y 22=1;(2)联立直线y =k(x −1)与椭圆C 的方程, 消去y 整理得(1+2k 2)x 2−4k 2x +2k 2−4=0, 设M(x 1,y 1),N(x 2,y 2), 则x 1+x 2=4k 21+2k2,x 1x 2=2k 2−41+2k 2,=2√(1+k 2)(4+6k 2)1+2k 2,∵A(2,0)到直线y =k(x −1)的距离为|k|√1+k 2,∴△AMN 的面积S =12·2√(1+k2)(4+6k 2)1+2k 2·|k|√1+k2=|k|√4+6k 21+2k 2,∵△AMN 的面积为√103,∴|k|√4+6k 21+2k 2=√103, 解得,经检验Δ>0,∴k =±1.【解析】本题考查椭圆的标准方程及直线与椭圆的位置关系,三角形面积等,属于中档题.(1)根据椭圆一个顶点为A (2,0),离心率为√22,可建立方程组,从而可求椭圆C 的方程;(2)直线y =k(x −1)与椭圆C 联立,消元可得(1+2k 2)x 2−4k 2x +2k 2−4=0,从而可求|MN|,A(2,0)到直线y =k(x −1)的距离,利用△AMN 的面积为√103,可求k 的值.4.【答案】解:(1)由题意可得{2c =43a 2+1b 2=1a 2=b 2+c 2,解得a 2=6或2(舍),b 2=2,故椭圆C 的方程为x 26+y 22=1.(2)由题意知,当l 1,l 2其中一条的斜率不存在时,另外一条的斜率为0,此时直线MN 为x 轴; 当l 1,l 2的斜率都存在且不为0时, 设l 1:x =my −2(m ≠0), 设A(x 1,y 1),B(x 2,y 2),联立{x =my −2x 26+y 22=1,化简可得(m 2+3)y 2−4my −2=0且Δ>0, 所以y 1+y 2=4m m 2+3,y 1y 2=−2m 2+3, 则x 1+x 2=m(y 1+y 2)−4=−12m 2+3,∴M (−6m 2+3,2mm 2+3), 同理由{x =−1my −2x 26+y 22=1,可得N (−6m 23m 2+1,−2m 3m 2+1),则k MN =2m m 2+3+2m3m 2+1−6m 2+3+6m 23m 2+1=4m3(m 2−1),所以直线MN 的方程为y −2mm 2+3=4m3(m 2−1)(x +6m 2+3),化简得y =4m3(m 2−1)x +2mm 2−1=4m 3(m 2−1)(x +32),故直线MN 恒过定点(−32,0). 综上,直线MN 过定点(−32,0).【解析】本题考查椭圆的概念及标准方程 ,考查圆锥曲线中的定点问题,训练了直线与圆锥曲线位置关系的应用(1)由已知条件得到关于a ,b ,c 的方程组,求解方程组得到a 2,b 2的值,则椭圆方程可求;(2)当l 1,l 2其中一条的斜率不存在时,另外一条的斜率为0,此时直线MN 为x 轴;当l 1,l 2的斜率都存在且不为0时, 设l 1:x =my −2(m ≠0), 设A(x 1,y 1),B(x 2,y 2),联立直线方程与椭圆方程,求出M 坐标,用−1k 代换k ,得到点N 的坐标,进一步得到MN 所在直线方程,得到直线MN 过定点.5.【答案】解:(1)因为F 为C 1的焦点且AB ⊥x 轴,可得F(c,0),|AB|=2b 2a,设C 2的标准方程为y 2=2px(p >0),因为F为C2的焦点且CD⊥x轴,所以F(p2,0),|CD|=2p,因为|CD|=43|AB|,C1,C2的焦点重合,所以{c=p22p=43⋅2b2a,消去p,可得4c=8b23a,所以3ac=2b2,所以3ac=2a2−2c2,设C1的离心率为e,由e=ca,则2e2+3e−2=0,解得e=12(−2舍去),故C 1的离心率为12;(2)由(1)可得a=2c,b=√3c,p=2c,所以C1:x24c2+y23c2=1,C2:y2=4cx,联立两曲线方程,消去y,可得3x2+16cx−12c2=0,所以(3x−2c)(x+6c)=0,解得x=23c或x=−6c(舍去),从而|MF|=x+p2=23c+c=53c=5,解得c=3,所以C1和C2的标准方程分别为x236+y227=1,y2=12x.【解析】【试题解析】本题考查抛物线和椭圆的定义、方程和性质,考查直线和椭圆的位置关系,考查方程思想和运算能力,属于中档题.(1)由F为C1的焦点且AB⊥x轴,F为C2的焦点且CD⊥x轴,分别求得F的坐标和|AB|,|CD|,由已知条件可得p,c,a,b的方程,消去p,结合a,b,c和e的关系,解方程可得e的值;(2)由(1)用c表示椭圆方程和抛物线方程,联立两曲线方程,解得M的横坐标,再由抛物线的定义,解方程可得c,进而得到所求曲线方程.6.【答案】解:(1)由直线l1:y=x可知其与两坐标轴的夹角均为45°,故长轴端点到直线l1的距离为√22a,短轴端点到直线l1的距离为√22b,所以√22a=√2,√22b=√22,解得a=2,b=1,所以椭圆C 的标准方程为x 24+y 2=1.(2)设直线l :y =x +t(t ≠0),联立{y =x +t x 24+y 2=1,整理得5x 2+8tx +4t 2−4=0,则△=64t 2−16×5(t 2−1)>0,解得−√5<t <√5, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=−8t5,x 1x 2=4t 2−45, 故y 1y 2=(x 1+t)(x 2+t)=(x 1+x 2)t +x 1x 2+t 2=t 2−45,因为OA ⊥OB ,即OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=4t 2−45+t 2−45=0. 解得t =±2√105,满足−√5<t <√5且t ≠0,所以直线l 的方程为y =x +2√105或y =x −2√105.【解析】(1)由长轴端点到直线l 1的距离为√22a ,短轴端点到直线l 1的距离为√22b ,解得a =2,b =1,即可得椭圆C 的标准方程. (2)设直线l :y =x +t(t ≠0),联立{y =x +tx 24+y 2=1,整理得5x 2+8tx +4t 2−4=0,由即OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=4t 2−45+t 2−45=0.解得t =±2√105,即可. 本题考查了椭圆方程,直线与椭圆的位置关系,属于中档题.7.【答案】解:(1)设A(x 0,y 0),B(0,b),F 1(−c,0),由3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ 得{3x 0+4c =03y 0+b =0, {x 0=−4c3y 0=−b 3,即A(−43c,−b 3), 又∵A(x 0,y 0)在椭圆C :x 2a2+y 2b 2=1上,∴(−43c)a 22+(−13b)2b 2=1,得ca =√22,即椭圆C 的离心率为e =√22;(2)由(1)知,e =√22,又∵b =1,a 2=b 2+c 2,解得a 2=2,b 2=1,∴椭圆C 的方程为x 22+y 2=1,当线段MN 在x 轴上时,中点为坐标原点(0,0), 当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M(x 1,y 1),N(x 2,y 2), 代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my −1=0,∵点F 2在椭圆内部, ∴△>0,y 1+y 2=−2mm 2+2,则x 1+x 2=m(y 1+y 2)+2=4m 2+2, ∴点P(x,y)的坐标满足x =2m 2+2,y =−mm 2+2, 消去m 得,x 2+2y 2−x =0(x ≠0),综上所述,点P 的轨迹方程为x 2+2y 2−x =0.