X-ray investigation of polypropylene and irradiated i-PP_EVA blends
- 格式:pdf
- 大小:160.49 KB
- 文档页数:9
第36卷 第5期 陕西科技大学学报 V o l.36N o.5 2018年10月 J o u r n a l o f S h a a n x iU n i v e r s i t y o f S c i e n c e&T e c h n o l o g y O c t.2018* 文章编号:2096-398X(2018)05-0063-08乙烯基类聚合物对克雷伯氏菌和芽孢杆菌共培养的毒理效应朱 超,王慧琴,孙斯蔚,张文婷,丁 泽(陕西科技大学环境科学与工程学院,陕西西安 710021)摘 要:乙烯基类聚合物是皮革化学品中广泛应用的一种新材料,但其工业排放对水体环境生物,特别是微生物的影响还缺乏研究.以克雷伯氏菌(K l e b s i e l l a s p.)和芽孢杆菌(B a c i l l u s s p.)菌株为受试生物,采用批量培养法考察了100m g/L㊁500m g/L和1000m g/L三个暴露浓度下聚丙烯酸酯涂饰剂(L J L-2)㊁聚丙烯酸酯/纳米Z n O复合涂饰剂(L J L-3)㊁P D M-A A-AM-H E A鞣剂(L Y-5)和溶胶凝胶P D M-A A-AM-H E A/Z n O鞣剂(L Y-8)四种乙烯基类聚合物对纯培养和混合培养菌株的急性毒性,评价指标包括培养物中的乳酸脱氢酶(L D H)释放率和胞内活性氧(R O S)水平.结果表明,乙烯基类及其纳米复合涂饰剂较之鞣剂聚合物对细菌纯培养和混合培养体系中微生物的生长抑制现象更为明显;两个系列乙烯基聚合物暴露下的纯培养体系和混合培养体系中L D H释放率与对照组相比均无显著差异,但各个暴露浓度下细胞内R O S水平较之对照均明显提高,且与暴露浓度正相关;整体而言混合培养体系较纯培养体系对两个系列聚合物的生物耐受性更强.关键词:乙烯基聚合物;克雷伯氏菌属;芽孢杆菌属;毒理学效应;乳酸脱氢酶释放率中图分类号:X172 文献标志码:AT h e t o x i c a l e f f e c t o f v i n y l p o l y m e r s o nad e f i n e d c o-c u l t u r eo f K l e b s i e l l a s p.a n d B a c i l l u s s p.Z HU C h a o,WA N G H u i-q i n,S U NS i-w e i,Z HA N G W e n-t i n g,D I N GZ e (S c h o o lo fE n v i r o n m e n t a lS c i e n c ea n d E n g i n e e r i n g,S h a a n x i U n i v e r s i t y o fS c i e n c e&T e c h n o l o g y,X i'a n710021,C h i n a)A b s t r a c t:V i n y l p o l y m e r i sn e w m a t e r i a lw i d e l y u s e di nl e a t h e rc h e m i c a l s w h o s e p o t e n t i a le f f e c t o na q u a t i c o r g a n i s m sd u e t o i n d u s t r i a l d i s c h a r g e,e s p e c i a l l y o nm i c r o o r g a n i s m s,i s s t i l l l a c k i n g.B a t c hc u l t u r ee x p e r i m e n t sw e r ec o n d u c t e dt o i n v e s t i g a t et h ea c u t et o x i c i t y o f f o u r k i n d s o f v i n y l p o l y m e r s a s p o l y a c r y l a t e f i n i s h i n g a g e n t(L J L-2)㊁p o l y a c r y l a t ew i t hn a n o m e t e r Z n Of i n i s h i n g a g e n t(L J L-3)㊁P D M-A A-AM-H E At a n n i n g a g e n t(L Y-5)㊁P D M-A A-AM-H E Aw i t hn a n o Z n Ot a n n i n g a g e n t(L Y-8)o n t h e p u r e c u l t u r e s a n dm i x e d c u l t u r e o f K l e b s i e l l a s p.a n d B a c i l l u s s p.r e s p e c t i v e l y,w i t h e x p o s u r e c o n c e n t r a t i o n s o f100m g/L,500m g/La n d1000*收稿日期:2018-03-01基金项目:国家科技重大专项项目(2017Z X07602-001);陕西省教育厅专项科研计划项目(16J K1081);陕西科技大学博士科研启动基金项目(B J12-29)作者简介:朱 超(1981-),男,陕西西安人,讲师,博士,研究方向:污染环境微生物学㊁环境毒理学Copyright©博看网 . All Rights Reserved.陕西科技大学学报第36卷m g/L.T h e t o x i c a l e f f e c t a n d t o x i cm e c h a n i s m s o f v i n y l p o l y m e r o nm i c r o b e sw e r e e x a m i n e db y d e t e r m i n i n g t h e g r o w t ha sw e l l a s t h e r e l e a s e r a t eo f l ac t a t ede h y d r o g e n a s e(L D H)a n dt h e l e v e l o f i n t r a c e l l u l a r r e a c t i v e o x y g e ns p e c i e s(R O S).T h e r e s u l t s i n d i c a t e d t h a t v i n y l a n di t s n a n o-c o m p o s i t e f i n i s h i n g a g e n t sc a u s e do b v i o u s i n h i b i t i o no f g r o w t ho n p u r ea n d m i x e dc u l t u r e so f b o t h K l e b s i e l l a s p.a nd B a c i l l u s s p.t h a n v i n y l p o l y me r s u s e df o r t a n n i n g;n o s i g-n i f i c a n t d i f f e r e n c e o f L D Hr e l e a s e r a t ew e r e o b s e r v e d i nb o t h p u r e c u l t u r e a n dm i x e d c u l t u r ee x p o s e db y t w os e r i e so fv i n y l p o l y m e r sc o m p a r i n g t oc o n t r o l g r o u p,b u t t h e i n t r a c e l l u l a r R O S l e v e l a te a c he x p o s u r ec o n c e n t r a t i o n w a ss i g n if i c a n t l y h igh e r t h a nt h a to f t h ec o n t r o l a n d p o si t i v e l y c o r r e l a t e dw i t h t h e e x p o s u r e c o n c e n t r a t i o n.O v e r a l l,t h em i x e dc u l t u r e s y s t e mh a dh i g h e r b i o-t o l e r a n c e t o t h e v i n y l p o l y m e r s t h a n p u r e c u l t u r e s y s t e m.K e y w o r d s:v i n y l p o l y m e r s;K l e b s i e l l a s p.;B a c i l l u s s p.;t o x i c a l e f f e c t;l a c t a t e d e h y d r o g e n-a s e r e l e a s e r a t e0 引言乙烯基类聚合物是由含碳碳双键的单体经自由基聚合反应所得,由于具有良好的水分散性,能与胶原分子发生交联结合形成网状结构,并且其官能团可与胶原反应而使结构更加稳定[1],故一直以来乙烯基类聚合物倍受皮革化学工作者的青睐[2].然而在其广泛应用的同时,由于未充分利用及处理不当,导致部分乙烯基类聚合物随工业废水进入水体环境中,很可能对水生生态系统的结构和功能造成影响.污水处理厂的活性污泥生化系统作为这类聚合物进入环境的第一道防线,是强化了的水体功能微生物集群,研究乙烯基类聚合物对其中模式种群的生物学效应及毒理学机制对于评价基于乙烯基类聚合物的各类制革化学品的生态风险和环境友好性具有重要意义.近年来的研究表明变形菌门[3,4]和厚壁菌门[3-5]是活性污泥系统中参与有机物降解的优势种群.芽孢杆菌属是厚壁菌门中典型的孢子生成菌属[6],其催化途径受葡萄糖和各种快速代谢底物的催化代谢物所抑制,其休眠态细胞较之营养细胞有更强的环境压力抵抗能力.克雷伯氏菌属[7]属于变形菌门,其广泛分布于土壤㊁植被和水体等环境中,参与各类生物和地球化学反应,是非临床胁迫环境中的主要微生物构成种群.许多克雷伯氏菌属成员都具备参与环境生物修复的特性.从多环芳烃-重金属土壤中分离纯化得到的一株雷伯氏菌J U1,在培养6d后对荧蒽的最高降解率可达90%以上[8].P i n g L等[9]从土壤中分离得到雷伯氏菌菌株P L1,分别与20m g/L吡啶和10m g/L苯并芘共培养10d后,降解率分别达到63.4%和55.8%,对于受多环芳烃污染的土壤显示了巨大的生物修复潜力.而较之单一种群,混合微生物种群通过代谢协作往往表现出对于毒性有机物的强耐受性和共代谢降解能力.P o u l s e n等[10]报道了一些难降解污染物的好氧降解过程中包含了多种微生物种群的共代谢作用.L i a o等[11]用高浓度磺胺培养筛选出具有降解能力的功能微生物群落,培养4周后平均磺胺降解率为78.3%,优于单一种群降解的效果.从这个角度来说使用混合培养物进行目标化学品的毒性效应评价更符合实际微生物生态系统效能.因此,本研究选取克雷伯氏菌属和芽孢杆菌属作为模式种群分别从纯培养和混合培养水平考察四种乙烯基类聚合物的生物学效应,以期提供此类化学品的基础微生物生态效应.1 实验部分1.1 主要材料受试菌株来源:分离自市政污水处理厂二沉池活性污泥中的克雷伯氏菌属(K l e b s i e l l a s p.)和芽孢杆菌属(B a c i l l u s s p.)菌株,二者N C B I登录号分别为K C753506和K C753503.甘油冷冻保存的菌株经牛肉膏蛋白胨液体培养基活化和牛肉膏蛋白胨固体培养基划线分离后,37℃恒温振荡(150 r/m i n)培养至O D600n m为0.305,浓度约为107 C F U/m L时保存备用.以表1中四种基于乙烯基类聚合物的皮革化学品作为评价对象,设置三个暴露浓度:100m g/ L㊁500m g/L和1000m g/L,将不添加任何化学品的培养物视为对照.1.2 实验设置纯培养设置:在超净工作台中,各取2.5m L㊃46㊃Copyright©博看网 . All Rights Reserved.第5期朱 超等:乙烯基类聚合物对克雷伯氏菌和芽孢杆菌共培养的毒理效应克雷伯氏菌属和芽孢杆菌属扩繁菌液(见1.1)分别加入250m L 的锥形瓶中,并分别添加四种乙烯基类聚合物和牛肉膏蛋白胨液体培养基至100m L 并达到3个浓度水平,每个处理设置三个平行,37℃㊁150r /m i n 进行振荡培养.混合培养设置:混合培养设置同纯培养设置仅接种液不同,为预先1∶1(体积比)混合的克雷伯氏菌和芽孢杆菌扩繁菌液,混合菌液接种量与纯培养暴露处理相同,总量为2.5m L .接种后0h ,2h ,4h ,6h ,8h ,10h ,12h ,24h ,36h ,48h ,72h ,108h 分别测定纯培养处理的和混合培养处理的p H 值及O D 600n m 值.1.3 乳酸脱氢酶(L D H )释放实验L D H 是一类稳定的胞内酶[12],正常情况下在所有细胞中保持几乎相同的浓度,目前其作为一种生物标志物基于检测受损细胞释放的L D H 活性,从而实现对体外细胞系统中的细胞毒性/细胞溶解进行快速简单地定量[13,14].因此,可通过L D H 释放实验评估乙烯基类聚合物对供试菌株细胞膜完整性的影响.L D H 活性通过细胞毒性检测试剂盒(南京建成生物工程研究所:A 020-1)进行测定,将培养12h 的纯培养和混合培养物分别在12000g 下离心5m i n ,在离心后的50μL 上清液中加入0.25m L 基质缓冲液(试剂盒配置)和0.05m L 的辅酶Ⅰ应用液(试剂盒配置),混匀后于37℃水浴中孵育15m i n 后再加入0.25m L 的2,4-二硝基苯肼,混匀后于37℃再次水浴15m i n ,再加入0.4m o l /LN a O H 溶液,混匀后室温放置3m i n 后使用分光光度计(上海尤尼柯仪器有限公司,7200)在440n m 的波长下扫描记录吸光度.其中:乳酸脱氢酶释放率(%)=细胞外乳酸脱氢酶含量/(细胞内乳酸脱氢酶含量+细胞外乳酸脱氢酶含量)×100%[15].表1 实验所用皮革化学品信息类别名称编号结构式乙烯基类及纳米复合涂饰剂系列聚丙烯酸酯涂饰剂L J L -2聚丙烯酸酯/纳米Z n O 复合涂饰剂L J L -3+Z n O乙烯基类及纳米复合鞣剂系列P D M -A A -AM -H E A 鞣剂L Y -5溶胶凝胶P D M -A A -AM -H E A /Z n O 鞣剂L Y -8+Z n O注:D M 为二甲基二烯丙基氯化铵,AM 为丙烯酰胺,A A 为丙烯酸,H E A 为丙烯酸羟乙酯.1.4 培养物胞内活性氧水平检测为了阐明乙烯基类聚合物对供试菌株的可能抑制机理,使用2,7-二氯二氰荧光乙酰乙酸盐标记法[16](H 2D C F -D A ,分子探针,I n v i t r o ge n )检测了供试培养物细胞内的活性氧水平,以反映是否存在超氧自由基引起的胞内损伤[17].具体方法:将短期暴露(12h )后培养液经400g 离心5m i n 后,使用0.1M 的磷酸盐缓冲液(p H 7.2)清洗沉淀3~5次.使用0.1M 的磷酸盐缓冲液(pH 7.2)配置终浓度为50μM 的2,7-二氯二氰荧光乙酰乙酸盐溶液,加入清洗后的沉淀并在室温下避光孵育30m i n,之后离心去除上清液,加入含有不同浓度类别乙烯基类聚合物的培养液(pH 7.2)重悬沉淀,转㊃56㊃Copyright©博看网 . All Rights Reserved.陕西科技大学学报第36卷移至96孔板放置5h 后经酶标仪在485n m 激发光和520n m 发射光滤镜下记录产生的二氯荧光素强度,计算活性氧水平.实验数据用O r i g i n8.5进行制图,用S P S S 18.0软件对数据进行单因素方差分析(A N O -V A ),并用B o n f e r r o n i 法在P =0.01的置信水平检验处理组之间的差异显著性.2 结果与讨论2.1 乙烯基类聚合物暴露对培养生境p H 的影响由图1(a )㊁(b )可知,在对克雷伯氏菌纯培养和芽孢杆菌纯培养过程中,分别添加了乙烯基类及纳米复合鞣剂和涂饰剂后的培养液p H 值随时间的变化差异均较小,且稳定在6.7~7.3的范围内,其属于细菌生长适宜p H 范围[18,19],且与空白对照组的p H 变化同样差异不大.因此,乙烯基类及纳米复合鞣剂和涂饰剂聚合物的添加并没有对芽孢杆菌和克雷伯氏菌纯培养体系的p H 产生影响,排除了由于培养过程中p H 的波动对微生物生长的干扰.(a)克雷伯氏菌纯培养(b)芽孢杆菌纯培养图1 添加乙烯基类聚合物的克雷伯氏菌和芽孢杆菌纯培养过程中p H 的变化2.2 乙烯基类聚合物暴露对克雷伯氏菌和芽孢杆菌纯培养和混合培养生长的影响为获得不同乙烯基类聚合物在各暴露浓度下分别对克雷伯氏菌和芽孢杆菌纯培养和混合培养生长的影响,用O D 600n m 值来表示细菌数目变化,即生长量变化.图2为纯培养过程中不同聚合物类型以及不同暴露浓度对克雷伯氏菌生长的影响.由图2(a )㊁(b )可知,L Y -5和L Y -8聚合物对克雷伯氏菌的生长抑制作用随暴露浓度的增加而增加,导致其初始增长期时间增长,当暴露浓度达到1000m g /L 时克雷伯氏菌达到对数生长期的时间分别为10h 和8h (空白对照组为4h ).相比之下,L Y -5聚合物对于克雷伯氏菌的抑制作用较L Y -8聚合物更为明显.由图2(c )㊁(d )可知,当L J L -2聚合物暴露浓度为500m g /L 时对克雷伯氏菌的生长有较为明显的抑制作用,而相同暴露浓度下L J L -3聚合物纯培养的克雷伯氏菌还是具有明显的增长趋势.因此,L J L -2聚合物对于克雷伯氏菌的抑制作用较L J L -3聚合物更为明显且与暴露浓度呈正相关.综合比较乙烯基类及纳米复合涂饰剂和鞣剂系列对于克雷伯氏菌的生长抑制作用发现,前者更为明显.(a )L Y -5暴露下的克雷伯氏菌生长曲线(b )L Y -8暴露下的克雷伯氏菌生长曲线㊃66㊃Copyright©博看网 . All Rights Reserved.第5期朱 超等:乙烯基类聚合物对克雷伯氏菌和芽孢杆菌共培养的毒理效应(c)L J L-2暴露下的克雷伯氏菌生长曲线(d)L J L-3暴露下的克雷伯氏菌生长曲线图2 不同聚合物类型及暴露水平对克雷伯氏菌纯培养生长的影响图3为纯培养过程中不同聚合物类型以及不同暴露浓度对芽孢杆菌生长的影响.由图3(a)㊁(b)可知,不同暴露浓度下L Y-5和L Y-8聚合物对芽孢杆菌的抑制作用相差不大,暴露浓度为1000m g/L下的培养物均在6h时进入对数生长期.因此,芽孢杆菌对L Y-5和L Y-8聚合物均具有较高的耐受性.结合图3(c)㊁(d)发现,当L J L-2和L J L-3聚合物暴露浓度高于100m g/L时对芽孢杆菌的生长就出现明显的抑制作用,当暴露浓度为1000m g/L时芽孢杆菌虽然可以生长,但迟滞期延长,对数生长期缩短,这在L J L-2暴露下表现更为明显.因此,乙烯基类及纳米复合涂饰剂系列对于芽孢杆菌的生长抑制作用较乙烯基类及纳米复合鞣剂系列的更为明显.图4为不同聚合物类型以及不同暴露浓度对克雷伯氏菌和芽孢杆菌混合培养生长的影响.图4(a)为在L Y-5聚合物不同暴露浓度下混合培养物的生长变化趋势,暴露浓度为1000m g/L时混合培养进入对数生长期的时间为4h.图4(b)中L Y-8聚合物各暴露浓度下的混合培养均在4h时进入了对数生长期.对比该系列聚合物暴露下纯培养(a)L Y-5暴露下的芽孢杆菌生长曲线(b)L Y-8暴露下的芽孢杆菌生长曲线(c)L J L-2暴露下的芽孢杆菌生长曲线(d)L J L-3暴露下的芽孢杆菌生长曲线图3 不同聚合物类型及暴露水平对芽孢杆菌纯培养生长的影响㊃76㊃Copyright©博看网 . All Rights Reserved.陕西科技大学学报第36卷进入对数生长期的时间发现,其对克雷伯氏菌和芽孢杆菌混合培养的抑制作用不明显,甚至较纯培养影响更小,说明共培养体系增加了微生物对污染物的耐毒害作用.由图4(c)可知,L J L-2聚合物各暴露浓度下混合培养的生长均没有出现明显的进入生长期的时间点.结合对克雷伯氏菌和芽孢杆菌的纯培养研究结果发现,L J L-2聚合物对纯培养和混合培养具有抑制作用.图4(d)中L J L-3聚合物同样对于混合培养生长具有较强的抑制作用,且不利影响表现为剂量依赖行为.综上所述,混合培养体系可以减轻聚合物对微生物的抑制作用,其中乙烯基类及纳米复合涂饰剂系列对于混合菌的抑制作用较为明显.(a)L Y-5暴露下的混合培养物生长曲线(b)L Y-8暴露下的混合培养物生长曲线(c)L J L-2暴露下的混合培养物生长曲线(d)L J L-3暴露下的混合培养物生长曲线图4 不同聚合物类型及暴露水平对混合培养物生长的影响以上实验结果表明,聚合物类型及不同暴露浓度对不同种群的生长影响有显著差异,乙烯基类及纳米复合涂饰剂系列聚合物对纯培养和混合培养的抑制均较鞣剂系列聚合物更明显,这可能与乙烯基聚合物结构不同有关.乙烯基类及纳米复合涂饰剂系列聚合物含有大量的酯基,疏水性较强[20].乙烯基类及纳米复合鞣剂系列聚合物除含有酯基外还有大量的羟基㊁酰胺基和亲水基团羧基,疏水性较弱,且碳链较长,空间位阻较大[21].因此,具有更高亲脂性的乙烯基类及纳米复合涂饰剂系列聚合物更容易进入微生物细胞,使得细胞内过氧化水平较高.因此,在皮革化学品的开发过程中不仅要考虑其性能还要考虑引入材料或基团的生态效应,开发绿色皮革化学品.2.3 乙烯基类聚合物暴露对混合培养物L D H和R O S的影响L D H是一种广泛用于毒理学和临床化学检测的生物标志物,用于诊断细胞㊁组织和器官损伤[22],其浓度变化反映了受影响组织的代谢活性变化[23].因此通过测定乙烯基类聚合物暴露处理和对照培养液中的乳酸脱氢酶浓度,可以用于评价乙烯基类聚合物对微生物细胞膜的损伤情况.由图5可知,不论是纯培养还是混合培养,暴露处理的培养液中的乳酸脱氢酶浓度与对照相比处于同一水平,没有显著差异.说明此类皮革化学品的毒理效应机制不在于细胞膜损伤.由图6可知,暴露于乙烯基类聚合物的培养物细胞内活性氧的水平相比于空白对照组均有所提高,说明活性氧胁迫是供试化学品微生物毒理效应的主因.其中增长较大的为L Y-5(500m g/L)㊁L Y-5(1000m g/L)㊁L Y-8(1000m g/L)㊁L J L-2(500 m g/L)㊁L J L-2(1000m g/L)㊁L J L-3(500m g/L)㊁L J L-3(1000m g/L),且其大小顺序大致为L J L-3㊃86㊃Copyright©博看网 . All Rights Reserved.第5期朱 超等:乙烯基类聚合物对克雷伯氏菌和芽孢杆菌共培养的毒理效应图5 不同聚合物类型及暴露水平对芽孢杆菌和克雷伯氏菌纯培养和混合培养L D H 释放率的影响(1000m g /L )>L J L -2(1000m g/L )>L Y -5(1000m g /L )>L J L -2(500m g /L )>L J L -3(500m g /L )>L Y -8(1000m g /L )>L Y -5(500m g /L ).由此可见,乙烯基类及纳米复合涂饰剂系列较乙烯基类及纳米复合鞣剂系列的毒性作用更强,两个系列的乙烯基类聚合物的毒性作用均与浓度呈正相关,浓度越高,毒性作用越强.图6 不同聚合物类型及暴露水平对芽孢杆菌和克雷伯氏菌纯培养和混合培养R O S 产率的影响不同种群对聚合物暴露的活性氧水平响应也有显著差异,如暴露于聚合物L Y -5(1000m g/L )㊁L J L -2(500m g /L ㊁1000m g /L )和L J L -3(500m g/L ㊁1000m g /L )的芽孢杆菌纯培养细胞内活性氧水平明显高于克雷伯氏菌纯培养,说明乙烯基类及纳米复合涂饰剂的聚合物对芽孢杆菌的毒理效应较克雷伯氏菌显著.由暴露于乙烯基类及纳米复合涂饰剂系列L J L -3(500m g /L ㊁1000m g/L )的芽孢杆菌纯培养和混合培养可知,混合培养下细胞内的R O S 水平显著低于纯培养体系.整体上,混合培养体系耐受性更强.低水平的R O S 通常是生理上产生的,可以刺激活细胞的一些信号通路[24,25].然而,细胞内过量的R O S 会导致许多有害的影响,包括脂质过氧化㊁D N A 修饰和蛋白质氧化,导致细胞损伤[26].混合培养体系在一定程度上可以减轻该类聚合物的毒害作用,这可能是由于采用混合培养策略能为微生物提供在纯培养时无法获得的物质流交换,如为其提供生长必须的氨基酸[27],使其生长率和降解效率都比纯培养时显著提高[28],显示活性污泥系统对此类皮革化学品具备一定的生物耐受度和相容性.因此,混合培养体系较之纯培养体系对该类聚合物有更好的耐受性.3 结论乙烯基类聚合物的添加并没有对芽孢杆菌和克雷伯氏菌纯培养体系的p H 产生影响,但对克雷伯氏菌㊁芽孢杆菌纯培养和混合培养的抑制作用均呈现剂量-效应关系;乙烯基类及纳米复合涂饰剂系列聚合物较鞣剂系列对克雷伯氏菌和芽孢杆菌纯培养和混合培养的生长抑制更明显;混合培养体系较纯培养体系对聚合物具有更好的耐受性,可以减轻聚合物对其毒理效应;此类化学品的毒理效应机制不在于细胞膜损伤,而在于活性氧的胁迫.本研究表明,此类制革化学品对于活性污泥系统存在潜在毒理效应,应控制排放浓度在100m g/L 下,以减轻对于污水处理系统或者土壤微生物生态的影响.