复合材料模压成型制品的主要缺陷产生原因预防措施
- 格式:docx
- 大小:14.80 KB
- 文档页数:1
复合材料模压工艺复合材料由于其众所周知的优异性能及各种工艺的日益成熟、原材料来源丰富、成本下降、可靠性提高,使其受到用户与生产者双方的青睐,越来越多地取代传统金属材料,我们的时代已进入了复合材料时代。
据美国塑料工业协会复合材料所(Society of the Plastics Industry's Instit ute)1997年元月27日发表的年度统计报告表明:1996年美国复合材料的销售量为161万吨,比1995年的158.5万吨增长约1.6%,是复合材料的销售量连续第五年增长。
据预测,1997年以及以后五年内复合材料销售量仍会连续增长。
聚合物基复合材料模压成形工艺在各种成形工艺方法中占有重要地位,主要用于异型制品的成形,因而所用的成形压力高于其它工艺方法。
由于模压成形工艺所需设备简单,又能对纤维料、碎布、毡料、层压制品、缠绕制品、编织物进行模压成形,因而被各种规模的复合材料生产企业所普遍采用,复合材料模压工艺也几乎为各生产单位家喻户晓。
因此,本文并不打算对模压复合材料制品工艺进行系统介绍,仅就影响复合材料制品质量的一些重要环节谈谈体会,因为就复合材料复杂结构异型件而言,保证质量、提高合格率比一般制件更为重要,难度也更大。
一、对复合材料模压制品质量产生影响的因素模压成形工艺的基本过程是将一定量的经过一定预处理的模压料放入预热的压模内,施加较高的压力使模压料充满模腔。
在预定的温度条件下,模压料在模腔内逐渐固化,然后将制品从压模内取出,再进行必要的辅助加工即得到最终制品。
从上述过程看,完成最终制品涉及的因素有模压料本身、压模模具、加压加温的热压机等;最重要的当是压制工艺,本文将单列一节予以重点讲述;还有工作环境和辅助加工等。
1.模压料任何形式的模压料(碎布料、毡料、长、短纤维),在装模前均应使其按预定比例与树脂均匀浸渍。
对经溶剂稀释的树脂溶液,在浸渍纤维后应充分晾置使溶剂挥发。
晾置时间与环境温度湿度有关。
热压罐成型复合材料成型工艺的常见缺陷及对策【摘要】热压罐成型复合材料在制造领域具有重要性,然而在成型工艺中常见气泡、毛刺、表面质量不佳、尺寸偏差等缺陷影响产品质量。
为解决这些问题,需控制材料质量和工艺参数、提高模具精度、优化成型工艺、实施质量控制措施。
重视对策的实施能有效预防缺陷出现,提高成品质量和生产效率。
未来可继续改进工艺技术和质量管理,以应对挑战,实现更高水平的产品制造。
不断总结对策的重要性,展望未来改进方向,将对提高复合材料成型工艺的质量和效率起到积极的推动作用。
【关键词】热压罐、复合材料、成型工艺、缺陷、气泡、气孔、毛刺、分层、表面质量、尺寸偏差、材料质量、工艺参数、成型模具、精度、优化、质量控制、改进方向。
1. 引言1.1 热压罐成型复合材料成型工艺的重要性热压罐成型复合材料成型工艺在现代工业生产中起着至关重要的作用。
复合材料具有轻质、高强度、抗腐蚀等优点,被广泛应用于航空航天、汽车制造、船舶工业等领域。
热压罐成型是一种常用的制备复合材料制品的工艺方法,通过热压的方式将树脂基复合材料与增强材料加热固化,形成具有特定性能和形状的制品。
热压罐成型复合材料成型工艺的重要性体现在以下几个方面:通过热压罐成型可以实现复合材料高效率、高质量的生产,提高生产效率和制品质量。
热压罐成型工艺可以实现复合材料的复杂成型,满足不同领域对复合材料制品的各种需求。
热压罐成型技术可以有效控制制品的成型过程,减少工艺参数对成品性能的影响,确保制品的稳定性和一致性。
热压罐成型复合材料成型工艺的重要性在于提高生产效率、提高制品质量、满足市场需求,是现代工业制造中不可或缺的一环。
通过对该工艺的研究和不断改进,可以更好地发挥其优势,推动复合材料产业的发展。
1.2 研究目的和意义1.了解热压罐成型复合材料成型工艺的重要性和发展趋势,为提高产品质量和性能提供技术支持。
2.分析常见缺陷对产品品质和成型效率的影响,找出问题根源,提出相应的改进措施。
压缩模塑成型制品的常见缺陷原因和处理方法一、前言翘曲变形是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。
出现翘曲变形的原因很多,单靠工艺参数解决往往力不从心。
结合相关资料和实际工作经验,下面对影响注塑制品翘曲变形的因素作简要分析。
二、模具的结构对注塑制品翘曲变形的影响。
在模具方面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。
1.浇注系统注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变形。