【解析】本题考查直线与椭圆的位置关系的综合应用,椭圆的简单性质以及椭圆方程,考查动点的轨迹方程,是中档题.(1)设A(x 0,y 0),B(0,b),F 1(−c,0),通过3F 1A ⃗⃗⃗⃗⃗⃗⃗ +F 1B ⃗⃗⃗⃗⃗⃗⃗ =0⃗ 求出A 的坐标,转化求解离心率;(2)求出椭圆C 的方程为x 22+y 2=1,当线段MN 在x 轴上时,中点为坐标原点(0,0),当线段MN 不在x 轴上时,设直线MN 的方程为x =my +1,M(x 1,y 1),N(x 2,y 2),代入椭圆方程x 22+y 2=1中,得(m 2+2)y 2+2my −1=0,通过韦达定理,转化求解轨迹方程即可.8.【答案】解:(I)已知椭圆中2c =2,且2a2b =√2,又a 2=b 2+c 2,解得a =√2,b =1, ∴椭圆的方程为x 22+y 2=1;(Ⅱ)由题意:可设l 的方程为y =kx +m(k 存在且k ≠0) 与椭圆C 联立消去y 可得(1+2k 2)x 2+4kmx +2m 2−2=0, 由直线l 与椭圆C 相切,可设切点为(x 0,y 0), 由判别式△=0可得m 2=1+2k 2, 解得x 0=−2km ,y 0=1m ,因此,直线OP 的斜率为k OP =−12k ,直线l 的斜率为k , 即直线OP 与直线l 的斜率之积为−12.【解析】本题考查椭圆的概念及标准方程,椭圆的性质及几何意义,直线与椭圆的位置关系的应用,考查转化思想以及计算能力,是中档题.(Ⅰ)通过焦距,结合长轴长与短轴长之比为√2:1.求出a ,b ,然后求解椭圆方程. (Ⅱ)设出直线方程,与椭圆方程联立,设切点为(x 0,y 0),利用△=0,推出直线OP 的斜率为k OP =−12k ,直线l 的斜率为k ,然后求解即可.9.【答案】解:(1)依题意可设椭圆C 的方程为x 2a 2+y2b 2=1(a >b >0), 则{a 2=b 2+c 2=(2√2)2e =c a=√22,解得{a =2√2c =2 ∴b 2=a 2−c 2=8−4=4, ∴椭圆C 的方程为x 28+y 24=1;(2)设A(x 1,y 1),B(x 2,y 2), 联立方程{x 28+y 24=1y =x −1消去y并整理得:3x 2−4x −6=0, 所以{x 1+x 2=43x 1⋅x 2=−2, |AB|=√1+12|x 1−x 2|=√2√(x 1+x 2)2−4x 1x 2=√2[(43)2−4×(−2)]=4√113.即:|AB|=4√113, 又∵原点O(0,0)到直线y =x −1的距离为d =√2=√22, ∴△AOB 的面积S =12|AB|⋅d =12×4√113×√22=√223.【解析】【试题解析】本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,属于中档题.(1)根据椭圆的离心率及性质,即可求得b 2的值,求得椭圆方程;(2)利用直线与椭圆的位置关系,以及点到直线的距离,弦长公式,三角形的面积公式,即可得.10.【答案】解:(Ⅰ)由题意可知,c =1,e =c a =√22,∵a 2=b 2+c 2,∴a =√2,b =1, ∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k(x −1)(k ≠0),A(x 1,y 1),B(x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2−4k 2x +2k 2−2=0, 则x 1+x 2=4k 22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k2k 2+1,∴k OM =y M x M=−12k,∴k OM ⋅k l =−12k ×k =−12为定值.(Ⅲ)若四边形OAPB 为平行四边形,则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ , ∴x P =x 1+x 2=4k 22k 2+1,y P =y 1+y 2=k(x 1+x 2)−2k =−2k2k 2+1,∵点P 在椭圆上,∴(4k 22k 2+1)2+2×(−2k2k 2+1)2=2,解得k 2=12,即k =±√22, ∴当四边形OAPB 为平行四边形时,直线l 的斜率为k =±√22.【解析】本题考查直线与椭圆的位置关系,涉及曲直联立、中点坐标公式、平面向量的坐标运算等知识点,考查学生的逻辑推理能力和运算能力,属于中档题. (Ⅰ)由题可知,c =1,e =c a=√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k(x −1)(k ≠0),A(x 1,y 1),B(x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =yMx M 可求出直线OM 的斜率,进而得解;(Ⅲ)若四边形OAPB 为平行四边形,则OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ ,利用平面向量的线性坐标运算可以用k 表示点P 的坐标,再将其代入椭圆方程即可得到关于k 的方程,解之即可得解.11.【答案】(1)解:由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知椭圆C 上的点到焦点距离的最大值为3,最小值为1, 可得:a +c =3,a −c =1, ∴a =2,c =1, ∴b 2=a 2−c 2=3, ∴椭圆的标准方程为x 24+y 23=1;(2)证明:设A(x 1,y 1),B(x 2,y 2) 联立{y =kx +m x 24+y 23=1,消去y 可得(3+4k 2)x 2+8mkx +4(m 2−3)=0,则{ Δ=64m 2k 2−16(3+4k 2)(m 2−3)=3+4k 2−m 2>0x 1+x 2=−8mk3+4k 2x 1x 2=4(m 2−3)3+4k 2, 又y 1y 2=(kx 1+m)(kx 2+m)=k 2x 1x 2+mk(x 1+x 2)+m 2=3(m 2−4k 2)3+4k 2,因为以AB 为直径的圆过椭圆的右顶点D(2,0),∴DA ⃗⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗⃗ =0,∴y 1y 2+x 1x 2−2(x 1+x 2)+4=0, ∴3(m 2−4k 2)3+4k 2+4(m 2−3)3+k 2+16mk3+4k 2+4=0,∴7m 2+16mk +4k 2=0, 解得:m 1=−2k,m 2=−2k 7,且均满足3+4k 2−m 2>0,当m 1=−2k 时,l 的方程y =k(x −2),直线过点(2,0),与已知矛盾; 当m 2=−2k7时,l 的方程为y =k(x −27),直线过定点(27,0). 所以,直线l 过定点,定点坐标为(27,0).【解析】本题考查椭圆的性质及应用,考查直线与椭圆的位置关系,考查韦达定理的运用,综合性强,属于中档题.(1)由已知椭圆C 上的点到焦点距离的最大值为3,最小值为1,可得:a +c =3,a −c =1,从而可求椭圆的标准方程;(2)直线与椭圆方程联立,利用以AB 为直径的圆过椭圆的右顶点D(2,0),结合根的判别式和根与系数的关系求解,即可求得结论.12.【答案】解:(1)设椭圆左焦点为F(−c,0),则由题意得{√(2+c)2+1=√10c a=12,解得{a =2c =1,则b 2=a 2−c 2=3, 所以椭圆方程为x 24+y 23=1.