参考文献[1]武文玲.乙烯基类单体接枝共聚改性淀粉/蒙脱土纳米复合材料的研究[D ].西安:陕西科技大学,2012.[2]石 碧.制革化工材料综述之一 制革鞣剂[J ].皮革科学与工程,1995,5(1):40-45.[3]马思佳,顾卓江,丁丽丽,等.碳源对活性污泥微生物细胞膜特性和群落结构影响[J ].微生物学通报,2017,44(3):561-573.[4]杨 倩,蒋阳月,王小军,等.不同区域污水处理厂活性污泥中微生物菌落结构分析[J ].化工进展,2014,33(12):3329-3336.[5]A n t w i P ,L i J ,O po k uBP ,e t a l .F u n c t i o n a l b a c t e r i a l a n d a r c h a e a ld i v e r s i t y r e v e a l e d b y 16Sr R N A g e n e p y r o s e -q u e n c i n g d u r i n g p o t a t o s t a r c h p r o c e s s i n g wa s t e w a t e r t r e a t m e n t i na nU A S B [J ].B i o r e s o u r c eT e c h n o l o g y ,2017,235(7):348-357.[6]R a l p hA.S l e p e c k y ,H.E r n e s tH e p h i l l .T h e g e n u s b a c i l l u s -n o n m e d i c a l [J ].P r o k a r y o t e s ,2006,4(1):530-562.[7]S yl v a i nB .,F r a n c i n eG.,P a t r i c k A.D .G r i m o n t .T h e g e -n u s K l e b s i e l l a [J ].P r o k a r y o t e s ,2006,32(1):159-196.㊃96㊃Copyright©博看网 . All Rights Reserved.陕西科技大学学报第36卷[8]杨晓磊.复合污染土壤中多环芳烃降解菌的筛选及其降解特性研究[D].上海:上海交通大学,2007.[9]P i n g L,Z h a n g C,Z h a n g C,e t a l.I s o l a t i o n a n d c h a r a c t e r i z a-t i o no f p y r e n ea n db e n z o[a]p y r e n e-d e g r a d i n g K l e b s i e l l a p n e u m o n i aP L1a n di t s p o t e n t i a lu s ei n b i o r e m e d i a t i o n [J].A p p l i e d M i c r o b i o l o g y B i o t e c h n o l o g y,2014,98(8): 3819-3828.[10]P o u l s e nP,M o l l e r J J.D e t e r m i n a t i o no f a r e l a t i o n s h i p b e-t w e e nc h i t i n a s ea c t i v i t y a n d m i c r o b i a l d i v e r s i t y i nc h i t i na m e n d e d c o m p o s t[J].B i o r e s o u r c eT e c h n o l o g y,2008,99(10):4355-4359.[11]L i a oX,L iB,Z o uR,e t a l.A n t i b i o t i cs u l f a n i l a m i d eb i o-d e g r a d a t i o nb y a c c l i m a t e dm i c r o b i a l p o p u l a t i o n s[J].A p-p l i e d M i c r o b i o l o g y&B i o t e c h n o l o g y,2016,100(5): 2439-2447.[12]J a i s w a l SK,S i d d i q iNJ,S h a r m aB.S t u d i e s o n t h e a m e l-i o r a t i v e e f f e c t o f c u r c u m i no n c a r b o f u r a n i n d u c e d p e r t u r-b a t i o n s i n t h e a c t i v i t y o f l a c t a t ed e h y d r o g e n a s e i nw i s t a r r a t s[J].S a u d iJ o u r n a lo fB i o l o g i c a lS c i e n c e s,2016,23(2):161-318.[13]O s m a nA G M,E l r e h e e m A M A,A b u e l f a d lK Y,e t a l.E n z y m a t i ca n dh i s t o p a t h o l o g i cb i o m a r k e r sa s i n d i c a t o r s o f a q u a t i c p o l l u t i o n i n f i s h e s[J].N a t u r a l S c i e n c e,2010,2(11):1302-1311.[14]H e n d r i c k sR,P o o lEJ.S h o r tc o mm u n i c a t i o n:R a p i d i n v i t r ot e s t st od e t e r m i n et h et o x i c i t y o f r a w w a s t e w a t e r a n d t r e a t e d s e w a g e e f f l u e n t s[J].W a t e rS a,2012,38(5): 807-812.[15]李金莲,李 娜,董晓青,等.核因子-κB在左卡尼汀抑制肝细胞氧化损伤中的作用[J].卫生研究,2017,46(4): 533-537.[16]L i m b a c hLK.,W i c kP,M a n s e rP,e t a l.E x p o s u r eo f e n-g i n e e r e dn a n o p a r t i c l e s t oh u m a n l u n g e p i t h e l i a l c e l l s:I n-f l u e n c e o f c h e m i c a l c o m p o s i t i o na n dc a t a l y t i c a c t i v i t y o n o x i d a t i v e s t r e s s[J].E n v i r o n m e n t a l S c i e n c e&T e c h n o l o-g y,2007,41(11):4158-4163.[17]G o l l a v e l l iG,L i n g Y C.M u l t i-f u n c t i o n a l g r a p h e n ea sa ni n v i t r o,a n d i n v i v o,i m a g i n g p r o b e[J].B i o m a t e r i a l s, 2012,33(8):2532-2545.[18]K o u r m e n t z aC,K o r n a r o s M.B i o t r a n s f o r m a t i o no fv o l a-t i l e f a t t y a c i d st o p o l y h y d r o x y a l k a n o a t e sb y e m p l o y i n gm i x e dm i c r o b i a l c o n s o r t i a:T h e e f f e c t o f p Ha n dc a r b o n s o u r c e[J].B i o r e s o u r c eT e c h n o l o g y,2016,222(12):388-398.[19]G u oG,W uD,H a oT,e t a l.D e n i t r i f y i n g s u l f u rc o n v e r-s i o n-a s s o c i a t e dE B P R:T h ee f f e c to f p H o na n a e r o b i c m e t a b o l i s ma n d p e r f o r m a n c e[J].W a t e rR e s e a r c h,2017, 123(7):687-695.[20]罗 茜.乙烯基类聚合物对活性污泥中微生物群落演替的影响研究[D].西安:陕西科技大学,2014.[21]马建中,李 运,高党鸽,等.P(D M D A A C-A A-AM-H E A)的制备及在皮革鞣制中的应用[J].功能材料信息,2011,8(5):13-16.[22]S e n t h i lN S,K a l a i v a n iK,C h u n g P G,e ta l.E f f e c to fn e e ml i m o n o i d s o n l a c t a t ed e h y d r o g e n a s e(L D H)o f t h e r i c e l e a f f o l d e r,C n a p h a l o c r o c i s m e d i n a l i s(G u e née)(I n-s e c t a:L e p i d o p t e r a:P y r a l i d a e)[J].C h e m o s p h e r e,2005, 24(8):760-763.[23]E l-d e m e r d a s hF.O x i d a t i v es t r e s sa n dh e p a t o t o x i c i t y i n-d u ce db y s y n t h e t i c p y r e t h r o i d s-o r g a n o p h o s p h a t e i n s e c t i-c ide sm i x t u r e i nr a t[J].J o u r n a lo fE n v i r o n m e n t a lS c i-e n c e&H e a l t h P a r t C:E n v i r o n m e n t a l C a r c i n o g e n e s i sR e v i e w s,2011,29(2):145-158.[24]P a u l s e nCE,C a r r o l lK S.O r c h e s t r a t i n g r e d o xs i g n a l i n g n e t w o r k s t h r o u g hr e g u l a t o r y c y s t e i n es w i t c h e s[J].A c sC h e m i c a l B i o l o g y,2010,5(1):47-62.[25]W i n t e r b o u r nC C,H a m p t o n M B.T h i o l c h e m i s t r y a n d s p e c i f i c i t y i n r e d o xs i g n a l i n g[J].F r e eR a d i c a l B i o l o g y&M e d i c i n e,2008,45(5):549-561.[26]P o s t i'c S.F r e e r a d i c a l s a n d a n t i o x i d a n t s i nn o r m a l p h y s i o-l o g i c a l f u n c t i o n sa n dh u m a nd i s e a s e s[J].T h eI n t e r n a-t i o n a l J o u r n a l o fB i o c h e m i s t r y&C e l lB i o l o g y,2007,39(1):44-84.[27]Sør e n s e nSR,R o n e nZ,A a m a n dJ.G r o w t h i nc o c u l t u r e s t i m u l a t e sm e t a b o l i s m o ft h e p h e n y l u r e ah e r b i c i d ei s o-p r o t u r o nb y S p h i n g o m o n a ss p.s t r a i nS R S2[J].A p p l i e d&E n v i r o n m e n t a l M i c r o b i o l o g y,2002,68(7):3478-3485.[28]叶姜瑜.S U F R系统中微生物多样性及稳定性的试验研究[D].重庆:重庆大学,2007.【责任编辑:陈 佳】㊃07㊃Copyright©博看网 . All Rights Reserved.。
㊀第41卷㊀第7期2022年7月中国材料进展MATERIALS CHINAVol.41㊀No.7Jul.2022收稿日期:2020-11-02㊀㊀修回日期:2020-12-17第一作者:李倩倩,女,1994年生,博士研究生通讯作者:李㊀炜,女,1971年生,教授,博士生导师,Email:liwei@DOI :10.7502/j.issn.1674-3962.202011001X-ray CT 在纤维增强聚合物复合材料中的应用研究进展李倩倩1,2,李㊀哲1,2,李㊀炜1,2,3(1.东华大学上海高性能纤维复合材料协同创新中心,上海201620)(2.东华大学纺织学院,上海201620)(3.产业用纺织品教育部工程研究中心,上海201620)摘㊀要:X 射线计算机断层扫描(X-ray computed tomography,X-ray CT)作为一种具有高分辨率㊁非破坏性㊁三维可视化等特征的材料表征测量技术,显示出独特的优势㊂X-ray CT 不仅能得到试样的高分辨率外部特征,还能够获取其详细的内部结构信息,在各个领域已经受到越来越多的关注㊂通过简单比较几种无损检测技术的适用性和局限性,引出了X-ray CT 的独特性,阐述了X-ray CT 的原理以及实验室断层扫描和同步辐射计算机断层扫描(synchrotron radiation computed tomography,SRCT)的特点;从探索纤维增强聚合物(fiber reinforced polymer,FRP)复合材料的内部结构㊁评估制造过程㊁获取损伤失效演变以及X-ray CT 与其他表征手段相结合等几个方面归纳了X-ray CT 在FRP 中的应用,并提出了X-ray CT 在FRP 研究中的挑战㊂关键词:无损检测;纤维增强聚合物复合材料;X-ray CT;结构分析;损伤分析;原位实验中图分类号:TB332;O434㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2022)07-0525-11引用格式:李倩倩,李哲,李炜.X-ray CT 在纤维增强聚合物复合材料中的应用研究进展[J].中国材料进展,2022,41(7):525-535.LI Q Q,LI Z,LI W.Application Research Progress of X-ray CT in Fiber Reinforced Polymer Composites[J].Materials China,2022,41(7):525-535.Application Research Progress of X-ray CT in Fiber Reinforced Polymer CompositesLI Qianqian 1,2,LI Zhe 1,2,LI Wei 1,2,3(1.Shanghai Collaborative Innovation Center for High Performance Fiber Composites,Donghua University,Shanghai 201620,China)(2.College of Textiles,Donghua University,Shanghai 201620,China)(3.Engineering Research Center of Technical Textile of Ministry of Education,Shanghai 201620,China)Abstract :X-ray computed tomography (X-ray CT),as a high-resolution,non-destructive,3D visualization technology ofmaterial characterization and measurement,shows unique advantages.It can not only provide the high-resolution external characteristics of the sample,but also obtain the detailed internal structure information,which has attracted more and more attention in various fields.This article highlights the uniqueness of X-ray CT by simply comparing the applicability and limi-tations of several non-destructive testing techniques.The principle of X-ray CT and the characteristics of laboratory tomo-graphy and synchrotron radiation computed tomography(SRCT)are mainly described.The application of X-ray CT in fiber reinforced polymer(FRP)composites is summarized from the aspects of exploring the internal structure,evaluating the man-ufacturing process,obtaining the evolution of damage or failure,and combining X-ray CT with other characterization meth-ods.The challenge and development trend of X-ray CT in FRP research are put forward.Key words :non-destructive testing;fiber reinforced polymer;X-ray CT;structure analysis;damage analysis;in-situ experiment1㊀前㊀言纤维增强聚合物(fiber reinforced polymer,FRP)是由纤维增强体和聚合物基体通过成型固化工艺得到的多相中国材料进展第41卷材料,具有轻质高强㊁耐腐蚀㊁抗疲劳㊁可设计性强等优点,广泛应用于建筑㊁交通㊁海洋㊁风电以及航空航天等领域[1-4]㊂但由于材料本身或制造过程所产生的缺陷,在受到外力作用时会产生纤维断裂[5,6]㊁基体开裂[6]㊁分层[7,8]等损伤,逐渐累积就会导致结构的失效,从而降低工件的实际寿命和使用安全性[6]㊂因此,通过有效的损伤评估方式,研究复合材料的损伤演化和破坏机理,进而揭示复合材料力学性能的影响机制,对于材料的安全性和长期稳定服役具有重要意义[6,9]㊂FRP的损伤是一个三维问题,通常使用的光学和电子显微镜只能观察到其损伤后的表面形态[10],无法获得损伤与时间维度的关系,并且有时会因打磨和切割引起伪影或二次损伤,造成误导,使分析更加复杂化[11-13]㊂而无损检测技术既不改变材料的属性,又不会对试样造成损伤,即可获得材料内部或表面的缺陷和损伤[14],可用于试样的单独检测,也可用于整个生产加工过程的监测,既保持了结构的完整性,又可以检测㊁定位并确定损伤的大小㊂常用的无损检测(non-destructive testing, NDT或non-destructive evaluation,NDE)技术包括目视检测(visual testing,VT或visual inspection,VI)㊁射线检测(radiographic testing,RT)㊁超声检测(ultrasonic testing, UT)㊁渗透检测(penetrate testing,PT)㊁涡流检测(eddy current testing,ET),还有红外热成像(infrared thermogra-phy,IRT)和声发射(acoustic emission,AE)等㊂表1列举了几种无损检测方法的适用范围和局限性[6,14-20]㊂由表1可以看出,大部分的无损检测方法只能检测到大裂缝(大于几毫米),而X射线计算机断层扫描(X-ray com-puted tomography,X-ray CT)可以以亚毫米级,甚至是几微米的空间分辨率观察样品中的裂缝,此外,还能实现对纳米级裂纹进行三维观察[21]㊂因此,较其它无损检测方法而言,X-ray CT具有高的空间分辨率和精确捕获多尺度结构的能力,可实现对细节(包括不同的相㊁界面㊁孔隙和裂缝)清晰的可视化,并能够 原位 监控整个制造过程[22]㊂本文首先介绍了X-ray CT的基本原理㊁原位装置和超高温原位拉伸装置,并简单描述了实验室断层扫描(laboratory tomography)和同步辐射计算机断层扫描(synchrotron radiation computed tomography,SRCT)的区别;其次从利用X-ray CT探索内部结构进而辅助建模㊁评估制造过程㊁获取损伤失效过程以及与其他表征手段相结合这4个方面阐述了X-ray CT在FRP中的应用;表1㊀无损检测方法[6,14-20]Table1㊀Methods of non-destructive testing[6,14-20]无损检测方法适用范围特点局限性目视检测(VT或VI)宏观表面缺陷[15]快速㊁成本低㊁不需要设备[14]不精确,小缺陷很难被检测到,也不能看到内部缺陷,人为因素影响较大[16]射线检测(RT)体积性缺陷检测,如孔隙㊁夹杂㊁纤维屈曲[17]结果真实可靠,呈现方式最直观㊁最全面以及后续可追踪性强[17]使用成本较高,检测速度慢,射线会对人体造成伤害以及面积型缺陷的检出率低[17]超声检测(UT)对面积型缺陷的检出率较高,更适用于厚度较大工件的检验,对缺陷在工件厚度方向上的定位较准确,可检测试件内部尺寸很小的缺陷[17]成本低㊁灵敏度高㊁速度快,设备轻便,对人体及环境无害,设备易于携带[6]分辨率有限,跟踪各种缺陷类型的相互作用或检测隐藏缺陷的能力很差[18],不易检测分层缺陷[8]渗透检测(PT)表面开口裂缝[17]简便㊁方便㊁价格低[17]检测前要清理工件,而且渗透液对试样有污染,不适用于疏松多孔结构[6]涡流检测(ET)工件的裂纹㊁孔洞㊁折叠和夹杂等缺陷的检测[17],材料厚度测量㊁涂层厚度测量㊁热损伤检测㊁热处理检测[15]不需与被测物直接接触,可进行高速检测,易于实现自动化不适用于形状复杂的零件,而且只能检测导电材料的表面和近表面缺陷,检测结果也易于受到材料本身及其他因素的干扰,被测信号难以解释,不能用于不导电材料的检测,无法检测出埋藏较深的缺陷,无法从显示信号中直接判断缺陷的性质[17]红外热成像(IRT)适用于厚度较薄的试样,检测材料近表面及表面缺陷[14,19]便捷㊁高效㊁直观㊁探测面积大以及远距离非接触探测[19]要求工件传热性好,需要敏感且昂贵的仪器,需要高技能的检查员来操作仪器,如果缺陷在零件表面下太深,则缺乏清晰度[14,18]声发射(AE)动态加载过程中的各种损伤及其扩展连续㊁实时检测,并能反映出声发射源在载荷作用下的动态响应特性[20],对工件本身的几何形状要求不高不能检测出未扩展的静态缺陷,而且设备价格昂贵[17],对结果解释很困难,未形成统一的评价标准625㊀第7期李倩倩等:X-ray CT 在纤维增强聚合物复合材料中的应用研究进展最后,总结了X-ray CT 广泛应用于FRP 领域的定性和定量评估,并简单归纳了X-ray CT 在应用中可能遇到的挑战㊂2㊀X 射线计算机断层扫描(X -ray CT )X-ray CT 的基本原理是由于试样内部不同相或者多种成分间的密度以及原子序数的不同,当X 射线透过试样时,试件的不同相或不同成分对X 射线的衰减产生差异,从而造成成像的明暗差别[23,24]㊂X-ray