(2)设A(x 1,y 1),B(x 2,y 2), 由AB ⊥OP 及k OP =12得k l =−2, 所以直线l 为2x +y =0, 由{2x +y =0x 24+y 23=1,得:19x 2−12=0⇒x 1x 2=−1219, ∴|AB |=√1+k 2|x 1−x 2|=√5√4819=4√28519, 因为点P(2,1)到直线l 的距离为d =|OP |=√5, 所以S △ABP =12×d ×|AB|=12×√5×4√28519=10√5719.【解析】本题考查椭圆的方程和性质,考查直线方程和椭圆方程联立,消去未知数y ,运用韦达定理和弦长公式,考查两点间的距离公式,考查了学生的运算能力,属于中档题.(1)运用两点的距离公式以及离心率公式,可得a ,c 的值,由a ,b ,c 的关系,可得b ,进而得到椭圆方程;(2)根据垂直直线斜率间的关系,求出直线l 的方程,联立椭圆方程,消去y ,运用韦达定理和弦长公式,及两点间的距离公式,即可得到面积.13.【答案】解:(1)由题意知e =√1−b 2a2=√22;又椭圆C 经过点H(−2,1),所以4a 2+1b 2=1; 解得a 2=6,b 2=3,所以椭圆C 的方程为x 26+y 23=1.(2)证明:设直线AB 方程为x =my −3,A(x 1,y 1),B(x 2,y 2), 由{x =my −3x 26+y 23=1联立消元得(m 2+2)y 2−6my +3=0,所以△=36m 2−12(m 2+2)>0,y 1+y 2=6mm 2+2,y 1y 2=3m 2+2, 由题意知,y 1,y 2均不为1. 设M(x M ,0),N(x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线, 所以x M −x 1=(−y 1)(−2−x M ),化简得x M =x 1+2y 11−y 1;由H ,N ,B 三点共线,同理可得X N =x 2+2y 21−y 2;由PM ⃗⃗⃗⃗⃗⃗ =λPG⃗⃗⃗⃗⃗ ,得(x M +3,0)=λ(1,0),即λ=x M +3; 由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,同理可得μ=x N +3; 所以1λ+1μ=1x M +3+1x N +3=1x 1+2y 11−y 1+3+1x 2+2y 21−y 2+3=1−y 1x 1−y 1+3+1−y 2x 2−y 2+3=1−y 1(m −1)y 1+1−y 2(m −1)y 2=1m−1(1−y 1y 1+1−y 2y 2)=1m−1(y 1+y 2y 1y 2−2)=1m−1(6m m 2+23m 2+2−2)=2,所以1λ+1μ为定值.【解析】本题主要考查了椭圆的概念及标准方程椭圆的性质及几何意义,直线与椭圆的位置关系 以及圆锥曲线中的定点与定值问题,属中档题 (1)由题意根据椭圆的概念得椭圆C 的方程;(2)设直线AB 方程为x =my −3,A(x 1,y 1),B(x 2,y 2),直线与椭圆联立消元得(m 2+2)y 2−6my +3=0,由题意知,y 1,y 2均不为1.设M(x M ,0),N(x N ,0),由H ,M ,A 三点共线知AM ⃗⃗⃗⃗⃗⃗ 与MH ⃗⃗⃗⃗⃗⃗⃗ 共线,所以x M −x 1=(−y 1)(−2−x M ),化简得x M =x 1+2y 11−y 1;由H ,N ,B 三点共线,同理可得X N ,由PM ⃗⃗⃗⃗⃗⃗ =λPG ⃗⃗⃗⃗⃗ ,由PN ⃗⃗⃗⃗⃗⃗ =μPG ⃗⃗⃗⃗⃗ ,得λ,μ表达式,从而证得1λ+1μ为定值.14.【答案】解:(1)∵椭圆C 的离心率为√22, ∴a =√2c ,b =c , 又∵∠OAB =∠ODA , ∴tan∠OAB =tan∠ODA , ∴ba =a2,∴a 2=2b , ∴2b 2=2b ,∴b =1,a =√2, 故椭圆的方程为x 22+y 2=1.(2)由题意,可设直线l:x =my +n ,P(x 1,y 1)、Q(x 2,y 2),M(x 1,−y 1)、N(−x 2,−y 2), 联立方程{x =my +n x 2+2y 2=2,得(m 2+2)y 2+2mny +n 2−2=0, ∴{y 1+y 2=−2mn m 2+2y 1⋅y 2=n 2−2m 2+2, Δ=4m 2n 2−4(m 2+2)(n 2−2)>0,即m 2+2>n 2. DM ⃗⃗⃗⃗⃗⃗⃗ =(x 1,−y 1−2),DN ⃗⃗⃗⃗⃗⃗ =(−x 2,−y 2−2), ∵D 、M 、N 三点共线,∴DM⃗⃗⃗⃗⃗⃗⃗ //DN ⃗⃗⃗⃗⃗⃗ ,∴x 1(−y 2−2)=x 2(y 1+2), ∴(my 1+n)(−y 2−2)=(my 2+n)(y 1+2), ∴2my 1y 2+(2m +n)(y 1+y 2)+4n =0. ∴2m ·n 2−2m 2+2+(2m +n)·−2mn m 2+2+4n =0,∴m =2n .∴直线l 过定点(0,−12).【解析】本题考查椭圆的概念及标准方程,考查椭圆的性质及几何意义、直线与椭圆的位置关系及圆锥曲线中的定点值问题,属于较难题. (1)根据条件可得关于a 、b 的方程,求解可得椭圆C 的方程;(2)由题意,可设直线l:x =my +n ,P(x 1,y 1)、Q(x 2,y 2),M(x 1,−y 1)、N(−x 2,−y 2),与椭圆方程联立,根据D 、M 、N 三点共线,可得m =2n ,从而可得结论.15.【答案】解:(1)依题意可设椭圆C 的方程为x 2a 2+y2b2=1(a >b >0), 则{a 2=b 2+c 2=(2√2)2e =c a =√22,解得 {a =2√2c =2, ∴b 2=a 2−c 2=8−4=4, ∴椭圆C 的方程为x 28+y 24=1 ;(2)设A(x 1,y 1),B(x 2,y 2), 联立方程{x 28+y 24=1y =x −1 ,消去y , 并整理得:3x 2−4x −6=0, 所以{x 1+x 2=43x 1·x 2=−2, |AB |=√1+12|x 1−x 2|=√2√(x 1+x 2)2−4x 1x 2 =√2[(43)2−4×(−2)]=4√113·即:|AB|=4√113, 又∵原点O (0,0)到直线y =x −1的距离为d =√2=√22, ∴△AOB 的面积S =12|AB|⋅d =12×4√113×√22=√223.【解析】【试题解析】本题考查椭圆的标准方程及性质,直线与椭圆的位置关系,考查韦达定理,弦长公式,属于中档题.(1)根据椭圆的离心率及性质,即可求得b 2的值,求得椭圆方程;(2)利用直线与椭圆的位置关系,以及点到直线的距离,弦长公式,三角形的面积公式,即可得.16.【答案】解:(1)由已知得e =c a =√22且2c =2,所以a =√2,c =1,所以b =1,所求椭圆方程为x 22+y 2=1.(2)设点A(x 1,y 1),B(x 2,y 2),D(x 3,y 4), 由AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,得{x 3=2x 1+x23,y 3=2y 1+y 23.设|OE||OD|=λ,则结合题意可知OE ⃗⃗⃗⃗⃗ =λOD ⃗⃗⃗⃗⃗⃗ ,所以E(λx 3,λy 3). 将点E(λx 3,λy 3)代入椭圆方程,得λ2(x 322+y 32)=1.即1λ2=x 322+y 32=(2x 1+x 23)22+(2y 1+y 23)2,变形,得1λ2=49,(x 122+y 12)+49(x 1x 22+y 1y 1)+19(x 222+y 22)(∗), 又因为点A ,B 均在椭圆上,且k OA ⋅k OB =−12,所以{ x 122+y 12=1,x 222+y 22=1,k OA ⋅k OB=y 1x 1⋅y 2x 2=−12,代入(∗)式解得λ=3√55. 所以|OE||OD|是定值,为3√55.【解析】本题考查椭圆的性质和方程,圆锥曲线中的定值问题,直线与椭圆的位置关系,属于中档题.(1)由题给条件求出a ,b ,进而得到方程.(2)设点A(x 1,y 1),B(x 2,y 2),D(x 3,y 4),由AD ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ ,得{x 3=2x 1+x23,y 3=2y 1+y 23. ,设|OE||OD|=λ, 则结合题意可知OE ⃗⃗⃗⃗⃗ =λOD⃗⃗⃗⃗⃗⃗ ,所以E(λx 3,λy 3),将点E(λx 3,λy 3)代入椭圆方程,得λ2(x 322+y 32)=1, 由此得1λ2=49,由条件求出λ,进而求出答案.17.【答案】解:(1)将点(0,4)代入椭圆C 的方程得16b 2=1,∴b =4,由e =ca =35,得1−16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1;(2)过点(3,0)且斜率为45的直线为y =45(x −3), 设直线与椭圆C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x −3)代入椭圆C 方程,整理得x 2−3x −8=0, 由韦达定理得x 1+x 2=3,y 1+y 2=45(x 1−3)+45(x 2−3)=45(x 1+x 2)−245=−125.由中点坐标公式AB 中点横坐标为32,纵坐标为−65, ∴所截线段的中点坐标为(32,−65).【解析】【试题解析】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键. (1)椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),可求b ,利用离心率,求出a ,即可得到椭圆C 的方程;(2)过点(3,0)且斜率为45的直线为y =45(x −3),代入椭圆C 方程,整理,利用韦达定理,确定线段的中点坐标.18.【答案】解:(1)由条件可得A(0,−c),设M(x 1,y 1),N(x 2,y 2),则AM ⃗⃗⃗⃗⃗⃗ =(x 1,y 1+c),MF ⃗⃗⃗⃗⃗⃗ =(c −x 1,−y 1),AN ⃗⃗⃗⃗⃗⃗ =(x 2,y 2+c),NF ⃗⃗⃗⃗⃗⃗ =(c −x 2,−y 2). 由AM ⃗⃗⃗⃗⃗⃗ =α1MF ⃗⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =β1NF⃗⃗⃗⃗⃗⃗ 得, (x 1,y 1+c)=α1(c −x 1,−y 1),(x 2,y 2+c)=β1(c −x 2,−y 2), ∴x 1=α1(c −x 1),x 2=β1(c −x 2),∴α1=x 1c−x 1,β1=x2c−x 2(由已知,x 1≠c ,x 2≠c), ∴α1+β1=x 1c−x 1+x2c−x 2=c(x 1+x 2)−2x 1x 2c 2−c(x1+x 2)+x 1x 2.由方程组{y =x −c,b 2x 2+a 2y 2−a 2b 2=0.得(a 2+b 2)x 2−2a 2cx +a 2c 2−a 2b 2=0, ∴x 1+x 2=2a 2c a 2+b2,x 1x 2=a 2c 2−a 2b 2a 2+b 2.∴a 2c 2a 2+b2−2a 2c 2−2a 2b 2a 2+b 2=c 2+b 2+a 2−a 2b 2a 2+b 2=−6 化简得,2a 2=3c 2,即e =√63.(2)设B(x,y),由OB⃗⃗⃗⃗⃗⃗ =α2OM ⃗⃗⃗⃗⃗⃗⃗ +β2ON ⃗⃗⃗⃗⃗⃗ 得,x =α2x 1+β2x 2,y =α2y 1+β2y 2, 将它们代入b 2x 2+a 2y 2−a 2b 2=0并结合b 2x 12+a 2y 12−a 2b 2=0和b 2x 22+a 2y 22−a 2b 2=0化简得,(α22+β22)a 2b 2+2α2β2(b 2x 1x 2+a 2y 1y 2)=a 2b 2.又y 1y 2=(x 1−c)(x 1−c)=x 1x 2−c(x 1+x 2)+c 2=b 2c 2−a 2b 2a 2+b 2, ∴b 2x 1x 2+a 2y 1y 2=b 2(a 2c 2−a 2b 2)a 2+b 2+a 2(b 2c 2−a 2b 2)a 2+b 2=a 2b 2(3c 2−2a 2)a 2+b 2=0,∴(α22+β22)a 2b 2=a 2b 2,所以,α22+β22=1.【解析】本题考查椭圆的方程,直线与椭圆的相交问题,平面向量的坐标运算,解题中需要一定的计算能力,属于中档题.(1)由条件可得A(0,−c),设M(x 1,y 1),N(x 2,y 2),联立直线方程和椭圆方程,结合韦达定理以及向量的坐标运算可得a ,b ,c 的关系,即可求离心率.(2)设B(x,y),结合题意以及向量的坐标运算可得x =α2x 1+β2x 2,y =α2y 1+β2y 2,代入b 2x 2+a 2y 2−a 2b 2=0,结合韦达定理化简整理即可得出答案.19.【答案】解:(1)在椭圆C :x 24+y 2=1中,a =2,b =1,所以c =√a 2−b 2=√3, 故椭圆C 的焦距为2c =2√3, 离心率e =ca =√32;(2)设P(x 0,y 0)(x 0>0,y 0>0),则x 024+y 02=1,故y02=1−x024,所以|TP|2=|OP|2−|OT|2=x02+y02−1=34x02,所以|TP|=√32x0,SΔOTP=12|OT|⋅|TP|=√34x0,又O(0,0),F(√3,0),故SΔOFP=12|OF|⋅y0=√32y0,因此S四边形OFPT =SΔOFP+SΔOTP=√32⋅(x02+y0)=√32⋅√x024+x0y0+y02=√32⋅√1+x0y0,由x024+y02=1,得2√x024⋅y02≤1,即x0⋅y0≤1,所以S四边形OFPT =√32⋅√1+x0y0≤√62,当且仅当x024=y02=12,即x0=√2,y0=√22时等号成立.【解析】本题考查椭圆的几何性质以及椭圆的标准方程,关键是掌握椭圆的标准方程的形式.(1)根据题意,由椭圆的标准方程分析可得a、b的值,计算可得c的值,据此计算可得答案;(2)设P(x0,y0),结合椭圆的方程分析可得四边形OFPT面积的表达式,结合基本不等式的性质分析可得答案.20.【答案】解:(1)由题意,点P椭圆上的一动点,且|PF1|的最小值是1,得a−c=1,因为当PF1垂直长轴时,|PF1|=32,所以b2a=32,即2b2=3a,又由a2=b2+c2,解得a=2,b=√3,所以椭圆C的标准方程为x24+y23=1.(2)假设存在斜率为−1的直线l,不妨设为y=−x+m.由(1)知,椭圆E左右焦点为F1(−1,0),F2(1,0),所以以线段F1F2为直径的圆方程为x2+y2=1.由题意,圆心(0,0)到直线l的距离d=√2<1,即得|m|<√2,又|AB|=2√1−d 2=2√1−m 22=√2×√2−m 2,联立方程组{x 24+y 23=1y =−x +m ,消去y ,整理得7x 2−8mx +4m 2−12=0,由题意,△=(−8m)2−4×7×(4m 2−12)=336−48m 2=48(7−m 2)>0, 解得m 2<7,又|m|<√2,所以m 2<2. 