CT 关键在于对不同角度获得的X 光片(投影)的计算重建[25],要从重建图像中获取有效特征,其中一个重要参数就是对比度,对比度是由材料成分的线性衰减系数不同引起的,而线性衰减系数却与材料的密度㊁原子序数息息相关㊂同时分辨率也会影响重建图像的细节水平㊂X-ray CT 的原理示意图如图1所示[25]:X 射线照射到固定在旋转控制台的试样上,每旋转一定的角度,探测器就会采集一张照片,对应于试样旋转的N 个角度会有N 张射线照片被探测器(通常是断层扫描仪中的电荷耦合元件CCD)记录下来(这一过程也称为扫描),重构软件利用这些射线照片获得试样内部衰减系数的三维分布,这种分布形成三维图像,可以使用成像软件进行查看[25]㊂多年来对复合材料损伤模式的研究大多局限在对损伤后的表征,而由于一些特殊的实验环境(如高温)或者是探索机械载荷下样品中缺陷的形成与发展,需要对材料进行原位的观察[25]㊂而原位X-ray CT 可以在载荷下同步获得材料内部结构的变化或损伤演变的过程㊂如图2所示[26],在旋转控制台部位增加了加载控制装置,形成原位加载装置㊂还可以在原位加载装置上实现温度图1㊀X 射线计算机断层扫描的原理示意图[25]Fig.1㊀Schematic diagram of X-ray computed tomography (X-ray CT)[25]场的变化,如图3所示[27],图3a 是原位超高温拉伸试验装置的示意图,分为谐波电动机驱动㊁线性执行器平台㊁负载反馈模块㊁在真空/惰性气体环境下控制超高温的样品室4个部分,载荷由步进电机施加到样品上,而力和位移则使用在线称重传感器和线性可变差动变压传感器进行测量㊂图3b 是加热室的截面图,样品通过水冷却拉伸夹具固定在直径约为170mm 的真空密封室的中心,这个密封室可以抽真空并回填选定的气体(通常为惰性气体),150W 卤素灯分布在6个方位作为热源提供热量,每个卤素灯都有一个指向样品室中心的椭圆形反射镜,形成了直径约为5mm 的球形热区㊂通过使用热电偶对灯的功率进行单独校准来确定热区中被测试样品的温度,样品室中有一个圆柱形铝窗(厚度为300μm,高度为7mm),它可以使X 射线照到样品并透过到X 射线成像系统,如图3c 中X 射线照射模式下的装置示意图[27]㊂图2㊀原位X 射线计算机断层扫描的原理示意图[26]Fig.2㊀Schematic diagram of in situ X-ray computed tomography [26]725中国材料进展第41卷图3㊀原位超高温拉伸试验装置[27]:(a)同步辐射计算机断层扫描原位超高温拉伸测试装置示意图;(b)加热室的截面图, X射线透过加热室和样品的传输路径;(c)X射线照射下的装置示意图Fig.3㊀In situ ultrahigh temperature tensile test rig[27]:(a)schematic illustration of in situ ultrahigh temperature tensile test rig for syn-chrotron X-ray computed microtomography;(b)sectional view of the heating chamber,X-ray transmission path through the heat-ing chamber and sample;(c)schematic of the rig in transmission mode for X-ray computed tomography㊀㊀X-ray CT装置的光源分为同步加速器源提供的平行X射线束和实验室断层扫描仪用几微米宽的微聚焦源提供的锥形X射线束㊂前者称为SRCT,后者称为实验室断层扫描㊂SRCT使用相干光源和平行单色光束,可以达到更高的分辨率,采集时间更短,效率更高,对于低对比度的材料同样适用,但尺度受限制;实验室断层扫描使用多色光源和锥形光束,价格相对较低,可以对较大体积的试样进行多个尺度的研究,但是复合材料的图像会受到相位对比度差和采集时间长的影响[18,24,25]㊂总之,X-ray CT以非破坏性的方式对试样进行高精度的三维检查,不仅可以获得试样内部的详细信息,还可以捕捉制造过程中的缺陷或承载过程中材料的变化,对于研究复合材料的损伤机理和破坏过程是一种非常有效的方法㊂3㊀X-ray CT在FRP中的应用3.1㊀探索FRP的内部结构并辅助建模和验证材料的结构决定它的性能,因此要探究纤维增强复合材料的力学性能影响机制,需要对它的内部结构进行详细了解,同时通过建立材料结构的多尺度模型来对力学性能进行分析及预测[28],复合材料被看作宏观尺度,纱线被认为是介观尺度,而纱线中的纤维就作为细观尺度[29]㊂有限元分析的质量取决于初始模型的质量[30],目前大多数的数值模拟或分析都带有人为的假设,导致模型与材料的真实细观结构存在较大出入[28],因此精确㊁详细的内部结构对于改进复合材料的几何模型㊁评估材料内部缺陷是必要的,对模拟预测复合材料的力学性能具有非常重要的意义,而从X-ray CT图像中获得的信息对此有很大的帮助和参考价值㊂Mahadik等[31]利用X-ray CT研究两种不同结构的三维角联锁机织复合材料的结构特征,以及在不断增加的压力下材料内部结构的变化,主要观察了纱线的屈曲以及富含树脂区域的尺寸和形状㊂刘振国等[23]利用显微计算机断层成像(micro-computed tomography,Micro-CT或μ-CT)对三维全五向编织复合材料的内部结构进行分析,为提高对比度,在碳纤维试件中混编入少量玻璃纤维作为示踪纱,并通过三维重建得到纤维束实体模型,结合计算机辅助设计(computer aided design,CAD)对纤维束的825㊀第7期李倩倩等:X-ray CT 在纤维增强聚合物复合材料中的应用研究进展横截面形状和空间走向进行分析,为进一步研究材料的细观结构模型和性能仿真计算奠定了基础㊂Melenka 等[32]提出了一种圆柱体展开算法,将原始的二维编织管状复合材料的μ-CT 图像转换为扁平的编织物结构图像,以简化编织物几何形状内的单根纱线的分割和分析,同时利用一个自定义的MATLAB 图像处理程序确定了每束纱线的质心㊁横截面积㊁纵横比㊁编织角和编织循环周期,准确评估了编织纱轨迹的几何形状和孔隙含量㊂Sencu 等[33]开发了一套图像处理和分割算法,可以有效地从碳纤维复合材料的X-ray CT 图像中识别纤维中心线(轮廓),从而生成具有高保真度的微尺度有限元模型,图4显示了从X-ray CT 图像切片中分析碳纤维增强复合材料(CFRP)几何结构并生成有限元网格的主要步骤㊂Naouar 等[30]则探索了一种基于图像纹理的分割方法来分离μ-CT 图像中的经纱㊁纬纱和接结纱,该方法适用于内部几何形状众多且复杂的三维织物增强体㊂Huang 等[34]通过Micro-CT 的图像,重建连续纤维增强体的细观几何模型,并将该方法称为Micro-CT AGM,同时开发了名为CompoCT 的软件用作该特定建模过程的平台,主要是结合被观察试样的3个视图对织物中的纱线束进行了手动分割,这与通过标准图像处理技术或从纺织品建模软件获得的模型不同,此方法不需要很高的图像分辨率,被扫描的纤维样品的尺寸可以更大,从而包含一个以上的单胞,可将真实材料更具代表性的几何特征与其内在的变化结合起来,实现了在较低的扫描分辨率(22μm /像素)下准确重构二维机织织物和三维正交织物的细观几何模型㊂Liu 等[35]同样基于X-ray CT 图像,用一种统计分析方法来生成三维五向编织复合材料的代表性体积单元,并考虑了织物的压缩和轴向纱线的加捻,从而更接近织物的真实状态㊂Naouar 等[29]阐述了基于μ-CT 的纺织品复合材料的细观建模技术,包括两种分割方法(结构张量和纹理分析)和织物预制体的变形响应模型以及织物复合材料的损伤模型,指出X-ray CT 是一种适用于织物增强复合材料细观分析的工具㊂陈城华[28]将三维编织复合材料试样进行Micro-CT 扫描,获得切片照片后,通过编程实现对该试样图像的三维重构,再提取代表性单胞用于有限元模拟计算,介绍了一套完整的编织复合材料三维重建流程㊂顾伯洪课题组[36,37]也将X-ray CT 与有限元模拟相结合,主要是利用图像来识别材料内部的损伤,再与有限元模拟的结果进行比较验证,从而分析损伤分布或失效机制㊂正如Naresh 等[22]的总结,分析X-ray CT 的图像生成体素几何来运行模拟,进而研究各种复合工艺参数的过程可以分为3个基本步骤,如图5所示:①预处理,包括对X-ray CT 数据进行滤波和平滑,以增强图像质量,再将这些处理后的图像作为输入数据,通过使用软件包来创建三维结构;②分析,包括分割和特征提取(成分分析),分割是数据分析中必不可少的步骤,可根据其灰度值区分FRP 中的不同成分,比如纤维㊁树脂㊁空气等;③数据可视化,包括结果的映射和渲染,然后验证结果[22]㊂相较于其他无损检测技术,X-ray CT 在探索FRP 的内部结构以及辅助建模中具有很大的优势,可以为复杂的几何形状提供详细的三维信息,包括纱线的屈曲㊁纤维的取向㊁各成分的体积分数㊁有关孔隙的形态信息以及纤维㊁纱线路径的轮廓等,但在图像获取后仍需要进行优化,同时对操作人员的熟练程度以及图像处理能力有很高的技术要求,时间和资金成本也很昂贵㊂此外,这些基于X-ray CT 的建模大多是中尺度或者是细观尺度,而用于理解和辅助宏观几何形状的建模方法有限,并且每个扫描标本的文件大小通常为几GB,需要使用大容量的计算机数据存储设备来存储X-ray CT 扫描和重建的数据[18,22]㊂图4㊀从X-ray CT 图像切片中提取碳纤维增强复合材料(CFRP)几何结构并生成有限元网格的主要步骤[33]Fig.4㊀Main steps to extract the CFRP geometry from X-ray CT image slices and generate finite element (FE)meshes [33]925中国材料进展第41卷图5㊀将X-ray CT的图像用于模拟分析的过程[22] Fig.5㊀Process of using X-ray CT images for simulation analysis[22]3.2㊀评估制造过程不仅结构会决定复合材料的性能,制造工艺也会对复合材料的力学性能产生重要的影响,因此可以利用X-ray CT来跟踪成型制造过程[24]㊂在FRP制造过程中,其压力变形响应影响所需的压实力㊁作用在设备上的应力㊁工具要求和成品质量,对压缩变形的良好认识有助于开发更准确的模型来描述和预测制造过程,从而改进所采用的制备方法[38]㊂Somashekar等[38]通过X-ray CT观察了一种双轴缝合玻璃纤维增强材料在不同工艺参数(最终纤维体积分数㊁压实速度㊁压实次数)压缩后的纤维变形㊂孔隙是复合材料制造过程中产生的主要缺陷之一,Plessix等[39]开发了一种专门的装置并安装在欧洲同步辐射光源(ESRF)的一条专用于超快速X-ary CT的光束线上,以获得原位三维图像,并分析孔隙演化的原位图像与时间㊁温度㊁压力㊁初始含水量和树脂转化率之间的关系,这项工作对原位监测热固性复合材料固化过程中孔隙的产生和发展演变做出了开创性的贡献㊂Dilonardo等[3]采用X-ray CT评估层合结构和夹芯结构的CFRP的孔隙率,此外,具体的数据分析还提供了关于孔隙㊁缺陷或纤维错位的尺寸㊁形状和位置的详细信息㊂而了解树脂流动机理对于通过液体模塑制造具有最小孔隙率的复合材料至关重要, Vilà等[40]设计并建造了一个微型真空注入装置,在德国电子同步加速器研究所(DESY)用X-ray CT对真空辅助渗透的微尺度渗透机制进行了原位研究,微观层面的流体传播以及纤维束内的孔隙传输机制与流体和纤维之间的浸润性㊁流体的流变性以及纤维束的局部微结构特征(局部纤维体积分数㊁纤维取向)有关㊂除了孔隙之外,另一个重要的质量评价参数是纤维的排列,纤维与设计对准角度间的偏差是一种制造缺陷,称为纤维错位, Nguyen等[41]提出了一种基于X-ray CT分析碳纤维增强层压板在低压(真空辅助树脂传递模塑)和高压(高压釜)制造过程中纤维错位的方法,结果表明两种不同成型方法的纤维错位角度分别为1ʎ~2ʎ和2ʎ~4ʎ㊂X-ray CT尽管在空间分辨率和样品尺寸之间存在相互制约,尤其对于大型部件的制造过程来说不好实现评估,但仍可以提供详细的三维信息来评估制造质量,在制造过程的不同阶段生成有价值的信息,并且能够以模型的形式提取该信息,从而更好地理解和改进制造过程,提高FRP的质量和制造效率㊂3.3㊀获取损伤失效过程利用X-ray CT捕获复合材料在载荷作用下的损伤失效过程,对于深入理解复合材料的破坏机理和力学影响机制,进而实现结构优化设计具有重要的理论意义和工程应用价值[42]㊂而纤维增强复合材料在载荷下的损伤主要包括层内裂纹㊁层间分层㊁纤维抽拔和纤维断裂等[5,43,44],损伤的开始和随后的扩展是这些机制的复杂相互作用㊂2008年,Wright等[45]首次使用SRCT来实现航空航天级碳纤维/环氧复合材料损伤的亚微米分辨率,并能在以前观察不到的三维尺度上对损伤的结构和损伤机制的相互作用进行可视化,层内裂纹和分层对纤维断裂的关键作用首次得到明确㊂于颂等[46]利用高分辨率Micro-CT 对三维五向编织非周期性结构复合材料和周期性结构复035㊀第7期李倩倩等:X-ray CT在纤维增强聚合物复合材料中的应用研究进展合材料在拉伸载荷下的破坏形貌进行了观测,并得出非周期性三维编织复合材料拉伸强度比相同结构参数周期性材料的低16.84%,损伤主要是因为在减纱处形成了应力集中,而最终破坏模式以纤维束抽拔断裂为主㊂2011年,Scott等[12]利用高分辨率SRCT捕捉碳纤维环氧树脂[90/0]s缺口层合板加载至失效时的纤维损伤进展,首次对高性能材料在载荷条件下的裂纹扩展进行了直接原位测量㊂如图6所示为原位加载的载荷从失效载荷的20%到80%过程中基体损伤的提取和分割,获得的图像能够识别和量化所使用样本的主要损伤机制㊂之后,很多学者利用自己开发的原位拉伸加载装置对试样的加载过程进行原位观察,这些装置必须满足可以安装在X-ray CT仪器的内部,因此都很小,所以对精度的要求很高㊂Hu等[47]开发的原位拉伸试验装置可对小样品施加微小的力,位移精度约为1μm,测力精度约为0.1mN,获得了高分辨率(0.7μm/像素)的原位观察,显示了随机取向短碳纤维/环氧树脂复合材料的断裂过程㊂Saito等[48]也开发了足够小的定制拉伸装置,它的最大行程和最大力分别为220mm和98N(10kgf),加载速率可在0.01~1mm㊃min-1范围内调整㊂Li等[26]则考虑到(拉伸试验中)夹具的难度和(剪切试验中)夹具的X射线吸收,设计了新型试件,并提出了一种将SRCT㊁原位加载框架和新型试件相结合的实验方法,分别对三维机织碳纤维增强复合材料在平面外拉伸和剪切载荷作用下的损伤演化进行了研究㊂Liu等[49]利用高分辨率的SRCT,通过原位准静态拉伸试验研究了短碳纤维增强复合材料从初始状态到试样断裂的内部三维应变演化过程,首次在三维中同时分析材料微观结构和应变值,并得出短碳纤维/环氧树脂复合材料的宏观性能(刚度降低和破坏过程)与微观特征(应变演化和纤维排列)有关的结论㊂冲击试验的典型特征是持续时间非常短,应变率非常高,这意味着通过原位X-ray CT对其进行成像存在困难[13,24],因此,目前大部分的文献都是利用X-ray CT获取复合材料冲击试验前后的图像来分析其损伤情况㊂En-fedaque等[51]对树脂传递模塑(resin-transfer molding, RTM)制造的碳-璃混杂织物层合板进行低速冲击试验,通过X-ray CT研究了不同厚度和不同玻璃纤维含量的试样在30~245J冲击能量范围的变形和断裂机理,并聚焦于未完全穿透试样的分析㊂Bull等[51]用实验室μ-CT和SRCT对颗粒增韧复合材料层合板低速冲击损伤进行了三维评估,两种成像方法的结合使得可以在微观和细观水平上以常规的体素分辨率观察到颗粒增韧的效果,突出了使用X-ray CT将微观力学损伤行为与宏观力学响应联系起来的潜力㊂虽然X-ray CT可对复合材料冲击损伤后的破坏形貌进行三维可视化,但对于弯曲或变形的复合材料板,很难自动将损坏归因于特定层或层间界面, Léonard等[52]开发了一种X-ray CT数据处理方法,这种距离变换方法允许切片近似地遵循复合曲率,允许在三维上逐层地分离㊁可视化和量化冲击损伤以提取损伤在厚度方向上的分布,这对描述复合材料层合板冲击损伤和从X-ray CT数据集提取相关测量数据的能力有很大的提高㊂Zhou等[53]也用X-ray CT对三维编织复合材料圆管在用分离式霍普金森压杆(split Hopkinson pressure bar, SHPB)横向冲击后的损伤进行了研究,通过三维图像分析了冲击速度㊁编织角和编织层数对损伤机理的影响㊂Lu等[13]则通过X-ray CT对热塑性碳纤维/聚醚醚酮复合图6㊀原位加载的载荷从失效载荷的20%到80%过程基体损伤的提取和分割(90ʎ层中的横向层裂纹,从缺口延伸的0ʎ裂口,以及在90/0界面处发生的分层)[12]Fig.6㊀Extraction and segmentation of matrix damage during in situ loading from20%to80%of failure load(transverse ply cracks in the90ʎplies,0ʎsplits extending from the notch,and delamination occurring at90/0interface)[12]135。
原位小角X射线散射研究热拉工艺对熔融拉伸法制备的聚丙烯微孔膜结构的影响王卫;徐佳丽;林元菲;李薛宇;孟令蒲;李良彬【摘要】采用原位小角X射线散射和扫描电子显微镜研究了热拉过程中,拉伸比和拉伸温度对熔融拉伸法制备的聚丙烯微孔膜晶体和孔洞结构的影响.研究结果表明,冷拉、热定型过程中片晶簇被分离开,其内部结构在热拉过程中不发生分离等变形;随着热拉拉伸比的增加,片晶簇间架桥长度不断增大;与冷拉、热定型样品相比,热拉后的微孔膜架桥沿垂直于拉伸方向具有较好的周期性.不同的拉伸温度结果表明,架桥长度随拉伸温度升高而增加;温度过高时架桥会发生熔融.%With in situ small angle X-ray scattering and scanning electron microscopy measurements, effects of hot stretching temperatures and draw ratios on the lamellae and pore structure of the polypropylene microporous membrane were studied. The results show that the lamellar clusters are separated during the cold stretching and heat setting process, while the internal structures do not undergo separation during the hot stretching process. With the increase of the hot stretching ratio, the bridge length of microporous membrane after hot stretching process increases substantially. Also, it has better periodicity along the equatorial direction compared with the cold-stretching and heat-setting samples. The results of different stretching temperatures show that the length of the bridge increases with the increase of the stretching temperature. When the temperature is too high, the bridge will partially melt. This work can provide guidance for the structural control during preparation of polypropylene microporous membranes.【期刊名称】《高等学校化学学报》【年(卷),期】2017(038)011【总页数】7页(P2128-2134)【关键词】聚丙烯微孔膜;原位小角X射线散射;冷拉-热定型-热拉;微孔;片晶簇【作者】王卫;徐佳丽;林元菲;李薛宇;孟令蒲;李良彬【作者单位】石河子大学化学化工学院,新疆兵团化工绿色过程重点实验室,石河子832003;石河子大学化学化工学院,新疆兵团化工绿色过程重点实验室,石河子832003;中国科学技术大学国家同步辐射实验室,合肥230029;中国科学技术大学国家同步辐射实验室,合肥230029;中国科学技术大学国家同步辐射实验室,合肥230029;中国科学技术大学国家同步辐射实验室,合肥230029【正文语种】中文【中图分类】O631在聚合物的熔融拉伸中, 热拉阶段是一个复杂的过程, 其中, 片晶厚度减小, 架桥数量增多, 可能的原因是一些片晶熔融重结晶形成了架桥, 高分子折叠链解开并且重新取向[1]. 另一方面, 一些孔洞在冷拉后看不见, 而孔洞在热拉过程中被扩大. 升高温度, 熔融的高分子链会以一种动态的形式解缠结, 但温度并不能改变缠结点之间的平均长度及缠结链段的长度, 或者是缠结的密度. 在晶体结构中链段经过解缠结从片晶间的无定形区抽出. 随着温度的降低, 半结晶聚合物的片晶间无定形区的缠结密度能够保持不变甚至增加. 通常认为半结晶聚合物的机械性能与其结晶度有关, 也和片晶间无定形区的系带分子链(tie链)的浓度分布相关. 在这些变量中, 由于tie 链不容易通过实验测量或者通过理论预测, 所以容易给研究造成错觉. Feng等[2]通过假设片晶间非晶区的缠结网络直接影响tie链的形成, 推断它对微孔膜整体机械性能和孔洞的形成起重要作用. 由此片晶间无定形区域中缠结链段的密度可能高于最初的非晶态; 温度无法改变片晶间缠结链段的密度, 但是可以改变链段的流动性. 拉伸比低于200%, 温度为130 ℃时, 较强的架桥结构会导致主熔融峰右侧出现小肩峰, 与冷拉样品相比, 热拉会产生更多架桥, 在高温条件下由于主链解开, tie链会不受限制, 被拉伸结晶成为架桥, 这一过程中退火和冷拉都不涉及. 同时一些链段也会从片晶中拉出, 所有这些会导致架桥的增加. 在热拉过程中断裂的架桥会被其它稳定的架桥合并, 一些架桥会相互黏附, 最终形成稳定的架桥, 有利于孔结构的稳定. 熔融拉伸法制备微孔膜工艺流程: (1)在拉伸冷却外场下制备具有高度取向的平行排列片晶结构的预制膜; (2)对预制膜进行退火处理, 消除微缺陷和增加片晶厚度; (3)冷拉诱发微孔产生, 热拉使微孔不断扩大[3]. 该工艺具有环保、无污染及微孔结构均匀可控等优点, 是目前锂电池微孔隔膜工业加工使用最多, 也是最成熟的工艺. 在微孔膜制备过程中, 原料参数[4~6]、挤出-流延工艺[7,8]、退火工艺[9,10]和后拉伸工艺[11,12]对微孔膜结构和性能具有重要影响.我们曾深入研究了挤出流延过程中流延拉伸比和流延辊温等参数对预制膜力学性能及微孔膜结构与性能的影响[7,8], 揭示了冷拉过程中微孔形成机理[13]. 本文报道热拉工艺条件对聚丙烯微孔膜晶体结构和微孔结构的影响. 通过原位小角X射线散射技术(in situ SAXS)研究热拉过程以及热定型、降温过程中, 拉伸方向的片晶厚度以及长周期的变化, 再结合离线扫描电子显微镜中片晶簇平均厚度和架桥平均长度, 建立热拉拉伸比、温度与微孔膜微孔结构、微孔形貌的关系.1.1 样品与仪器采用扫描电子显微镜(SEM, Sirion200, FEI公司)对样品的表面形貌进行表征, 样品在真空中喷金60 s, 加速电压为5.00 kV.等规聚丙烯(iPP)流延膜由广东工业大学雷彩红提供. 预制膜通过挤出、拉伸、热定型制备. 口模温度为210 ℃, 拉伸比为125, 冷却辊的温度为80 ℃.图1分别是自制恒幅宽单向拉伸装置和聚丙烯微孔膜的实物图. 恒幅宽单向拉伸装置具备力学数据采集、拉伸条件精确控制、以及与X射线联用进行原位结构检测等功能[14]. 该装置通过伺服电机驱动正反向滚珠丝杠带动夹头向两侧匀速运动, 对样品施加均匀拉伸, 同时保证X射线始终从样品中央位置入射. 应力信息通过BK-2A 型传感器(中国航天空气动力技术研究院)采集. 装置腔体通过热风加热, 能够在较短的时间内升温至设定温度, 并维持其温度的稳定.小角X射线散射(SAXS)可用于在线研究晶体形态随拉伸的演变过程. 本实验使用的仪器是自行研制的二维(2D)SAXS仪[15]. 30 W微焦点X射线源(Incoatec, GmbH)经单色化后得到Cu Kα射线(λ=0.154 nm), 提供高平行光束(发散度约1 mrad). 多丝正比探测器(Bruker Hi-star)记录X射线散射光强, 探测面积为1024×1024像素点(每个像素点的尺寸为105 μm). 样品到探测器的距离为2883 mm. 通过测定和扣除SAXS数据的背底散射, 将散射矢量的模q作为横坐标对二维的散射图样进行径向积分, 得到一维散射强度分布曲线. 由于SAXS是基于周期性的密度差来进行测量的, 因此利用公式L=2π/q计算得到长周期L, 它包含晶区和非晶区的厚度, q为峰位[16].1.2 样品膜的制备聚丙烯预制膜在135 ℃真空干燥箱(DZF-6050型)中退火处理12 h后, 裁剪成大小为20 mm×20 mm×0.019 mm(L0×L0×H)的样条. 采用自制恒幅宽单向拉伸装置将预制膜拉伸至30%应变, 拉伸温度为室温(25 ℃), 拉伸速度为20 mm/s; 将拉伸后的样品在135 ℃热定型20 min, 然后进行如下操作:(1) 在温度135 ℃, 以0.2 mm/s的拉伸速度, 热拉伸至不同应变(100%, 150%, 200%和 250%); 随后样品均在140 ℃热定型20 min, 再将温度降至室温. 4个样品分别定义为L0.3R1.0, L0.3R1.5, L0.3R2.0和L0.3R2.5.(2)将拉伸温度分别设定为127, 135和153 ℃, 以0.2 mm/s的拉伸速度热拉伸至150%, 分别于128.3, 136.8及154.5 ℃热定型20 min, 将样品温度降至室温. 为了便于描述, 将样品分别定义为W127, W135和W153.2.1 不同热拉拉伸比对聚丙烯微孔膜结构的影响图2为不同应变的热拉以及相应的热定型、降温过程中采集到的二维SAXS散射图样. 热拉过程L0.3R1.0, L0.3R1.5, L0.3R2.0, L0.3R2.5的采集时间分别为120, 180, 240, 300 s. 热定型和降温过程采集时间相同. 可以看出, 热拉、热定型及降温过程中, 在垂直于拉伸方向具有尖锐的散射信号, 表明微孔膜中生成了沿拉伸方向取向的微孔和纤维晶架桥.图3为不同拉伸比的微孔膜的电镜照片. 可以观察到不同热拉拉伸比制得的微孔膜的骨架片晶簇的厚度相差不大, 架桥长度却相差较大. 对微孔膜L0.3R1.0, L0.3R1.5, L0.3R2.0, L0.3R2.5以及冷拉热定型样品L0.3的电镜照片中架桥的长度和片晶簇厚度进行数据统计(如图4), 结果表明, 不同样品片晶簇的厚度基本相同, 而片晶簇间架桥长度从40 nm(冷拉热定型样品)增加至230 nm(L0.3R2.5).微孔膜沿着水平方向的无定形和晶体区域的平均厚度可通过电子密度分布相关函数K(z)[17,18]得到:式中: z为拉伸方向; I为散射强度.图5为通过一维相关函数得到聚丙烯微孔膜的片晶长周期(L)和片晶间无定形区厚度(da). 通过DSC计算所有微孔膜结晶度均大于50%, 因此得到的较小值da为无定形厚度, 片晶的厚度为将得到的片晶的平均厚度、长周期以及架桥的平均长度、片晶簇的平均厚度进行对比(图4), 结果表明, 片晶簇的厚度以及片晶长周期和片晶厚度几乎相同, 说明热拉过程中片晶簇内的无定形区没有发生形变, 片晶簇中片晶的数目也变化不大. 因此, 冷拉热定型过程中被分离开的片晶簇在热拉过程中几乎不会发生变化, 只是片晶簇进一步分离, 连接片晶簇之间的架桥在拉伸作用下进一步变长.对冷拉热定型与热拉制得的微孔膜SAXS图样进行竖直方向的强度积分, 可得到一维积分强度曲线(图6). 与冷拉热定型样品相比, 热拉后的微孔膜在竖直方向散射峰更明显、强度更大, 表明热拉可诱导生成周期性更好的架桥结构, 且架桥数量更多. 对比不同的热拉拉伸比, 可以看出, 随着拉伸比的增加, q值变小, 长周期变大, 说明随热拉拉伸比增加, 部分架桥断裂导致长周期性变大.2.2 不同热拉温度对聚丙烯微孔膜结构的影响图7为不同热拉温度时热拉、热定型及降温过程中二维SAXS散射图. 图中所有样品的采集时间相同.表1为不同拉伸温度下各阶段的水平方向上的片晶长周期和晶体的平均厚度统计结果. 可以看出, 在热拉、热定型和降温阶段, 拉伸温度对微孔膜片晶长周期、片晶厚度影响不大.图8(A)~(C)为相同拉伸比不同热拉拉伸温度制备的微孔膜的SEM照片. 将图8(A)~(C)中的架桥长度和片晶簇的厚度进行统计, 结果如图9所示. 随着拉伸温度升高, 连接片晶簇之间的架桥长度逐渐增加, 而片晶簇的平均厚度则变化不明显. 微孔膜热拉过程中, 片晶簇和片晶簇间无定形为串联结构, 其承担的应力相同. 由于片晶簇的刚性较好, 拉伸过程中片晶簇间无定形区承担主要的应变, 架桥长度不断增加. 随着拉伸温度升高, 片晶簇间无定型区的刚性与片晶簇相差更大, 无定形区承担的应变增大, 其结果是架桥长度随拉伸温度升高而增大.图10为不同热拉温度拉伸, 再经降温得到的微孔膜垂直于拉伸方向的SAXS小角积分曲线. 可以看到, 在127和135 ℃下热拉时, 架桥沿垂直于拉伸方向呈周期性排布. 当热拉温度过高(153 ℃)时, 架桥部分熔融导致长周期增大, 超出了实验所用SAXS设备的探测范围.利用熔融拉伸法制备了聚丙烯微孔膜, 通过SAXS和SEM研究了热拉过程中拉伸温度、拉伸比对微孔膜的晶体、架桥结构和微孔形貌的影响. 研究结果表明, 冷拉、热定型过程中片晶簇被分离开, 其内部结构在热拉过程中不发生分离等变形; 随着热拉拉伸比的增加, 片晶簇间架桥长度不断增大; 与冷拉、热定型样品相比, 热拉后的微孔膜架桥沿垂直于拉伸方向具有较好的周期性. 不同的拉伸温度结果表明, 架桥长度随拉伸温度升高而增加; 温度过高时架桥会发生熔融. 本工作可为聚丙烯微孔膜制备过程中结构控制提供指导.感谢中国科学技术大学国家同步辐射实验室和广东工业大学材料与能源学院提供的帮助.† Supported by the National Natural Science Foundation ofChina(No.21267020) and the China Postdoctoral ScienceFoundation(No.2017M612087).【相关文献】[1] Park I., Noether H., Colloid Polym. Sci., 1975, 253(10), 824—839[2] Zuo F., Keum J. K., Chen X. M., Hsiao B. S., Chen H. Y., Lai S. Y., Wevers R., Li J., Polymer, 2007, 48(23), 6867—6880[3] Tabatabaei S. H., Ajji A., J. Plast. Film Sheet., 2011, 27(3), 223—233[4] Sadeghi F., Ajji A., Carreau P., J. Membrane Sci., 2007, 292(1/2), 62—71[5] Xie J. Y., Xu R. J., Chen C. B., Chen X. D., Zhang F., Lei C. H., Lin Y. F., Li L. B., RSC Adv., 2016, 6(67), 62769—62777[6] Lei C. H., Wu S. Q., Xu R. J., Peng X. L., Shi W. Q., Hu B., Polym. Eng. Sci., 2013, 53(12), 2594—2602[7] Li X. Y., Meng L. P., Lin Y. F., Chen X. W., Zhang Q. L., Zhang R., Wu L. H., Zhang W. H., Li L. B., Macromol. Chem. Phys., 2016, 217(8), 974—986[8] Lin Y. F., Meng L. P., Wu L. H., Li X. Y., Chen X. W., Zhang Q. L., Zhang R., Zhang W. H., Li L. B., Polymer, 2015, 80, 214—227[9] Liu D. M., Kang J., Xiang M., Cao Y., J. Polym. Res., 2013, 20(5), 126-1—126-7[10] Ding Z. T., Bao R. Y., Zhao B., Yan J., Liu Z. Y., Yang M. B., J. Appl. Polym. Sci., 2013,130(3), 1659—1666[11] Wu S. Q., Lei C. H., Cai Q., Xu R. J., Hu B., Shi W. Q., Peng X. L., Polym. Bull., 2014,71(9), 2205—2217[12] Lei C. H., Wu S. Q., Xu R. J., Cai Q., Hu B., Peng X. L., Shi W. Q., Polym. Bull., 2013,70(4), 1353—1366[13] Li X. Y., Lin Y. F., Ji Y. X., Meng L. P., Zhang Q. L., Zhang R., Zhang W. H., Li L. B., Polymer, 2016, 105, 264—275[14] Meng L. P., Li J., Cui K. P., Chen X. W., Lin Y. F., Xu J. L., Li L. B., Rev. Sci. Instrum., 2013, 84(11), 115104[15] Cui K. P., Liu Y. P., Meng L. P., Li X. Y., Wang Z., Chen X. W., Li L. B., Polym. Test., 2014, 33, 40—47[16] Yu X., Chen E. Q., Zhu C. S., He S. Q., Liu W. T., Acta Polym. Sin., 2010, 1(9), 1136—1142(于翔, 陈尔强, 朱诚身, 何素琴, 刘文涛. 高分子学报, 2010, 1(9), 1136—1142)[17] Tang Y. J., Jiang Z. Y., Men Y. F., An L. J., Enderle H. F. , Lilge D., Roth S. V., Gehrke R., Rieger J., Polymer, 2007, 48(17), 5125—5132[18] Strobl G. R., The Physics of Polymers, Springer, Springer Berlin Heidelberg, New York, 1997, 6—8。
聚丙烯水相接枝马来酸酐反应及产物应用的研究的开题报告题目:聚丙烯水相接枝马来酸酐反应及产物应用的研究1. 研究背景及意义聚丙烯作为一种广泛应用的合成聚合物,在塑料、纺织、医疗、包装等领域都有着重要的应用。
然而,由于其两亲性较低,在一些应用中需要更好的表面活性和亲水性。
因此,对于聚丙烯进行功能化改性,制备性能更优异、多样化的材料,具有重要的研究意义和应用价值。
马来酸酐是一种常见的反应单体,具有良好的亲水性和化学活性。
将马来酸酐接枝在聚丙烯上,可以增加聚丙烯的表面活性和亲水性,从而拓展其应用范围。
然而,由于聚丙烯的疏水性,其水相接枝反应比较困难,需要寻找合适的反应条件和方法。
因此,本研究旨在探究聚丙烯水相接枝马来酸酐反应的最优条件,并对其产物进行表征和应用研究,为制备高性能、多功能的聚丙烯材料提供新的思路和方法。
2. 研究内容与方法本研究的主要内容包括:(1)寻找聚丙烯水相接枝马来酸酐反应的最优条件,包括反应温度、反应时间、单体用量、引发剂用量等参数的影响。
(2)对接枝产物进行表征,包括峰值表征、红外光谱分析、核磁共振分析等。
(3)评价接枝材料的性能,包括表面活性测定、亲水性测定、抗菌性能测定等。
本研究将采用以下方法:(1)聚丙烯水相接枝马来酸酐反应的实验设计和操作,通过响应面法等方法寻找最优反应条件。
(2)对接枝产物进行峰值表征、红外光谱分析、核磁共振分析等表征方法,确定接枝产物的结构和化学组成。
(3)评价接枝材料的性能,包括表面活性测定、亲水性测定、抗菌性能测定等方法,探究其性能与聚丙烯、马来酸酐、引发剂等因素的关系。
3. 预期研究结果与创新点本研究预期能够得到以下研究结果:(1)掌握聚丙烯水相接枝马来酸酐反应的最优条件,实现高效制备接枝材料。
(2)得到具有一定结构和化学组成的接枝产物,并对其进行系统表征。
(3)探究接枝材料的性能与制备条件、结构、化学组成等因素的关系,为接枝材料的设计和应用提供理论依据和实验支持。
第23卷 第4期 辐 射 研 究 与 辐 射 工 艺 学 报 V ol.23, No.42005年8月 J. Radiat. Res. Radiat. Process. August 2005——————————————国家863计划基金(2002AA245091)资助第一作者:耿建暖,女,1979年10月出生,2002年毕业于陕西师范大学食品工程系,现为陕西师范大学在读研究生,研究 方向,现代果汁加工 通讯联系人:仇农学收稿日期:初稿 2004-06-29,修回 2005-03-08预辐照聚丙烯无纺布共接枝丙烯腈和丙烯酸的研究耿建暖1 仇农学1 王鹏飞2 闫 龙21(陕西师范大学食品工程系 西安 710062)2(陕西师范大学化学与材料学院 西安 710062)摘要 研究了在空气条件下丙烯腈和丙烯酸在预辐照聚丙烯无纺布上的共接枝反应,以及预辐照吸收剂量、接枝反应温度、反应时间、单体浓度及比例和摩尔盐浓度对接枝率的影响。
结果表明,接枝的最佳条件为:反应温度75℃,反应时间4h ,单体浓度50%。
并对接枝前后的聚合物进行了红外光谱分析。
关键词 预辐照,接枝反应,聚丙烯无纺布,丙烯腈,丙烯酸 中图分类号 TQ316.313螯合纤维是一类多配位型聚合物,是近年来发展起来的一种新型离子交换纤维,其吸附金属离子具有选择性高、易洗脱、容易再生等优点,广泛应用于从水溶液中回收、浓缩、富集和分离金属离子。
利用辐照接枝的方法,可以在高分子基体材料上连接具有螯合作用的基团,用以吸附水溶液中的金属离子,其中接枝是一重要步骤。
预辐照接枝具有普通辐射化学的一般特点,即纯洁性、准确性、工艺简单、节省能源等,与共辐照接枝方法相比,是一种有发展前途的接枝改性技术。
国内外一些研究人员利用聚乙烯(Polyethylene ,PE )纤维、聚丙烯(Polypropylene ,PP )纤维、聚氯乙烯(Polyvinyl chloride ,PVC )纤维等为基材,通过辐照接枝不同的络合剂,得到螯合纤维。
Material Sciences 材料科学, 2019, 9(7), 678-683Published Online July 2019 in Hans. /journal/mshttps:///10.12677/ms.2019.97085Preparation of X-Ray PolycrystallinePowder Diffraction Samplesby Suspension DepositionLiyu Hao1, Tie Yang1, Ming Tan2*1School of Physical Science and Technology, Southwest University, Chongqing2College of Science, Henan Agricultural University, Zhengzhou HenanReceived: June 24th, 2019; accepted: July 9th, 2019; published: July 16th, 2019AbstractX-ray powder diffraction plays an important role in material research. However, the accuracy of experimental data is not high because of the problems of large thickness, uneven surface and pre-ferred orientation of particles. This makes it difficult to accurately measure the cell parameters and so on. In this paper, a method of preparing samples by suspension deposition is introduced.The apparatus used in this method is simple and the preparation process is also simple and fast. It can effectively avoid the problems of large thickness, uneven surface and preferred orientation of particles.KeywordsX-Ray Powder Diffraction, Sample Preparation Method, Suspension Deposition Method悬浮液沉积法制备X射线多晶粉末衍射样品郝立宇1,杨铁1,谭明2*1西南大学物理科学与技术学院,重庆2河南农业大学理学院,河南郑州收稿日期:2019年6月24日;录用日期:2019年7月9日;发布日期:2019年7月16日摘要X射线粉末衍射在材料研究中有着重要应用,但是通常制备的X射线粉末衍射样品由于存在厚度较大、厚*通讯作者。
微波辐射合成聚丙烯酸-海藻酸钠高吸水树脂沈莉;王珊珊;牛少莉;方明【摘要】以海藻酸钠和丙烯酸为原料,采用微波辐射法接枝共聚制备了聚丙烯酸(AA)-海藻酸钠(SA)高吸水树脂.探讨了交联剂及引发剂的用量、单体配比、丙烯酸中和度、微波功率等因素对树脂吸水倍率的影响规律,并进行了树脂吸水速率和保水性能的研究,用红外光谱对树脂结构进行表征.实验结果表明,该树脂在蒸馏水中的吸水倍率为733.92 g/g,在生理盐水中的吸水倍率为120.68 g/g,并且具有较快的吸水速率及良好的保水性能.【期刊名称】《河北科技师范学院学报》【年(卷),期】2014(028)002【总页数】6页(P37-41,45)【关键词】微波辐射;海藻酸钠;高吸水树脂;吸水倍率【作者】沈莉;王珊珊;牛少莉;方明【作者单位】河北科技师范学院化学工程学院,河北秦皇岛,066600;河北科技师范学院化学工程学院,河北秦皇岛,066600;河北科技师范学院化学工程学院,河北秦皇岛,066600;河北科技师范学院化学工程学院,河北秦皇岛,066600【正文语种】中文【中图分类】TQ325.7高吸水树脂(SAP)是一种经适度交联具有三维网络结构的新型功能高分子材料。
由于其具有自身质量数十倍乃至千倍的高吸水能力、优良的保水能力,且安全无毒[1],因而已广泛应用于卫生材料、农林园艺、脱水剂、食品保鲜、医疗卫生等领域[2,3]。
海藻酸钠又称褐藻酸钠,是从褐藻中提取的高黏性的天然多羟基高分子化合物。
它是1,4-β-D-甘露糖醛酸(M)和1,4-α-L-古洛糖醛酸(G)两种结构单元组成的线型聚合物,具有良好的生物降解性和生物相容性[4]。
近年来,人们以海藻酸钠和丙烯酸、丙烯酰胺等物质为主要原料,制备海藻酸钠类高吸水树脂,取得了很大的进展[5,6]。
微波辐射促进化学反应是一种新兴的高分子合成技术,微波的高频对极性介质进行作用,可促进单体或反应液体快速升温,由于微波频率与化学基团的旋转振动频率接近,因此可以使分子构象发生改变,活化某些基团,而对大分子链无损伤。
阳离子聚电解质聚二甲基二烯丙基氯化铵(PDM)阳离子聚电解质聚二甲基二烯丙基氯化铵的絮凝机理初探田秉晖,栾兆坤,潘纲中国科学院生态环境研究中心环境水质学国家重点实验室,北京100085收稿日期:2006—03-23 修回日期:2007.04—09 录用日期:2007—08—10摘要:以聚二甲基二烯丙基氯化铵PDADMAC(特性粘度分别为2.7,1.4,0.7)为絮凝剂,对比PAC和PFC。
通过残余浊度、Zeta电位、FI絮凝指数的测定,研究了PDADMAC对高岭土悬浊体系(浊度分别为6000,1000,200和10 NTU)的絮凝特性,并对其絮凝作用机理进行了探讨.结果表明,PDADMAC的吸附构型决定其絮凝机理在较低初始悬浊物浓度下(200 NTU)为单个颗粒物表面吸附覆盖及其“吸附电中和”絮凝模型;在高浊条件下(>1000 NTU)为单颗粒表面(Monomer)部分吸附覆盖及其“吸附架桥”絮凝模型.关键词:絮凝;阳离子聚电解质;聚二甲基二烯丙基氯化铵文章编号:0253-2468(2007)11-1874-07 中图分类号:X131.2 文献标识码:A1 引言(Introduction)在水处理技术领域中,化学絮凝法具有操作简便、净化除浊效果好、投资运行费用低、适用性广等优点而得到广泛应用,成为众多处理工艺流程中不可缺少的前置单元操作技术.其中,阳离子型有机高分子絮凝剂具有:① 阳离子度高,分子量高,絮凝效能强,用量少,适用性广;② 可以根据需要引人不同官能基团(带电基团、亲水基团和疏水基团等),可以任意设计阳离子度和分子量;③ 易于和其它无机混凝剂或助凝剂复合,制备多元高效复合絮凝剂等优点,已成为国内外高效絮凝剂及其理论研究的热点内容(Wandrey,1999;Matsumoto,2001;Zhao,2002;Pearse,2001).聚二甲基二烯丙基氯化铵(PDADMAC)是1种应用较广的阳离子型有机高分子絮凝剂(Bowman,1979; Zhao, 2002; Tian, 2005a;2005b).但是,以往研究中,人们更热衷于对阳离子型有机高分子絮凝剂的开发及应用,而对其应用基础研究重视不够(Yoon,2004;Besra,2003;Pascal,2005;Chen,2005).对阳离子型有机高分子絮凝剂的反应特性和独特的絮凝性能等,在一定程度上仍沿袭传统无机盐和PAM 的絮凝反应及其凝聚机理,缺乏独立的深入研究,致使阳离子型有机高分子絮凝剂及其复合型絮凝剂在其结构设计、合成方法、物理化学改性以及复合应用过程中缺乏严谨的理论支持,导致研制开发随意性大,直接影响了高效产品制备及其絮凝效能.近年来,针对阳离子型有机高分子絮凝剂高效性的絮凝机理研究已经引起了国际上广泛的关注(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002).现有研究表明,吸附和吸附构型是影响阳离子型有机高分子絮凝剂絮凝机理的主要因素.但是,相对于传统无机盐和PAM 的絮凝反应,其基础应用理论仍有待于全面而系统地研究(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002).本研究中,以PDADMAC(特性粘度分别为2.7,1.4,0.7)为絮凝剂,对比PAC和PFC,通过残余浊度,Zeta 电位,FI絮凝指数的测定,探讨了PDADMAC对高岭土悬浊体系(浊度分别为6000,1000,200和10 NTU)的絮凝特性,并对PDADMAC的絮凝作用机理进行了初探.2 材料与方法(Materials and methods)2.1 实验材料实验所用特性粘度0.7的PDADMAC是40%的水溶液(Florage,SNF,France),特性粘度2.7和1.4的PDADMAC是实验室合成.实验在(25±0.1)℃ ,1.0 mol•L NaC1溶液条件下进行.实验用水是由纯化净水装置(a Seralpur Pro 90C apparatuscombined with an ultrafiltration USF Elga laboratoryunit)制得的纯水.2.2 絮凝实验源高岭土悬浊液由高岭土(分析纯,北京化学试剂公司)和去离子水制得,浓度为100 g•L一.源高岭土悬浊液的粒度分布用激光粒度仪(Mastersizer2000,Malvern CO.,UK)表征,颗粒物粒径小于2m,平均粒径0.92 m.试验用人工配水由源高岭土悬浊液稀释得到,其中NaNO 和NaHCO,的浓度都是5×10~mol•L–1.在烧杯絮凝试验中,人工配水的高岭土浓度分别为10、200、1000、6000 mg•L–1.絮凝试验采用转速300 r•min 快搅1 min,转速40 r•min 慢搅l0min,絮体沉降30 min.残余浊度(RT)和Zeta电位分别用浊度计(HACH 2100N Turbidimeter,HACH,Loveland,Co.)和Zeta 电位仪(Zetasizer 2000,Malvern CO.,UK)测定.在搅拌和絮凝的过程中,通过蠕动泵在线连续取样,采用光散射分析仪(PDA2000,Rank Brithers Ltd.)测定絮凝指数(FI).3 结果(Results)3.1 10 NTU的悬浊液絮凝试验烧杯絮凝试验结果如图1所示.图1表明,PDADMAC絮凝剂对低浊水(10 NTU)的絮凝效果较差,远不如无机高分子絮凝剂PAC和PFS的絮凝除浊效果,而且分子量对其絮凝效能几乎没有明显影响.3.2 2oo NTU悬浊液的絮凝试验结果由图2(a,b)可见,对浊度200 NTU的悬浊液,PDADMAC的絮凝效能已明显提高,并开始好于PAC絮凝效果.而且随PDADMAC特性粘度提高,絮凝效能明显增加.但此时残余浊度仍较高(在90NTU以上).而且最佳絮凝范围极小,易反稳.由图2(c)Zeta电位测定结果可见,PDADMAC絮凝剂的絮凝Zeta电位迅速由负变正,并且特性粘度越高越明显.最佳絮凝点时的Zeta电位接近于零.由凝剂,大量研究和文献表明(Besra,2004;Zhu,2001;Harris,2000;Nishida,2002),最佳絮凝点的Zeta电位往往不在零电点处,这主要是因为无机高分子絮凝剂的絮凝作用主要取决于水解聚合形态的正电荷产生的“吸附电中和”作用,而水解聚合形态分子量较小,因此“絮凝架桥”作用能力较弱(Besra,2004).而阳离子型有机高分子絮凝剂则不同,其巨大的分子量和柔性线性分子链,使其在絮凝过程中可以充分发挥“絮凝架桥”作用,而“吸附电中和”作用则弱得多,其絮凝作用机理与分子结构和阳离子官能团密度,以及水质条件、胶体颗粒物性质等密切相关(Besra, 2004; Zhu, 2001; Harris, 2000; Nishida,2002).聚合物附着在颗粒物表面有“环(1oops)”、“尾(tails)”和“链(trains)”等3种状态.一般,当有机高分子絮凝剂的吸附趋于“链”式吸附状态时,吸附机理趋于“吸附电中和”作用.而有机高分子絮凝剂的吸附趋于“环和尾”吸附状态时,其吸附机理趋于“吸附架桥”作用.结合本文Zeta电位和絮凝指数FI的结果,可以认为,PDADMAC的絮凝机理由其吸附构型决定.在较低初始悬浊物浓度下(200 NTU),PDADMAC在单颗粒表面的吸附符合“链”吸附构型及其电中和絮凝模型(如图5所示).此条件下,由于颗粒物数量较少,碰撞几率低,投加PDADMAC后,其分子链上的阳离子基团不能瞬间及时捕集到更多颗粒,结果在单个颗粒物表面大量吸附覆盖,使其吸附构型接近于“链”吸附状态.当PDADMAC投量增加,易于在单个颗粒物表面发生超量吸附,结果导致颗粒物表面的超电荷现象发生,Zeta 电位迅速变正.这种“链”吸附构型在颗粒物表面无法充分伸展,不能充分发挥“絮凝架桥”作用,甚至在单个颗粒物表面产生多层“吸附电中和”的全覆盖效应,无法起到絮凝作用.吸附架桥理论指出(Wandrey,1999;Matsumoto,2001),只有在絮凝剂投加适量时,即胶体颗粒只有表面部分覆盖时,才能在胶粒间产生有效的吸附架桥作用并获得最佳絮凝效果,因此,在较低初始悬浊物浓度下(200NTU),PDADMAC无法发挥其高效“吸附絮凝架桥”作用,以“吸附电中和”作用为主.具体表现为试验结果Zeta电位变号达到最大值,但絮凝过程缓慢而形成的凝絮颗粒小,絮凝效果差.在高浊条件下(>1000 NTU),PDADMAC在单颗粒表面的吸附符合“环和尾”吸附构型及其“吸附架桥”絮凝模型(如图6所示).此条件下,由于颗粒物数量增加,碰撞几率迅速增加,PDADMAC分子链上的阳离子基团瞬间及时地扑集到更多颗粒,结果在单个颗粒物表面呈“环和尾”吸附状态,单个颗粒物被部分包裹或覆盖,部分分子链吸附在单个颗粒物表面,部分伸展到水中继续吸附扑集其它颗粒物.此条件下,PDADMAC强烈的“吸附絮凝架桥”作用为主要絮凝机理,产生“簇团(Cluster)絮凝”,大大提高了絮凝效率,充分发挥了PDADMAC的高效絮凝作用.综上所述,PDADMAC阳离子型絮凝剂对负电颗粒物的絮凝过程可以被看作是“吸附电中和”与“吸附架桥絮凝”的综合作用结果.两者间作用的强弱不仅取决于聚电解质的电荷密度、分子量以及离子官能团带电性、疏密程度等,而且还取决于负电颗粒物的性质和悬浊液的初始浓度,其原因在于PDADMAC阳离子型絮凝剂的絮凝机理是由其吸附构型决定的.5 结论(Conclusions)1)阳离子型有机高分子絮凝剂具有较大的分子量和柔性线性分子链,这使其絮凝过程主要以“絮凝架桥”作用为主,同时存在一定的“吸附电中和”作用.2)阳离子型有机高分子絮凝剂的絮凝机理与其分子结构和阳离子官能团密度,以及水质条件、胶体颗粒物性质等有密切关系.3)阳离子型有机高分子絮凝剂的吸附构型决定其絮凝机理.絮凝机理为:在较低初始悬浊物浓度下(200 NTU)为单个颗粒物表面吸附覆盖及其“吸附电中和”絮凝模型;在高浊条件下(>1000NTU)为单颗粒表面部分吸附覆盖及其“吸附架桥”絮凝模型.责任作者简介:田秉晖(197O一),男,博士,主要从。