又由韦达定理,得x 1+x 2=8m 7,x 1x 2=4m 2−127,所以|CD|=√1+k 2|x 2−x 1|=√2×√Δ7=4√6√7−m 27,若|CD||AB|=24√27, 则√2×√2−m 2×4√67×√7−m 2=24√27, 整理得m 4−9m 2+8=0, 解得m 2=1,或m 2=8.又m 2<2,所以m 2=1,即m =±1.故存在符合条件的直线l ,其方程为y =−x +1,或y =−x −1.【解析】本题主要考查了椭圆的概念及标准方程、椭圆的性质及几何意义、直线与椭圆的位置关系、圆锥曲线中的定点与定值问题,还涉及了直线与圆方程的应用,属于中等题.(1)根据题中条件得到a −c =1,2b 2=3a ,结合椭圆的性质:a 2=b 2+c 2,建立关于a ,b 的方程组即可求解;(2)由题意,设出直线l 方程y =−x +m ,根据题设条件得到|m|<√2,联立直线l 与椭圆得方程组,利用韦达定理、圆中弦长公式以及两点间距离的坐标公式,依次计算得到|AB|、|CD|关于m 的表达式,由|CD |⋅|AB |=24√27进而可求得m 的值,于是可给出相应的结论.21.【答案】解:(1)设点P 为(x,y ),点A ,B 的坐标分别为(−6,0),(6,0).因为k PA ⋅k PB =yx+6⋅yx−6=−49,所以4x 2+9y 2=144即x 236+y 216=1.因为P在椭圆C上,所以x236+y2b2=1,所以b2=16.故椭圆C的方程为x236+y216=1,c=√a2−b2=√62−16=2√5.所以离心率e=ca =2√56=√53.(2)因为,所以四边形MSNT的面积S MSNT=12|ST|⋅|MN|.由题意得|ST|=4,则S MSNT=2 |MN|.即当|MN|取到最大值时,S MSNT取到最大值.联立直线l1与椭圆C的方程,可得13x2+18mx+9m2−144=0.由,可得m2<52.设点M,N的坐标分别为(x1,y1),(x2,y2),则x1+x2=−18m13,x1x2=9m2−14413,所以|MN|=√2[(−18m13)2−4×9m2−14413]=12√2√−m2+5213.显然当m=0时,|MN|取到最大值24√2613,故S MSNT的最大值为48√2613.【解析】本题考查椭圆几何性质、标准方程以及圆锥曲线中面积最值问题,属于一般题;(1)本题考查椭圆标准方程以及几何性质,根据斜率乘积求出x、y的一个关系,再根据点在椭圆上及椭圆的性质求解即可;(2)本题考查圆锥曲线中面积以及最值问题,对四边形MSNT面积进行正确转化,进而联立直线与椭圆方程,再利用弦长公式求解即可.22.【答案】解:(1)由椭圆E 经过点P(0,1),得b =1,由短轴长等于焦距,得2b =2c ,则c =1, 所以a =√b 2+c 2=√12+12=√2, 故椭圆E 的方程为x 22+y 2=1.(2)设直线l 的方程为x =ty +1(t ≠0), A (x 1,y 1),B (x 2,y 2),C (x 0,y 0),联立直线与椭圆方程:{x =ty +1x 2+2y 2=2,得(t 2+2)y 2+2ty −1=0, 由题意,得△>0,且y 1+y 2=−2tt 2+2,y 1y 2=−1t 2+2, 则y 0=y 1+y 22=−t t 2+2,x 0=ty 0+1=2t 2+2,即C (2t 2+2,−tt 2+2), 设D (0,u ),由得:u+tt 2+2−2t 2+2·1t=−1,解得u =tt 2+2,所以y 0+u =0,所以y 0+u 2=0,故线段CD 的中点在x 轴上.【解析】本题主要考查了直线与椭圆的关系,椭圆的标准方程,考查运算能力,属于中档题.(1)根据题目条件,可得b =c =1,进而可求出a ,可求方程.(2)设直线l 的方程为x =ty +1(t ≠0),联立直线与椭圆方程,消去x 得(t 2+2)y 2+2ty −1=0,由韦达定理可得y 1+y 2=−2tt 2+2,y 1y 2=−1t 2+2,则可求C 点坐标,设D (0,u ),由建立等式解得u ,由y 0+u 2=0,可证结果.23.【答案】解:(1)由题意得a =2,e =c a=√32, 所以c =√3,b 2=a 2−c 2=1, 所以椭圆C 的方程为x 24+y 2=1.(2)(ⅰ)证明:设P(x 0,y 0),因为P 在椭圆C 上,所以x 024+y 02=1.因为直线AP 的斜率为y 0x 0+2,直线BP 的斜率为y 0x 0−2, 所以直线BP 的方程为y =y 0x 0−2(x −2). 所以点N 的坐标为N(−6,−8y 0x0−2).所以直线AN 的斜率为−8y 0x 0−2−6+2=2y 0x0−2. 所以直线AP,AN 的斜率之积为:y 0x 0+2⋅2y 0x 0−2=2y 02x 02−4=2(1−x 024)x 02−4=−12.(ⅰ)M,B,Q 三点共线.因为点P 异于A ,B 两点,可知直线AP 的斜率存在且不为零.设直线AP 斜率为k(k ≠0),则直线AP :y =k(x +2),可得M(−6,−4k). 由(ⅰ)可知直线AP,AN 的斜率之积为−12,所以直线AN 的斜率为−12k , 所以直线AN 的方程为y =−12k (x +2).联立直线AN 与椭圆方程得,{x 2+4y 2−4=0,x =−2ky −2,可得(4+4k 2)y 2+8ky =0.解得Q 点的纵坐标为−2k 1+k2,所以Q 点的坐标为Q(2k 2−21+k 2,−2k 1+k 2).所以,直线BQ 的斜率为−2k1+k 2−02k 2−21+k 2−2=k2,直线BM 的斜率为−4k−0−6−2=k2. 因为直线BQ 的斜率等于直线BM 的斜率,所以M,B,Q 三点共线.【解析】本题考查椭圆的定义及几何性质,直线与椭圆的位置关系,直线的斜率与直线的方程,属于中档题.(1)结合条件和椭圆的几何性质可求得a ,b ,c ,即可求得椭圆的方程;(2)(ⅰ)设P(x 0,y 0),求得直线AP 的斜率并求出直线BP 方程,求得点N 的坐标,再求得直线AN 的斜率,根据点P 在椭圆上,可证明直线AP,AN 的斜率之积为定值; (ⅰ)根据直线AP 的斜率存在且不为零,设直线AP 斜率为k ,则可得直线AP 方程,求出点M ,根据(ⅰ)中的直线AP,AN 的斜率之积为−12,求出直线AN 的斜率为−12k ,可得直线AN 的方程,联立直线AN 与椭圆方程,求得点Q 坐标,根据直线BQ ,BM 斜率相等,可判定结论.24.【答案】解:(1)F(−c,0),A(a,0),B(0,b),则S △ABF =√2+12=12(a +c)b , 即(a +c)b =√2+1,即(a +c)√a 2−c 2=√2+1. 又e =ca =√22,a =√2c ,代入上式中得到,(√2c +c)√2c 2−c 2=√2+1, 解得c =1,于是a =√2,b =1.。
椭圆题型归纳一、知识总结1、椭圆的概念在平面内与两定点21F F 、的 等于常数(大于21F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 。
集合}2{21a MF MF M P =+=,c F F 221=,其中0>a ,0>c ,且c a ,为常数。
(1)若c a >,则集合P 为 ;(2)若c a =,则集合P 为 ; (3)若c a <,则集合P 为 。
b ab aa x a ≤≤-b x b ≤≤- (1)确定椭圆的标准方程包括“定位”和“定量”两方面:“定位”是指确定椭圆与坐标系的相对位置,在中心为原点的情况下,确定焦点位于哪条坐标轴上,以判断椭圆方程的标准形式。
“定量”是指确定22,a b 的具体数值,常用待定系数法。
(2)当椭圆的焦点位置不明确时(或无法确定)求其标准方程时,可设方程为221(0,0,),x y m n m n m n+=>>≠且可避免讨论和繁琐的计算。