粗纤维素提取及测定方法一、仪器用具:粉碎机一台,研钵、水力抽气装置一套,恒温水浴一台,万分之一天平一台,100mL三角瓶两个,150mL容量瓶一只,50mL、100 mL 量筒各一个,10mL吸管一只,可控电烘箱一台,电炉一个,古氏干锅两只(25mL),干燥器,1.0mm圆孔筛,两个1000mL的容量瓶。
二、试剂1,醋酸和硝酸混合液:取10mL比重1.4的硝酸加到100mL80%的硝酸中,充分混匀,保存于容量瓶中。
2,乙醇、乙醚。
3,酸洗石棉;用1.25%碱洗液至中性,在用乙醇、乙醚先后各洗三次,待乙醚挥发净备用。
4,脱脂棉。
三、原理;根据纤维素性质较稳定的特点,试样用乙酸和硝酸混合液加热处理,淀粉、多缩戊糖、木质素、半纤维素、色素、单宁和脂肪等其他物质,受到水解而被基本除去,纤维素被保留下来,采用抽滤法滤出纤维,在分别用水、乙醇、乙醚除去水溶性、醇溶性、脂溶性物质,然后把残渣烘干称重,计算粗纤维素含量。
四、操作方法1、试样处理:取净样50g用40目筛底粉碎,然后用1.0mm圆孔筛筛选,残留下的用研钵研碎,使之通过1.0mm圆孔筛,装入磨口瓶中备用。
2、准备抽气装置:用胶管连接抽气泵、抽气瓶、连接好水源。
用蒸馏水将备用的石棉分成粗细两部分,先去粗的,后用细的石棉铺垫,厚度均匀不透光为宜,用少量的乙醇、乙醚分别倾入坩埚进行抽洗,将坩埚送入105℃箱内烘干至恒重。
3、硝化处理:称取试样1g左右,倒入100mL三角瓶中,加入25mL 醋酸和硝酸的混合液,盖上容量瓶盖,放入98℃水浴中(一般浸入水中1.5cm)。
准确加热20分钟,倒是取出用冷水冷却至室温,倾入坩埚中进行抽泣过滤。
用热水洗净附着瓶壁上的纤维素(注意不要把泥沙倒入坩埚内)。
用水洗去酸液,再用20ml乙醇、乙醚先后各分成两次洗涤,再用脱脂棉擦干净外部,送入105℃的烘箱中烘至恒重。
4、结果计算:粗纤维%(干基)=%100)100(12⨯--MWWW式中:W~试样重量;W2~粗纤维和坩埚重量;W1~坩埚重量;M~水分百分比。
我的奇思妙想关于发明油烟机英语作文全文共3篇示例,供读者参考篇1My Wacky Imagination on Inventing the Range HoodEver since I was a little kid, I've had a pretty wild imagination. My parents used to laugh at the silly ideas and inventions I would come up with. Some of my personal favorites were theglow-in-the-dark toilet for late night bathroom trips and thejet-powered roller skates for getting to school at super sonic speeds. While most of my childhood brainstorms were definitely a bit outlandish and impractical, I still enjoy letting my mind run free with creative thoughts from time to time. My wacky imagination recently kicked into high gear again when my mom complained about the typical kitchen issues we've all faced - lingering cooking odors and smoke.It was a Saturday morning, and my mom was whipping up her famous chocolate chip pancakes, one of my absolute favorite breakfasts. As the butter and batter sizzled in the pan, clouds of smoke began billowing up toward the ceiling. My mom opened a few windows to try and air out the haze, grumbling somethingabout needing a new range hood as she did. That's when the lightbulb went off in my head. I could totally invent the world's most awesome range hood! My mind started racing with all kinds of wild ideas.First, I imagined a range hood with super powerful suction capabilities. I'm talking about suction power so strong, it could vacuum up a whole elephant from across the room with just the flip of a switch. Okay, maybe having that much suction would be a tad dangerous. Getting your hair or clothing caught in it probably wouldn't end well. But imagine how easily it could clear out any cooking smoke or lingering odors! That pan of burnt bacon wouldn't stand a chance.Along with the ultra suction, my range hood would definitely need to be huge - big enough to cover an entire kitchen if needed. When not in use, it could retract up into the ceiling all sleek and compact. But with just a voice command, like "Activate Range Dome", it would extend down over the whole cooking area in a giant dome shape. No more smoke or smells篇2My Fascinating Ideas about Inventing an Exhaust HoodEver since I was a little kid, I've been obsessed with taking things apart and trying to understand how they work. Whether it was an old radio, a broken toy, or the TV remote, I just couldn't resist the urge to dismantle it and examine all the tiny components inside. My parents were constantly scolding me for leaving piles of screws and wires scattered around the house. Little did they know, this insatiable curiosity would one day lead me to an extraordinary idea - inventing a brand new type of exhaust hood for kitchens.It all started a few months ago when my mom was cooking one of her famous curry dishes. As the rich, spicy aroma filled the kitchen, I couldn't help but notice how quickly the room became a smoggy, eye-stinging mess. Our outdated exhaust fan seemed practically useless against the thick clouds of smoke and grease particles lingering in the air. I watched in dismay as my mom rushed around frantically opening windows and fanning a dish towel, desperately trying to clear the haze.That's when the proverbial lightbulb went off in my head. In that moment, I vowed to create an exhaust system so powerful and efficient, it would completely eliminate those dreadful cooking fumes forever. Armed with a notebook and a deepreserve of determination, I began meticulously researching every aspect of smoke ventilation technology.My investigation led me down a rabbit hole of scientific concepts - fluid dynamics, thermodynamics, acoustics, you name it. I spent countless hours poring over academic journals and consulting with local engineers. With each new insight, my imagination ran wilder, conjuring up increasingly ambitious designs and inventive solutions.After weeks of tireless work, I finally landed on a design that I believed could revolutionize the exhaust hood industry. It's a bit complex, but here's a basic overview: My proposed system uses a series of high-powered fans to create a vortex effect, rapidly drawing in smoke and grease particles from multiple angles. But here's the real game-changer - it also incorporates ultrasonic sound waves to literally shatter the particles into tinier, more dispersible pieces before expelling them outside.Conventional exhaust fans simply suck in the fumes and blow them out through a vent, leaving larger particles to drift back into the kitchen or eventually clog up the ductwork. My system, on the other hand, would obliterate those noxious particles on a molecular level, ensuring not a single whiff of smoke ever escaped.Of course, this is all just hypothetical for now. Turning my idea into a functioning prototype would require some serious funding and support from actual experts in the field. But I'm not deterred – in fact, I'm more driven than ever to see this ambitious project through to the end.Just imagine a world where cooking no longer meant filling your home with a thick, stinging haze. Envision restaurant kitchens where chefs could work in total comfort without their eyes burning and their clothes reeking of grease. Picture crisp, fresh air in cramped city apartments where the scent of last night's stir-fry used to linger for days. That's the future I want to create with my state-of-the-art exhaust system.Needless to say, my family is getting a bit tired of mynon-stop ranting and raving about smoke particle disbursement patterns. My dad just rolls his eyes whenever I launch into another long-winded explanation about utilizing the Coandă effect for optimum ventilation. And my little sister has learned to hold her breath whenever mom fires up the stove, bracing for my inevitable loud sighs and under-my-breath mutterings about airflow inefficiency.But that's OK – I've learned to tune out their good-natured ribbing and relentless teasing. Because I know that within thejumbled vortex of facts and formulas swirling around my mind lies the genius idea that could one day change kitchens forever. An exhaust hood so powerful and precise, it would make smoke and grease a mere culinary folklore. A true masterpiece of modern engineering. My masterpiece.So to all the other young inventors and dreamers out there, take it from me - never stop pursuing those "ridiculous" ideas that others might mock or dismiss. Because you never know when one of your wacky musings could actually germinate into something extraordinary. Who knows, your strange obsession today could become your revolutionary invention tomorrow. I have no doubt that my peculiar fascination with exhaust ventilation will one day lead to a cleaner, fresher future for kitchens worldwide. And I can't wait to be the one to make it happen.篇3My Imaginative Ideas for Inventing a Range HoodHave you ever been cooking up a storm in the kitchen, sautéing veggies or frying up some delicious chicken wings, o nly to have your entire house fill up with thick clouds of smoke and greasy cooking odors? Anyone who enjoys cooking knows thisfrustrating situation all too well. That's why, ever since I was a little kid watching my mom wrestle with our old, inefficient range hood, I've dreamed of inventing the ultimate, high-tech range hood that could effectively clear the air.First off, my revolutionary range hood would usestate-of-the-art sensors to automatically detect not just smoke, but also tiny airborne grease particles and cooking odors. As soon as any of those were present, the system would kick into high gear, powered by a heavy-duty dual motor that could generate massive air velocity to capture 100% of contaminants. The sensors would analyze the air composition in real-time and automatically adjust the suction power accordingly for maximum efficiency.But that's just the start. My range hood would be equipped with an advanced multi-stage filtration system, using specialized filters to trap greaseand particulate matter down to 0.1 microns. The first stage would use a washable aluminum mesh pre-filter to capture larger grease particles. Next would be ahigh-efficiency pleated filter made of spill-proof polypropylene to remove odors and any remaining airborne contaminants. Finally, there would be an activated carbon filter to eliminate any last traces of odor molecules.These filters wouldn't just trap contaminants though - they would actually clean and recycle the air in an eco-friendly way. After passing through the filters, the clean air flow would be drawn through an electrostatic field that would charge the air molecules and cause them to ionize. This energized airstream would then be diffused through vents around the hood, creating a refreshing breeze of crisp, negatively-charged ions. This ionized air would bond with positively-charged dust, dander, mold and other allergens in the ambient air, causing them to clump together and fall out of circulation. The result? The kitchen air would not just be free of cooking contaminants, but actually purified down