也可以设为221A>0,B>0,A B Ax By +=≠(),这种形式在解题中较为方便。
(3)求动点的轨迹方程时,应首先充分的挖掘图形的几何性质,看能否确定轨迹的类型,而不要起步就代入坐标,以避免陷入繁琐的化简计算中二、例题剖析题型一、椭圆的定义例1、设定点)30(1-,F ,)30(2,F ,动点满足条件,则点的轨迹是A 、椭圆B 、线段C 、不存在D 、椭圆或线段例2、下列说法中正确的是( )A.已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于8的点的轨迹是椭圆;B. 已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于6的点的轨迹是椭圆;C.到12(4,0),(4,0)F F -两点的距离之和等于点(5,3)M 到12,F F 的距离之和的点的轨迹是椭圆;D.到12(4,0),(4,0)F F -的距离相等的点的轨迹的方程。
椭圆大题题型及方法总结
椭圆在大题中的题型一般有以下几种:
1. 求椭圆方程:这是基础中的基础,可以直接设方程,也可以根据已知条件设方程。
2. 探究椭圆的性质:例如探究椭圆的焦点位置、焦距大小、离心率等性质。
3. 求椭圆上的点的坐标:通常会涉及到椭圆上的点与其他图形的关系,例如与直线、圆、柱形等的关系。
4. 用韦达定理求解椭圆的问题:韦达定理是椭圆考试中的一个重要知识点,通常会在第 2 问或第 3 问中使用。
5. 与三角形相关的问题:椭圆通常会与三角形联系起来,涉及到三角形的面积、周长、角度等问题。
6. 探究椭圆与其他图形的关系:例如椭圆与圆的关系、椭圆与直线的关系等。
针对以上题型,有一些常用的方法和技巧,例如:
1. 画图是一个必不可少的步骤,有助于更好地理解题意和解决问题。
2. 熟悉椭圆的定义和性质,有助于更好地解答题目。
3. 韦达定理是椭圆考试中的一个重要知识点,需要熟练掌握。
4. 注意椭圆与其他图形的关系,例如椭圆与直线的关系、椭圆与圆的关系等,可能需要使用勾股定理、余弦定理等知识。
5. 考试中需要仔细阅读题目,理解题意,抓住关键信息,有针
对性地解决问题。
椭圆十二大题型总结一、 椭圆的定义和方程问题 (一)定义1. 命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙:P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件2. 已知1F 、2F 是两个定点,且421=F F ,若动点P 满足421=+PF PF 则动点P的轨迹是( )A.椭圆B.圆C.直线D.线段3. 已知1F 、2F是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长P F 1到Q ,使得2PF PQ =,那么动点Q的轨迹是( ) A.椭圆B.圆C.直线D.点4. 椭圆192522=+y x 上一点M 到焦点1F 的距离为2,N 为1MF 的中点,O 是椭圆的中心,则ON 的值是 。
5. 选做:F 1是椭圆15922=+y x 的左焦点,P 在椭圆上运动,定点A (1,1),求||||1PF PA +的最小值。
(二) 标准方程求参数范围1. 试讨论k 的取值范围,使方程13522=-+-k y k x 表示圆,椭圆,双曲线。
2. 轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>( )A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3. 若方程1cos sin 22=+ααy x 表示焦点在y 轴上的椭圆,α所在的象限( ) A.第一象限B. 第二象限C. 第三象限D. 第四象限4. 方程231y x -=所表示的曲线是 。
5. 已知方程222=+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 。
(三) 待定系数法求椭圆的标准方程 1. 根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26;(2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆中心在原点,以坐标轴为对称轴,且经过)2,3(),1,6(21--P P ,求椭圆方程;2. 求下列椭圆的标准方程(1)32,8==e c ;(2)过(3,0)点,离心率为36=e ; (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是3。
椭圆基本题型总结(小题压轴题、基础题分类)题型一、椭圆定义的运用1、 已知1F 、2F 是椭圆的两个焦点,AB 是经过焦点1F 的弦且8AB =,若椭圆长轴长是10,求21F A F B +的值;2、已知A、B是两个定点,4AB =,若点P的轨迹是以A,B为焦点的椭圆,则PA PB +的值可能为( )A 2 B 3 C 4 D 53、椭圆221259x y +=的两个焦点为1F 、2F ,P为椭圆上一点,若01290F PF ∠=,求12F PF ∆的面积。
4、设P是椭圆221499x y +=上的点,1F 、2F 是椭圆的两个焦点,,若12PF =,则2PF =5、椭圆221259x y +=上一点M到焦点1F 的距离为2,N是1MF 中点,则ON =( )A 2 B 6 C 4 D 326、在椭圆2219y x +=上有一点P ,1F 、2F 分别是椭圆的上下焦点,若122PF PF =,则2PF = ;7、已知1F 、2F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点,若2212F A F B +=,则AB = ;8、设1F 、2F 为椭圆221496x y +=的两个焦点,P 是椭圆上的点,且12=43PF PF ::,求12F PF ∆的面积。
9、0m n >>是方程221mx ny +=表示焦点在y 轴上的椭圆的 条件;10、若方程22125x y k k+=−−表示椭圆,则的取值范围为 ;11、已知ABC ∆的顶点在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是 ;题型二、椭圆的标准方程1. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.2.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程.题型三、离心率1、1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该椭圆的两个交点,且2F AB ∆是等边三角形,则椭圆的离心率为 ;242、已知1F 、2F 是椭圆的两个焦点,点P 在椭圆上,且01260F PF ∠=,求椭圆的离心率的取值范围;3、设1F 、2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,若在其右准线上存在点P ,使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是 ;4、在平面直角坐标系xoy 中,设椭圆22221(0)x y a b a b+=>>的焦距为2C ,以点O 为圆心,a 为半径作圆M,若过点2(,0)a P c所作圆M的两条切线相互垂直,则该椭圆的离心率为 ;5、已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b −为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ; 6、已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,且122F F c =,点A 在椭圆上,1120AF F F ⋅=,212AF AF c ⋅=,则椭圆的离心率为 ;7、已知1F 、2F ,是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A、B两点,若2ABF ∆是等腰直角三角形,则这个椭圆的离心率为 ;8、椭圆22221(0)x y a b a b+=>>的右焦点为F ,其右准线与x 轴的交点为A 。
椭圆知识点与题型总结一、椭圆的定义和基本概念1. 椭圆的定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
这两个点F1和F2称为椭圆的焦点,常数2a称为椭圆的长轴的长度。
与椭圆的长轴垂直的轴称为短轴,其长度为常数2b。
2. 椭圆的标准方程:椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴长度的一半,b为短轴长度的一半。
3. 椭圆的离心率:椭圆的离心率e的定义为e=c/a,其中c为焦距的一半,a为长轴长度的一半。
离心率描述了椭圆形状的“圆”的程度,离心率越接近于0,椭圆越接近于圆。
4. 椭圆的几何性质:椭圆有关于焦点、直径、切线等方面的许多重要性质和定理,例如:椭圆的焦点到椭圆上任意一点的距离之和等于常数2a、椭圆的切线与法线的交点、椭圆的对称性等等。
二、椭圆的常见题型及解题方法1. 椭圆的参数方程题型:求椭圆的参数方程,求参数方程表示的椭圆的离心率、焦点、中心等。
解题方法包括利用椭圆的定义,代入标准方程解参数等。
2. 椭圆的焦点、离心率题型:根据给定的椭圆的标准方程或参数方程,求椭圆的焦点坐标、离心率,或者给定椭圆的离心率和一个焦点,求椭圆的方程。
解题方法包括根据离心率的定义求解,利用椭圆的参数方程计算焦点坐标等。
3. 椭圆的性质题型:求椭圆的长轴、短轴长度,椭圆的离心角、焦点、直径,椭圆的法线、切线方程等。
解题方法包括利用椭圆的定义、性质和以直径为坐标系的轴来简化计算等。
4. 椭圆的切线、法线题型:求椭圆在给定的一点上的切线、法线方程,或者求椭圆上一点的切线、法线方向角。
解题方法包括利用椭圆的参数方程求导数,利用椭圆的切线、法线的定义求解等。
5. 椭圆的面积题型:求椭圆的面积,求椭圆内切矩形的最大面积等。
解题方法包括利用椭圆的定义和参数方程求解,利用微积分求解等。
总之,椭圆是重要的数学对象,涉及到许多重要的数学定理和公式,解椭圆相关的数学题目需要运用代数、几何和微积分等多种知识和技巧。
椭圆题型总结一、焦点三角形1. 设F 1、F 2是椭圆12322=+y x 的左、右焦点,弦AB 过F 2,求1ABF △的面积的最大值。
(法一)解:如图,设2(0)xF B ααπ∠=<<,22||||AF m BF n ==,,根据椭圆的定义,1||AF m =,1||BF n =,又12||2F F =,在ΔAF 2F 1和ΔBF 2F 1中应用余弦定理,得2222)44cos )44cos m m m n n n αα⎧=+-⎪⎨=++⎪⎩,∴m =n =∴11211||||2()sin 22F AB B A S F F y y m n α∆=⋅-=⋅⋅+α==令sin t α=,所以01t <≤,∴21()22t g t t t t==++在(01],上是增函数 ∴当1t =,即2πα=时,max 1()3g t =,故1ABF △(法二)解:设AB :x=my+1,与椭圆2x 2+3y 2=6联立,消x 得 (2m 2+3)y 2+4my-4=0 ∵ AB 过椭圆定点F 2,∴ Δ恒大于0.设A(x 1,y 1),B(x 2,y 2),则Δ=48(m 2+1)1ABF S ∆=|y 1-y 2|=223m +=令 t=m 2+1≥1,m 2=t-1, 则1ABF S ∆=t ∈[1,+∞) f(t)=144t t++在t ∈[1,+∞)上单调递增,且f(t)∈[9,+∞) ∴ t=1即m=0时,ΔABF 1。
注意:上述AB 的设法:x=my+1,方程中的m 相当于直线AB 的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。
在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。
2. 如图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1) 求点P 的轨迹方程;(2) 若2·1cos PM PN MPN-∠=,求点P 的坐标.解:(1) 由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b =225a c -=,所以椭圆的方程为221.95x y += (2) 由2,1cos PM PN MPN=-得cos 2.PM PN MPN PM PN =-①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形. 在△PMN 中,4,MN =由余弦定理有2222cos .MN PM PN PM PN MPN =+-②将①代入②,得22242(2).PM PN PM PN =+--故点P 在以M 、N 为焦点,实轴长为23的双曲线2213x y -=上. 由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得33,5.2x y ⎧=±⎪⎪⎨⎪=±⎪⎩即P 点坐标为335335335335(,)-、(,-)、(-,)或(,-).二、点差法定理在椭圆12222=+by a x (a >b >0)中,若直线l 与椭圆相交于M 、N 两点,点),(00y x P 是弦MN的中点,弦MN 所在的直线l 的斜率为MN k ,则2200ab x y k MN -=⋅.3. 直线l 经过点A (1,2),交椭圆2213616x y +=于两点P 1、P 2,(1)若A 是线段P 1P 2的中点,求l 的方程;(2)求P 1P 2的中点的轨迹. 解:(1)设P 1(x 1,y 1)、P 2(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧=+=+116361163622222121y x y x ⇒016))((36))((21212121=+-++-y y y y x x x x …………*∵A (1,2)是线段P 1P 2的中点,∴x 1+x 2=2,y 1+y 2=4, ∴016)(436)(22121=-+-y y x x ,即922121-=--x x y y 。
∴l 的方程为2)1(92+--=x y ,即2x +9y -20=0. (2)设P 1P 2的中点M (x ,y ),则x 1+x 2=2x ,y 1+y 2=2y ,代入*式,得y x x x y y k 942121-=--=,又直线l 经过点A (1,2),∴21y k x -=-,整理,得4x (x -1)+9y (y -2)=0,∴P 1P 2的中点的轨迹:221()(1)2151029x y --+=。