to the molecular level.Of course, no range hood would be complete without bright lighting to properly illuminate your cooking surface. But typical range hood lights leave a lot to be desired - they're dim, create harsh shadows, and the bulbs frequently burn out. That's why my design incorporates long-lasting LED lights arranged in multiple zones that can be independently dimmed or brightened at different color temperatures and beam angles. You could set it to daylight-balanced lighting for working on delicate dishes, or switch to a warmer, focused beam for late night snacking. The lights would be ultra energy-efficient, using a tiny fraction of thepower of incandescents while lasting for tens of thousands of hours.Another major annoyance with existing range hoods is the control system. Too many have cryptic symbols or poorly labeled buttons that make it nearly impossible to select the right settings. My hood would have a gorgeous, high-resolution touch screen with a clean, intuitive interface that even a child could use. With just a few taps, you could easily control all the hood's functions, save custom lighting and ventilation presets, check filter status, and more. The hood could even sync with smart home systems and your phone or tablet for remote control and alerts.Of course, no appliance is truly modern unless it has voice control too. My range hood would use advanced voice recognition and natural language processing that could understand normal, conversational voice commands. You could simply say "Range hood, turn on maximum ventilation" or "Range hood, dim cooking lights to 25%" and it would instantly execute your instructions. It could even tie into virtual assistants like Alexa for additional smart functionality.To keep the hood itself clean, the outer body would have a ceramic surface coating that is completely stain and smudge resistant, never needing harsh chemicals to wipe down. Theinterior would be curved and seamless so grime can't get trapped in crevices. The grease filters and other components would be modular too, allowing for fast and easy removal, cleaning, and replacement when needed. I'd even include aself-cleaning mode that could pyrolytically burn off stubborn, baked-on grease at high heat.Now, while all these fancy features would be awesome, they could make the hood prohibitively expensive for many households. That's why I'd make it in multiple models at different price points, while still retaining core must-have features like the high-powered dual motor and filtration across the entire line. The basic model could have manual controls and fewer lighting options, while more premium models would incorporate all the high-tech bells and whistles.Safety would be a top priority in my design as well. The hood would have an auto-shutoff feature to turn off the motors if it detects that exhaust temperatures are getting too high, preventing fires. There would also be redundant thermal fuses and an insulated exterior that stays cool to the touch, protecting against burns. Advanced hardware and software monitoring would watch for any signs of electrical faults or component failure and immediately shut the system down. Each unit wouldbe exhaustively tested for safety certifications exceeding the strictest standards.With all these innovative features packed in, my range hood would truly be a marvel of modern engineering and design. It would offer unmatched performance at capturing and removing every last cooking contaminant. Between the purifying ionization, energy-efficient lighting, smart controls, and elegant styling, it would totally transform the way we think about range hoods. Instead of being an afterthought, it would become the centerpiece of any dream kitchen. Not only that, but it could even help improve indoor air quality throughout the entire home.Of course, executing on this vision wouldn't be easy. It would require expertise across multiple disciplines like mechanical engineering, chemistry, materials science, software development, UI/UX design, and more. It would need an extended period of research, prototyping, and rigorous real-world testing to perfect every detail before manufacturing. Getting the sleek, compact form factor with all those advanced capabilities integrated would be an immense challenge as well. But that's all part of what makes the pursuit so exciting! If done right, it could trulyrevolutionize the humble range hood into a product that is functional, beautiful, and indispensable.So while cooking up these big ideas is the easy part, I know the hard work of actually designing and building my dream range hood lies ahead. But I'm more motivated than ever to meet that challenge head on. Creating innovative solutions to problems that plague people's everyday lives is exactly why I've chosen to pursue a career in product design and engineering. With perseverance and some good old-fashioned ingenuity, I'm confident this imagination can one day be transformed into a real, cutting-edge range hood that will delight and amaze. Now, if you'll excuse me, I have some chicken parm to fry up - and some more ideating to do while the smoke clears!。
准分子激光对聚氯乙烯塑料打标的研究云南大学(自然科学版)1999.21(1):32~JournalofYunnanU.i~wsityZ一十CN53—1045ISSN0258—7971准分子激光对聚氯乙烯塑料打标的研究史明霞扬雪玲文小明(云南大擎面泵_匿明650091;一作者34岁,女,讲师>码2"摘要:用308nm准分子激光对聚氯乙烯塑料制品进行了打标实验,结果获得了清晰的标记图案.并且该打标方式效率高,速度快,图案清晰,对周围的热影响很小通过实验优选了打标的能量密度值.对打标过程进行了分析,初步分析了该打标过程中激光作用的机理..关量词:聚氯乙烯;准分子激光;激光打标J,】分类号:TN249文献标识码:A文章编号:0258—7971(1999)01—0032—34聚氯乙烯是由氯乙烯聚合而成的高分子化合物.聚氯乙烯塑料具有易于成型,易加工,密度小,耐酸,耐碱性好,不易着火,具有较好的硬度和机械强度,且价格便宜.因此,被广泛用于国民经济的各个部门和人民生活的各个方面,如建筑业,家具制造业,包装业,汽车工业,工程部门,电器工业等.激光打标是利用适当能量密度的激光光束对目标表面作用,使其发生物理或化学的变化,在表面形成视觉上的差异,从而形成标记的过程.激光打标是一种非接触的打标方式,具有打标速度快,性能稳定可靠,打标精度高,运行成本低,对生产线干扰小等优点,而且易于通过计算机控制实现自动运转.目前已在部分行业应用,成为激光重要的工业应用之一.准分子激光是一种大功率高重复频率激光器,可产生193,248,308,351nm等多种波长的紫外激光.在多方面的科学研究中已得到了广泛的应用.近年来,准分子激光在运行可靠性,功率及平均能量水平,工作气体寿命,免维护周期等多项性能上都有了长足的进步,已基本达到了工业应用的水平,成为继C02,Y AG激光之后最有希望的新型工业激光器.近年来,对准分子激光的各种工业应用的研究国内国外均较重视.准分子激光与co2和Nd,Y AG等红外激光相比,打标时一般具有效率高,对作用区边缘的热影响小,打标更精密等优点.且其作用机理也与红外激光打标有所不同.收稿日期:1998—11—15基金项目:云南省自然科学基金资助项目(94A011M) 由于具有不同的打标机理及较为优异的性能,因而颇受国内外研究人员的重视.8O年代末以来,国内外用准分子激光对高分子聚合物表面改性,刻蚀的效应进行过研究_l0发现了一些准分子激光作用下高分子聚合物发生的特殊效应,但用准分子激光对聚氯乙烯塑料打标与作用机理的研究尚鲜见.塑料广泛应用于国民经济的各个部门和人民生活的各个方面.用准分子激光对塑料打标,打标速度可高达每秒数百个,可以达到相当高的分辩率.研究准分子激光对这类材料的打标,对进一步扩展准分子激光打标的应用领域具有重要意义.1实验装置图1为准分子激光打标的实验装置示意图准分子激光模板石英透镜目标高压电旃控制器田1准分子激光对聚氯乙烯塑料打标的实验装IFig1The~entalarran@exn~tofexcimcxlasetmarking onthesur{acepolyvLnylchideplastics一.r●●●L~=1L●●●f第1期史明霞等:准分子激光对聚氯乙烯塑料打标的研究打标使用的准分子激光器为LPX一105I型(德国Larnbda公司),充XeCI气,激光波长为308rtnl,单脉冲能量100~120mJ可调,脉宽20ns,最高重复频率50Hz(可调).实验用塑料样品放置于一支架上,通过移动样品与支架的距离,调整打标塑料样品表面的激光能量密度.实验样品为市售的聚氯乙烯塑料百叶窗片(白色)及文具垫片(粉红色),实验样品经昆明塑料厂及云南大学化学系的有关技术人员检验,确定是以聚氯乙烯为主,加有稳定剂,紫外线吸收剂,润滑剂,增塑剂等多种添加剂通过改变准分子激光对作用于目标表面的能量密度,进行多种情况的打标实验.用光学显微镜进行所打标记的观察,并对打标前后样品进行了导电性测试.2实验现象通过改变目标与石英透镜的距离而改变辐照在样品上激光的能量密度,观察测试样品表面的变化情况.不断增大辐照的激光能量密度,仔细观察样品表面的变化情况经过实验.发现当能量密度小于5OmJ/em2时,即使经过数百个脉冲的辐照. 样品也未出现变化(未观察到颜色,白度与周边未辐照区的差别,导电性也未出现可测量的变化).当能量密度在100mJ/c附近时,约经过近1000个脉冲的辐照,白色样品颜色由白变为浅黑,红色样品则变为蓝黑,同时激光作用区上样品显着变软,变热.该f青况与将塑料片用电炉直接加热的情况很类似.用较高的能量密度辐照时,变色所须的脉冲数迅速降低.能量密度在150~350mJ/cm2之间时,变黑所须的脉冲数为几百个到几个不等,当能量密度升至4OO-450mJ时,仅须1~2个脉冲颜色就已变得较深,有少量深黄色烟从表面喷射出来,即使更多的脉冲继续辐照也几乎没有什么变化.此时尽管在激光作用区上颜色已变得较深, 但样品并不会变热,更无软化之影响.打标对未经激光作用的区域的影响极小.且用量程达200MI1 的数字万用表测量激光作用区内相距5mm的两点闯电阻,未能测出(R>200Mn).当能量密度继续加大时,变色并无加深;能量密度加大到l000 mJ/cm2以上时,伴随着激光辐照,样品表面有火焰喷射出来,并造成图案边缘显着的不清晰,严重影响了图案的分辨率(精细度).根据实验的测试,对聚氯乙烯塑料打标的最佳能量密度应在400mJ/ C1212左右.在此能量密度下,打标仅须一个激光脉冲,并可以获得较高的精细度.图2是用网格模板打标的显微照片,放大倍数50倍深色区域是经激光作用后变色的部分.围2准分子激光在聚氯乙烯样品上打标记的显做照片(5O倍)Fig.2Themicrophotograph0fexcimerlasernmrkingonthe lceofpolyvinyl&xa'ideplastics(50times)在实验过程中用数字式兆欧表(最大量程200M0)对原始样品及经各种能量密度各种脉冲个数的激光辐照后的样品进行了测量(两点距离5m122),结果发现无论何种能量密度激光辐照.无论脉冲个数多少.均未发现电阻的下降.在各种情况下,电阻均高于200MI1.没有出现与文献[1]所述的准分子激光辐照使聚合物聚酰亚铵的电导率出现巨大变化现象相类似的结果.3分析和讨论聚氯乙烯塑料是由氯乙烯聚合而成的高分子化合物(化学式:CH2=CHC1).通常在制造塑料用品时,要根据用途的不同,在其中加人稳定剂,增塑剂,润滑剂,以及相应的各类颜料等因此不同厂家或同一厂家的不同类产品,其具体成分将有所不同,但基本的成分是一致的.当准分子激光以一定的能量密度辐照到聚氯乙烯塑料表面时,根据聚氯乙烯的性质,有理由认为光解效应及光热效应是2种最主要的作用形式. 为观察激光辐照变色与一般热作用的关系,我们将同样的样品进行了热作用实验,(用电炉进行不同温度的烘烤),并与激光辐照的样品在宏观上及显微镜下进行了比较.结果可以看出,其作用的结果是明显不一致的用连续Ar离子激光聚焦后辐照聚氯乙烯塑料样品时,则发现产生的效果也不同于准分子激光辐照的结果,而与用电炉烘烤方式的变云南大学(自然科学版)第21卷化比较接近.在上述几种作用方式下,导电性均未发现可观察到的变化.在准分子激光打标过程中,对原样品与打过标记的样品受到低密度308rlln紫外激光辐照所发生荧光的情况进行了观察,发现原来呈红色的样品的萤光呈黄色,而打标后的荧光呈蓝色.这主要是因为该过程已造成聚合物及某些掭加剂的离解等变化;导致荧光也发生变化由于准分子激光高功率短波长等特点,作用在不同物质上其作用方式有相当大的差别,可能是光化学反应,热作用,晶格缺陷,快速重结晶等_2.4.上述荧光的变化既可能是聚氯乙烯离解后造成,也可能是某些添加剂受激光作用变化而引起.根据各种条件下的实验结果,在低频低密度(1 Hz,5OmJ/cm2)激光的辐照下,尽管脉冲数很多,但未造成变色,也不会导致样品的软化等热影响. 这主要是因为此时激光辐照主要为光热作用,但由于能量密度低,升温小,而时间间隔大,使样品表面有足够的时间恢复,因此多个脉冲继续辐照并不会引起继续升温.当激光的重复频率及能量密度均上升时,单个脉冲引起的温度较高,加之塑料导热性差,时间间隔缩短,因而后续的脉冲辐照时,会引起温度的进一步升高,引起样品的热变色以及软化的影响.当能量密度加大到打标值(400mJ/ca12) 时,单次脉冲的作用已足以使样品达到热变色的程度.但这是一种快速光加热变色过程.与慢加热所引起的变色有所不同.此时的打标过程光解作用相当微弱,只有少量的黄色烟雾喷出.当能量密度加大到刻蚀水平时(1000nd/廿)时.此时的能量密度足以使样品表面瞬时达到汽化的水平,参照文献[1]及[3对其它聚合物刻蚀情况的测试,可以认为此时也有一定程度的光解过程,分解物中含有的碳氢化台物在高温空气中剧烈燃烧,引起火焰喷射.4结论用准分子激光对聚氯乙烯塑料用品打标,可以实现高效率,快速度的打标.也可通过大能量的准分子激光或以扫描方式获得更大的打标图案根据准分子激光器的特点及实验结果,所打标记具有边缘清晰,分辨率高,不损伤样品表面,甚至表面光洁度也几乎不受影响的优点,因而具有良好的应用前景.参考文献1F髓吣T,SAURBREYR,SMAⅥJGMC,etaI Ultraviolet—la.*er-inducedpermanccntelectricaloonductit4ty in~olylraide.APs,1993,~56:2752S0W ADAU.U]I【AJP.JURGENHJ,el:alExcimer lasermatel~processing-metkmdsandr唧ultsLarahtaIn—dustrial,1988,(4):13方尔梯,吴源相,黄正宇,等.准分子激光对高分子薄膜的刻蚀应用激光,1992,(6):2414文小明,谢崇伟,林理忠,等.准分子激光作用下二氧化钛的表面变性.物理,1997,(8):15625文小明,王云美,黄惠珍,等用308rim准分子激光对几种卷烟用纸打标的研究光学技术,1997,(6):36 ExcimerLasermarkingontheSurfaceofPolyvinylChloridePlasticsSillMingxiaYANGXuellngWENXiaoming(DepartmentofPhysic~,YtmnanUniversity,650091,Kunming,cKm)Abstract:ThelasermarkingexperimentstOpo1州nylchloridesamplesaremadewith308ninexcimer1aber.itisfoundthatafineandvisiblepatterncanbeacquiredinthesamplesurfacewhichisirra diatedbyaproperfluancelaserpulse.Besides,thismarkingmethodisefficient,hi【ghspeed,andverydear,theheateffectonaⅡaroundisveryminiature.Theconditionofmarkingisoptimizedintheexperinlents.Inthispap erthe nmrkingproceduresaleanalyzedandthemarkingmechanismisstudiedpreliminarily. Keywords:polyvinyIchloftde,lasermarking,excimerlaser。