4. 在直角坐标系xOy 中,经过点)2,0(且斜率为k 的直线l 与椭圆1222=+y x 有两个不同的交点P 和Q.(1)求k 的取值围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A 、B ,是否存在常数k ,使得向量OQ OP +与共线?如果存在,求k 的取值围;如果不存在,请说明理由.解:(1)直线l 的方程为.2+=kx y由⎪⎩⎪⎨⎧=++=.12,222y x kx y 得:.0224)12(22=+++kx x k 直线l 与椭圆1222=+y x 有两个不同的交点, )12(83222+-=∆∴k k >0.解之得:k <22-或k >22.∴k 的取值围是⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, . (2)在椭圆1222=+y x 中,焦点在x 轴上,1,2==b a ,).1,2(),1,0(),0,2(-=∴AB B A设弦PQ 的中点为),(00y x M ,则).,(100y x OM =由平行四边形法则可知:.2OM OQ OP =+ OQ OP +与AB 共线,∴OM 与AB 共线.1200y x =-∴,从而.2200-=x y 由2200a b x y k PQ -=⋅得:2122-=⎪⎪⎭⎫ ⎝⎛-⋅k ,.22=∴k 由(1)可知22=k 时,直线l 与椭圆没有两个公共点,∴不存在符合题意的常数k .三、最值问题5. 已知P 为椭圆2214x y +=上任意一点,M (m ,0)(m ∈R ),求PM 的最小值。
目标:复习巩固定点与圆锥曲线上的点的连线段的最值问题。
提示:设P(x,y),用距离公式表示出PM ,利用二次函数思想求最小值。
解:设P(x,y),PM=22()x m y -+=22()14x x m -+-=23214x mx -+=2234()1433m m x -+-,x ∈[-2,2],结合相应的二次函数图像可得 (1)43m <-2,即m<32-时,(PM)min =|m+2|; (2)-2≤43m ≤2,即32-≤m ≤32时,(PM)min =293m -;(3)43m >2,即m>32时,(PM)min =|m-2|. 说明:(1)类似的,亦可求出最大值;(2)椭圆上到椭圆中心最近的点是短轴端点,最小值为b ,最远的点是长轴端点,最大值为a ;(3)椭圆上到左焦点最近的点是长轴左端点,最小值为a-c ,最远的点是长轴右端点,最大值为a+c ;6. 在椭圆2214x y +=求一点P ,是它到直线l :x+2y+10=0的距离最小,并求最大最小值。
目标:复习研究圆锥曲线上的点与直线的距离问题的一般处理方法。
提示:(1)可等价转化为与直线l 平行的椭圆的切线与直线l 之间的距离;(1)也可以用椭圆的参数方程。
解法一:设直线m :x+2y+m=0与椭圆2214x y +=相切,则222014x y m x y ++=⎧⎪⎨+=⎪⎩,消去x ,得8y 2+4my+m 2-4=0, Δ=0,解得m=±当m=P 与直线l=,此时点P 的坐标是(,); 当m=-P 与直线l,此时点P 的坐标是。
解法二:设椭圆上任意一点P(2cos θ,sin θ),θ∈[0,2π)则P 到直线l)10πθ++∴当θ=4π时,P 到直线l的距离最大,最大为此时点P 的坐标是);当θ=54π时,P 到直线l的距离最小,最小为,此时点P 的坐标是()。
说明:在上述解法一中体现了“数形结合”的思想,利用数形结合顺利把点与直线的距离问题迅速转化成两平行线间的距离。
在解法二中,利用椭圆的参数方程可迅速达到消元的目的,而且三角形式转换灵活多变,利用正余弦的有界性求最值或取值围问题是一个不错的选择。
7. 设AB 是过椭圆221925x y +=中心的弦,F 1是椭圆的上焦点,(1)若△ABF 1面积为,求直线AB 的方程;(2)求△ABF 1面积的最大值。
解:(1)设AB :y =kx ,代入椭圆221925x y +=,得x 2=211925k+=2225259k +,∴x 1=-x 2又,S △ABF 1=12|OF 1|·|x 1-x 2|=2|x 1-x 2|=4,∴|x 1-x 2|=2, ∴2225259k+=5,∴k=,∴直线AB 的方程为y=x 。
(2)S △ABF 1=12|OF 1|·|x 1-x 2|=4,∴当k =0时,(S △ABF 1)Max =12。
▋8. (2014金山区一模23题)已知曲线)0>>(1=+:1b a bya x C 所围成的封闭图形的面积为54,曲线1C 的切圆半径为352. 记曲线2C 是以曲线1C 与坐标轴的交点为顶点的椭圆. 设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点. (1)求椭圆2C 的标准方程;(2)若OA m MO =(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (3)若M 是l 与椭圆2C 的交点,求ABM Δ的面积的最小值.【解答】:(1)C 1是以(–a ,0)、(0,–b )、(a ,0)、(0,b )为顶点的菱形,故,…2分又a >b >0,解得:a 2=5,b 2=4,因此所求的椭圆的标准方程为;……4分(2)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y=kx (k ≠0),A (x A ,y A ),令,得,,|OA |2=,…………6分设M (x ,y ),由题意得:|MO |2=m 2|OA |2,(m >0),即:,因为l 是AB 的垂直平分线,所以直线l 的方程为,代入上式消去k 得:,又x 2+y 2≠0,整理得:(m >0),……9分当k =0或斜率不存在时,上式仍然成立,综上所述,点M 的轨迹方程为(m >0)…………………10分(3) 当k 存在且不为零时,由(2)得:,,|OA |2=,由,得:,,|OM |2………13分|AB |2=4|OA |2=,故=………14分≥==,当且仅当4+5k 2=5+4k 2时,即k =±1时,等号成立,此时△ABM 的面积的最小值为.…………………16分当k =0时,==>,当k 不存在时,==>,综上所述,△ABM 的面积的最小值为.……………………………18分9. 设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(1)若6ED DF =,求k 的值;(2)求四边形AEBF 面积的最大值.(1)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>.如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <,且12x x ,满足方程22(14)4k x +=,故21214x x k=-=+.①由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==; 由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. (2)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h ==又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+1525(14k =+==≤ 当21k =,即当12k =时,上式取等号.所以S 的最大值为解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF SS S =+△△222x y =+===当222x y =时,上式取等号.所以S 的最大值为四、垂直关系10.(春季)已知椭圆C 的两个焦点分别为1(10)F -,、2(10)F ,,短轴的两个端点分别为1B 、2B 。