X-ray investigation of polypropylene and poly(ethylene-co-vinyl acetate)blends irradiated with fast electronsWAXS investigation of irradiated i-PP/EVA blends M.Mihailova a,*,M.Kresteva a,N.Aivazova a,V.Krestev a,E.Nedkov ba University of So®a,``St.Kliment Ohridski'',Faculty of Physics,Department of General Physics,5James Bourchier Blvd,1126,So®a,Bulgariab Central Laboratory of Polymers,Bulgarian Academy of Science,1040,So®a,BulgariaReceived26February1997;accepted18September1997AbstractBlends consisting of poly(propylene-ethylene)(PP)and poly(ethylene-co-vinyl acetate)(EVA)copolymers were investigated.Specimens were irradiated with fast electrons at di erent doses.Some of the samples show thermo-shrinkable properties.The interplanar spacing,paracrystalline factor,degree of crystallinity and crystallite sizes were determined by WAXS measurements.Results have been reported in respect to PP content and irradiation dose.A decrease of the crystallite's imperfections with the rise of the irradiation dose was observed.An interface built up of partially interpenetrated amorphous molecular chains of incompatible polymers and separate PP and EVA small crystallites is suggested.#1999Elsevier Science Ltd.All rights reserved.Keywords:Polymer blends;Irradiated polymers;Poly(propylene-ethylene);Poly(ethylene-co vinyl acetate);X-ray investigations1.IntroductionThe formation of thermo-shrinkable polymer®lms can be achieved by several technological processes. Each process causes changes in the material structure, in¯uencing the®nal properties of the®lm.The most important factors,determining the physical properties of polymer blends,are the degree of compatibility between the respective components and their mor-phology.Even in the case of completely incompatible polymers,such as PP and EVA,an interface layer can be created that a ects the mechanical properties of the blends.When the sizes of the dispersed particles are very small,the volume of interface regions can be sig-ni®cant.(Sperling,1984;Lipatov and Sergeeva,1979). To the best of our knowledge,there are only a few papers on the super-molecular structure of these blends.Thomas et al.(1987)have studied the mor-phology and mechanical properties of blends of i-PP and EVA with45wt%VA groups,irradiated with g-rays.They have found the maximum elongation and energy at break in the samples with30/70wt%PP/ EVA and irradiation dose of100kGy.The highest interpenetration between elastic and plastic phases has been proposed for the same composition and dose. The authors have suggested that irradiation cause cross-linking in the EVA phase and that cross-scission of polymer chains takes place predominantly in the PP phase.Minkova and Nikolova have investigated extruded®lms with di erent contents of PP and EVARadiation Physics and Chemistry56(1999)581±5890969-806X/99/$-see front matter#1999Elsevier Science Ltd.All rights reserved.PII:S0969-806X(97)00292-/locate/radphyschem*Corresponding author.E-mail address:krestev@phys.uni-so®a.bg(M.Mihailova)with 33wt%VA groups,irradiated with fast electrons,by DSC and thermomechanical tests (Minkova and Nikolova,1989a,b).They have found that the tempera-tures of melting were independent of the contents of the blends and decreased slowly with the rise of the ir-radiation dose and that irradiation from 53to 120kGy leads to the formation of 50±60%gel fraction.Samples with higher EVA concentration show a higher cross-link density at a given irradiation dose.The tem-perature interval of thermo-shrinkage spans from the beginning of EVA melting (80±908C)to the beginning of i-PP melting (1308C).The authors cited above have not considered the crystal structure and morphology of these blends.The aim of the present work is a structure investi-gation of extruded ®lms,composed of i-PP and EVA,and elucidation of the in¯uence of the composition and irradiation dose on the ®lm structure at di erent structural levels as well as to analyse the changes of the interface layer thickness with irradiation dose.2.Materials and methodsThe polymer ®lms studied were blends of poly(pro-pylene-ethylene)(PP),Buplen 7623(Bulgaria)and poly(ethylene-co-vinyl acetate)(EVA),Lupolen V5510SX (BASF),Lupolen V5510SX is a copolymer of ethylene with 33wt%vinyl acetate (VA).Buplen 7623is an i-PP/E copolymer containing up to 10wt%ethylene groups.The sample compositions are pre-sented in Table 1.All the blends contain 0.15wt%of stabiliser,com-prising 0.05wt%2,6-diter-buthyl-4-methylphenol and 0.1%Irganox 1010(thermostabiliser of Ciba Geigy,Switzerland).Melt blending of the granules was carried out on a Brabender plasticoder at 2258C.Tubular ®lms extruded at 1908C and rapidly cooled to room tem-perature.All samples were irradiated in a linear elec-tron accelerator (E-250,Russia)in air,with doses of 53,83,100,113,166kGy.An X-ray study was carried out with Co K a radi-Table 1Composition of the blends Sample No.Buplen 7623(wt%)Lupolen V5510SX (wt%)1010021089.8533069.8545049.8556039.8520Scattering angle,I n t e n s i t y [i m p /s ]1816141210863002001000110(p p )040(p p )130(p p )200(p e )200(p p )220(p p )111+131+041(pp)+110(pe)Fig.1.X-ray di ractogram of an unirradiated sample containing 60wt%PP.Experimental data (thick line),®tted data (individual curves).The di use scattering has been subtracted.M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589582ation(Fe®lter)under conditions of symmetrical trans-mission.Co radiation was used for the better separ-ation of the peaks.For the elimination of orientation e ects,the specimens were rotated rapidly around an axis perpendicular to the plane of the®lm. Corrections,such as Lorenz,polarisation and absorp-tion factors,were applied and the di racted intensities were calculated by using the following formula:I P s a P I L a ÈD exp ÀD a cos YÉ1where I L is the di racted intensity,corrected for Lorenz and polarisation factors;D is the X-ray optical density of the specimen,P s is the di racted intensity of a standard at®xed experimental conditions and P is the same intensity measured immediately before each scanning of the sample.The optical density D was measured for each specimen(Alexander,1969a).The di racted intensities thus corrected can be considered as absolute and their values can be compared quanti-tatively.The FIT software(Petrov and Bakaltchev,1990)was used for peak centre®nding,calculation of integral intensity and determination of di use scattering. Experimental peaks were®tted with the Gaussian func-tion.The base line was approximated with a second-order polynomial.The strongest peak in the X-ray diagrams(Fig.1)is a superposition of peaks of PP111,131,041and the most intensive re¯ex110of PE.The best separated peaks are110of PP and200of PE.The crystal sizes, interplanar spacings and integral intensities of the samples with di erent contents of PP and irradiation doses were determined.The values of crystal sizes of EVA were calculated using Scherrer's equation.The interplanar distances were calculated with a precisionof20.002nm.Two clearly expressed peaks in the same crystallographic direction were observed for PP:110 and220.This observation was used for the separation of the peaks broadening caused by the e ects of para-crystallinity and of the small crystal sizes(Alexander, 1969b):B cos Y 2 1a L2hkl p g II 4m4a d2hkl 2where B is the width at half peak height,L hkl is the crystal size in the hkl direction,g P is the paracrystal-line factor de®ned as g P=D d/h d hkl i,m the order of dif-fraction.The most probable distance between molecular seg-ments of d am in the amorphous regions was obtained from the maximum of the amorphous halo according to Bragg's law.The degree of crystallinity was calculated using the method of Matthews(Matthews et al.,1949):X c I cr a I cr I am X 3Taking into account the di use scattering,the degree of crystallinity was computed using the equation:X c I cr a I dif I cr I am 4where I cr is the total integral intensity of the crystalline phase,I am the total integral intensity of the amorphous phase and I dif is an integral intensity of the di use scattering.3.Results and discussionX-ray di raction patterns obtained for®lms of in-itial unirradiated components are presented in Fig.2. Obviously,EVA is in the amorphous state and PP is in a``smectic''form(Stoyanov et al.,1989;O'Kane et al.,1994).At the same time,the X-ray patternsreveal Fig.2.X-ray di ractograms of pure components:(a)EVA, (b)PP.M.Mihailova et al./Radiation Physics and Chemistry56(1999)581±589583crystal peaks for all blends of EVA and i-PP (Fig.1).Generally,the PP is represented by a -monoclinic modi-®cation (Turner-Jones et al.,1964).All peaks of PP are shifted to smaller angles.The amount of g -phase is negligible,because its strongest peak 020is very weak even for samples with the highest content of PP.Re¯ections 110and 040of the a -phase are clearly recognised for all samples (Fig.1).Other peaks (130,131,200and 220)are also observed practically for all samples.b -Phase of i-PP is not detected.The most common orthorhombic crystals of poly-ethylene (Wunderlich,1973;Kavesh and Schultz,1970)are revealed by 110and 200re¯ections (Fig.1).The monoclinic phase (Wunderlich,1973)appears in some samples with very weak 200and 201re¯ections.Neither the interplanar spacings d 110of PP nor d 200of PE depend on the composition of the blends or on the irradiation dose.The calculated average interplanar spacing d 110of PP and d 200of PE are 0.632nm and 0.375nm respectively.The values are higher than those observed for the homopolymersÐ0.629nm for PP (Lotz et al.,1986;Turner-Jones et al.,1964)and 0.370nm for PE (Kavesh and Schultz,1970).Since both investigated polymers are copolymers,the pre-sence of a great number of crystal defects leads to an increase of the interplanar spacing.The lattice constant a of EVA,calculated from the 200orthorhombic re¯ection,is a =0.750nm and is higher than that for pure PE (a =0.741nm).Other authors have also found an increase of the a -axis with the VA-content (Kortleve et al.,1972;Bodily and Wunderlich,1966).It has been supposed that acetate groups form amorphous defects,involved in the crys-talline regions.Bodily and Wunderlich (1966)have suggested that these defects comprise seven CH 2-groups per acetate group,in addition to the branch point and the acetate group.According to Kortleve et al.(1972),at least 30%of the overall concentration of side groups are included in the crystalline regions.Crystallite sizes L 110and the paracrystalline factor g P of PP,calculated by Eq.(2),are given in Table 2.The crystallite sizes are of about 20nm.The average size of the crystallites of the irradiated samples is higher than that of the non-irradiated ones.The para-crystalline factor slightly increases with PP content at a constant dose.It is relatively low and varies from 0to 4%.The crystallite size of EVA crystals is calculated according to the Scherrer formula.The size varies by about 17nm and is not a ected signi®cantly by the concentration of PP and irradiation dose.The degree of crystallinity obtained from DSC measurements is about 30%,while the degree of crys-tallinity calculated from WAXS measurements,taking into account the di use scattering,is very high (50±60%).If the degree of crystallinity is computed accord-ing to Eq.(4),the value is almost the same as that cal-culated from DSC.As cited above (Kortleve et al.,1972;Bodily and Wunderlich,1966),the defects in the EVA crystals could be considered as micro-amorphous areas in the crystal lattice,resulting in an increase of the X-ray di use scattering (Cowley,1975).For this reason,the di use scattering should be taken into account,when the degree of crystallinity is calculated from WAXS measurements.Degree of crystallinity vs PP content is plotted in Fig.3.The degree of crystalli-nity decreases linearly with the rise of the PP content for all doses.The di use scattering can be used as a qualitative in-dication of the amount of crystal defects.The integral di use scattering decreases with the irradiation dose (Fig.4).Therefore,we conclude that irradiationTable 2Crystallite sizes and paracrystalline factors for PP in directions perpendicular to the planes (110)PP content (wt%)Dose (kGy)10%30%50%60%0L hkl (nm)13171717g P (%)±0 1.7 2.153L hkl (nm)19202017g P (%)± 2.2 2.0 3.083L hkl (nm)17201717g P (%)± 1.6 1.7 2.3100L hkl (nm)25202017g P (%) 1.9 1.6 2.00113L hkl (nm)14212617g P (%)± 2.0 2.5 2.7166L hkl (nm)22172520g P (%)1.92.4M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589584reduces the number of crystal defects.Such e ects have been observed for irradiated with g -rays poly(-ethylene oxide)(Nedkov and Tsvetkova,1994)and PP (Stoyanov et al.,1989,Krestev et al.,1986).Annealing decreases the number of crystal defects and the growth of the long period.This process has been called ``radi-ation annealing''by Nedkov et al.The di use scatter-ing decreases abruptly for samples with higher PP content (Fig.4).Hence,the ``radiation annealing''takes place predominantly in PP crystals.According to Keller et al.(1983)clustering of cross-links occurs,resulting in the coexistence of two discrete phases in irradiated alkanes:one crystalline,free of cross-links,and the other fully amorphous,containing most of the cross-links.These authors have assumed that the radi-ation energy results in the formation of active species,60Quantity of PP [ wt.% ]X c r , %4020302520150 kG y60Quantity of PP [ wt.% ]X c r , %40203025201553 kG y60Quantity of PP [ wt.% ]X c r , %4020030252015100 kG y60Quantity of PP [ wt.% ]X c r , %40203025201583 kG y60Quantity of PP [ wt.% ]X c r , %4020030252015166 kG y60Quantity of PP [ wt.% ]X c r , %402030252015113 kG yFig.3.Degree of crystallinity X cr vs PP content at di erent irradiation dose.M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589585which migrate rapidly through the crystal lattice.Nedkov and Tsvetkova (1994)have associated these migrating active species with removal of crystal defects through the crystal lattice after irradiation at low doses.The nature of these active species has not been speci®ed in any report cited above.It is impossible to propose a suitable mechanism of this process only on the basis of WAXS measurement studies.There is a probability that the samples undergo the usual thermal annealing during irradiation.It is impossible to separate the amorphous halo into two components in the X-ray patterns for all samples (Fig.1).According to Lipatov et al.(1982a)the maxi-mum of the amorphous halo of PP is at y Cu =8.58and for Co radiation,y Co =9.98.The intensity of the X-ray scattering at y Co =9.98is very weak even for samples with maximum PP content of 60wt%(Fig.1).There is only one amorphous halo with peak position near y Co =11.88.The electron irradiation does not change the nature of the amorphous scattering.A single amor-phous phase has been observed by other authors for two incompatible polymers (Sung-Hee Ahn et al.,1993).The single T g transition has been assumed as an evidence for that.The observed single amorphous halo in our X-ray patterns allow us to suggest that the PP and EVA amorphous chains are partially interpene-trated in the interface regions.The interpenetration of the amorphous chains of the components is probably favoured by the molecular structure of the PP copoly-mer containing short PE blocks (De Gennes,1982).The most probable distance between molecular seg-ments in the amorphous regions d am vs PP content is shown in Fig.5.If there is no interaction between the two phases,d am should be a linearly additive function of PP content.The observed dependence is not linear except for the sample irradiated with 166kGy.Hence,this is more proof of interaction between the com-ponents.A well-de®ned minimum is seen at 30wt%PP.Thomas et al.(1987)have shown that at this PP concentration the two phases form a continuous inter-penetrated network-like structure.From the thermo-mechanical studies of the same samples obtained by Minkova and Nikolova (1989b),it is evident that the thermal-shrinkable properties are most prominent for the specimens with 30/70wt%PP/EVA composition.All results mentioned above prove that the best expressed interaction between polymers is noticed at this composition.200Dose [ kGy ]D e f u s e s c a t t e r i n g1501005018001600140012001000800600Fig.4.Di use scattering vs irradiation dose for specimens with di erent PP content.M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589586By increasing the irradiation dose,the d am values depend to a lesser extent on the PP content (Fig.5).The linear dependence of d am on PP content at a dose of 166kGy can be explained with predominating chain scissions over the cross-linkings in the PP phase (Dawes and Glover,1996).Lipatove et al.(1982b)have suggested a method for estimation of the interface layer thickness.According to this authors,polymer A is considered as sphericalparticles with radius r dispersed in the matrix of poly-mer B.Following this model,the integral intensity of re¯ection 110of PP should be a linear function of the PP content.The slope P of this function is:P Ktg a 5where K is K r 3a r t 36Quantity of PP [wt. %]d a m [ n m ]0.460.4460Quantity of PP [wt. %]d a m [ n m ]402000.460.4460Quantity of PP [wt. %]d a m [ n m ]402000.460.4460Quantity of PP [wt. %]d a m [ n m ]402000.460.4460Quantity of PP [wt. %]d a m [ n m ]402000.460.4460Quantity of PP [wt. %]d a m [ n m ]402000.460.44Fig.5.The most probable distance d am in the amorphous region vs PP content at di erent irradiation dose.M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589587where t is the thickness of the interface layer,tg a depends only on the experimental conditions.In the case when t increases,the slope P decreases.As seen in Fig.6,the slope diminishes at higher irradiation doses.Obviously,irradiation has caused an increase of the interface layer thickness.Irradiation increases the con-centration of short chains and reduces the di erence inthe surface tensions between the two phases.The phase boundary becomes unstable and this causes the growth of the interface layer thickness.4.ConclusionsThe following explanations of our results are pro-posed.Interface layers between the components are formed during the mixing process.Highly dispersed EVA drops could serve as heterogeneous nuclei for PP crystallization.For this reason the ®lms prepared are amorphous (Fig.2),but all blends are semicrystalline (Fig.1).The crystallisation ®xes the created micro-het-erogeneous structure (Fig.7).We suppose that there are three di erent kinds of structure:relatively homo-geneous particles from PP and EVA copolymers,each of them consisting of crystalline and amorphous phases;interface regions with interpenetrating amor-phous chains of the two components and small crys-tals.PP and EVA crystallise separately.Each of the three regions could be considered as a network even before irradiation.The crystals serve as knots in this network.Irradiation leads to an increase of the thickness of the interface layer;up to 100kGy,it diminishes the imperfections in the crystal regions as can be seen by the decreasing di use scattering at higher irradiation doses (Fig.4).200Dose [ kGy ]S l o p e1501005001.11.00.90.80.7Fig.6.The slope P vs irradiation dose (explanation in text).EVA PPFig.7.Structural model of the interface between EVA and PP copolymers.M.Mihailova et al./Radiation Physics and Chemistry 56(1999)581±589588AcknowledgementsThe authors would like to thank the Foundation of Scienti®c Research,So®a University,``St.Kliment Ohridski'',for the®nancial support,and Dr Nikolova for the preparation of the samples.ReferencesAlexander,L.E.,1969a.X-Ray Di raction Methods in Polymer Science.John Wiley&Sons,Inc,New York,p.168.Alexander,L.E.,1969b.X-Ray Di raction in Polymer Science.John Wiley&Sons,Inc,New York,p.427. Bodily,D.,Wunderlich,B.,1966.Thermodynamics of crystal-line linear high polymers.IV.The e ect of ethyl,acetate, and hydroxyl side groups on properties of polyethylene.J.Polymer Sci4,25.Cowley,M.,1975.Di raction Physics.Mir,Moscow,p.139. Dawes,K.,Glover,L.C.,1996.E ects of electron beam and g-irradiation on polymeric materials.In:Mark,J.E.(Ed.), Physical Properties of Polymers Handbook.AIP,New York,p.564.De Gennes,P.G.,1982.Scaling Concepts in Polymer Physics.Mir,Moscow.Kavesh,S.,Schultz,J.M.,mellar and interlamellar structure in melt-crystallitesed polyethylene.I.Degree of crystallinity,atomic positions,particle size,and lattice dis-order of the®rst and second kind.J.Polymer Sci.Part A-28,243.Keller,A.,Ungar,G.,Grabb,P.,1983.Spatial nonuniformity of cross-linking in crystalline alkanes of di erent chain length.Rad.Phys.Chem22,849.Kortleve,G.,Tuijnaman, C.A.F.,Vonk, C.G.,1972.Crystallization of branched polymers.I.Ethylene-vinyl acetate and ethylene-acrylic acid copolymers.J.Polymer Sci10,123.Krestev,V.,Dobreva,B.,Atansov,A.,Nedkov,E.,1986.Crystal structure of g-irradiated and thermal treated poly-propylene.In:Sedla cek(Ed.),Morphology of Polymers.Walter de Gruyter&Co,Berlin,New York,p.303. Lipatov,U.,Shilov,V.,Gomza,U.,Krugliak,N.,1982a.X-Ray Methods for Study Polymer Systems.Naukova Dumka,Kiev,p.229.Lipatov,U.,Shilov,V.,Gomza,U.,Krugliak,N.,1982b.X-Ray Methods for Study Polymer Systems.Naukova Dumka,Kiev,p.212.Lipatov,U.,Sergeeva,L.,1979.Interpenetrating Polymer Networks.Naukova Dumka,Kiev,p.22.Lotz,B.,Gra ,S.,Wittmann,J.C.,1986.Crystal morphology of the g-(triclinic)phase of isotactic polypropylene and its relation to the a phase.J.Polymer Sci.Part B24,2017. Matthews,J.L.,Peiser,H.S.,Pichards,R.B.,1949.The X-ray measurement of the amorphous content of polythene samples.Acta.Crystallogr2(1),85.Minkova,L.,Nikolova,M.,1989a.Melting of irradiated ®lms prepared from polymer blends.Polymer Deg.and Stab25,49.Minkova,L.,Nikolova,M.,1989b.Thermomechanical and some mechanical properties of irradiated®lms prepared from polymer blends.Polymer Deg.and Stab23,217. Nedkov,E.,Tsvetkova,S.,1994.E ect of gamma irradiation on the crystalline structure of ultra high molecular weight poly(ethylene oxide).Rad.Phys.Chem43,397.O'Kane,W.J.,Young,J.R.,Ryan, A.J.,Bras,W., Derbyshire,G.E.,Mant,G.R.,1994.Simultaneous SAXS/ WAXS and D.S.C.Analysis of the melting and recrystalli-zation behaviour of quenched polypropylene.Polymer35(7),1352.Petrov,V.,Bakaltchev,N.,1990.FIT,a computer program for decomposition of powder di raction patterns and pro-®le analysis of pair correlation function.J.Appl.Crystallogr23,138.Sperling,L.,1984.Interpenetrating Polymer Networks and Related Materials.Mir,Moscow,p.25.Stoyanov,A.,Petkov,H.,Krestev,V.,Velikov,V.,Nedkov,E.,1989.E ect of g-irradiation on the paracrystallinestructure of polypropylene®lm.Polymer Deg.and Stab 23,99.Sung-Hee,Ahn,An,J.H.,Lee, D.S.,Kim,S.C.,1993.Compatibility and crystallization in poly(ethylene oxide)-poly(methyl methacrylate)semi-interpenetrating polymer network.J.Polymer Sci.,Part B,Polymer Phys31,1627. Thomas,S.,Gupta,B.R.,De,S.K.,1987.Mechanical proper-ties,surface morphology and failure mode of g-ray irra-diated blends of polypropylene and ethylene-vinyl acetate rubber.Polymer Deg.and Stab18,189.Turner-Jones, A.,Aizlewood,J.M.,Beckett, D.R.,1964.Crystalline forms of isotactic polypropylene.Makromol.Chem75,134.Wunderlich,B.,1973.Macromolecular Physics.Mir,Moscow, p.120.M.Mihailova et al./Radiation Physics and Chemistry56(1999)581±589589。