流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。
一些平板形塑件,如果只使用一个中心浇口,因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑件会产生扭曲变形;若改用多个点浇口或薄膜型浇口,则可有效地防止翘曲变形。
当采用点浇口进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响。
另外,多浇口的使用还能使塑料的流动比(L/t)缩短,从而使模腔内熔体密度更趋均匀,收缩更均匀。
同时,整个塑件能在较小的注塑压力下充满。
而较小的注射压力可减少塑料的分子取向倾向,降低其内应力,因而可减少塑件的变形。
2。
冷却系统在注射过程中,塑件冷却速度的不均匀也将形成塑件收缩的不均匀,这种收缩差别导致弯曲力矩的产生而使塑件发生翘曲。
如果在注射成型平板形塑件(如手机电池壳)时所用的模具型腔、型芯的温度相差过大,由于贴近冷模腔面的熔体很快冷却下来,而贴近热模腔面的料层则会继续收缩,收缩的不均匀将使塑件翘曲。
因此,注塑模的冷却应当注意型腔、//型芯的温度趋于平衡,两者的温差不能太大(此时可考虑使用两个模温机)。
除了考虑塑件内外表的温度趋于平衡外,还应考虑塑件各侧的温度一致,即模具冷却时要尽量保持型腔、型芯各处温度均匀一致,使塑件各处的冷却速度均衡,从而使各处的收缩更趋均匀,有效地防止变形的产生。
热压罐成型复合材料成型工艺的常见缺陷及对策热压罐成型复合材料成型工艺是一种广泛应用于航空、汽车、船舶等领域的高性能材料成型技术。
由于其具有质量轻、刚性高、耐高温耐腐蚀等优点,因此备受青睐。
在实际生产中,热压罐成型复合材料成型工艺常常会出现各种缺陷,影响产品质量和性能。
本文将重点介绍热压罐成型复合材料成型工艺中常见的缺陷及相应的对策。
一、气泡气泡是热压罐成型复合材料成型工艺中常见的缺陷之一。
气泡的存在会导致制品的密度不均匀,影响其力学性能和耐久性。
气泡的形成原因主要包括树脂充填不足、工装表面粗糙和工艺参数设置不当等。
对策:1. 提高树脂充填效率,保证充填充分;2. 提高工装表面光洁度,减少气泡的产生;3. 调整工艺参数,如温度、压力和时间,使树脂更好地充填并排除气泡。
二、裂纹裂纹是热压罐成型复合材料成型工艺中另一个常见的缺陷。
裂纹的存在会降低制品的强度和韧性,影响其使用寿命。
裂纹的形成主要受到成型温度、成型压力和成型时间的影响,同时也与工装的设计和加工精度有关。
对策:1. 控制成型温度,避免温度过高导致树脂的膨胀收缩,产生裂纹;2. 合理控制成型压力,保证树脂充填充分但不会过大导致裂纹;3. 控制成型时间,避免过长造成树脂过度固化产生裂纹;4. 设计合理的工装结构,减少应力集中和变形,避免裂纹的产生。
三、毛刺对策:1. 优化模具的设计,减少脱模力和剪切力,避免毛刺的产生;2. 提高模具表面的加工精度和光洁度,减少毛刺的生成;3. 采用表面喷涂、电镀等方法,形成一层平滑的保护层,减少毛刺的产生。
四、变形变形是热压罐成型复合材料成型工艺中常见的内部缺陷。
制品的变形会导致尺寸偏差和形状不规则,影响其使用功能和外观美观。
变形的产生主要与工装设计、成型参数和材料性能有关。
对策:1. 优化工装设计,减少应力集中和变形;2. 调整成型参数,如温度、压力和时间,使成型过程更加稳定;3. 选择合适的复合材料,提高材料的强度和韧性,减少变形的产生。
复合材料失效复合材料是由两种或两种以上的材料组合而成,具有轻质、高强度、耐腐蚀等优点,因此在航空航天、汽车、建筑等领域得到了广泛应用。
然而,复合材料也存在着失效的风险,这不仅会影响产品的性能和安全性,还可能导致严重的事故。
因此,了解复合材料失效的原因和预防措施至关重要。
复合材料失效的原因主要包括材料本身的缺陷、使用环境的影响和外部因素的作用。
首先,材料本身可能存在制造过程中的缺陷,如气泡、裂纹等,这些缺陷会降低材料的强度和耐久性。
其次,使用环境的影响也是导致复合材料失效的重要原因,如潮湿、高温、紫外线等环境因素会加速材料的老化和腐蚀,从而降低其性能。
最后,外部因素如机械冲击、振动、过载等也会导致复合材料的失效,因此在设计和使用过程中需要考虑这些因素。
为了预防复合材料失效,首先需要加强材料的质量控制,减少制造过程中的缺陷。
其次,需要选择合适的使用环境,对于在恶劣环境下使用的复合材料,可以采取防护措施或者选择耐腐蚀性能更好的材料。
此外,还需要加强对外部因素的考虑,通过优化设计和加强监测,提高复合材料的抗冲击和振动能力,避免过载等情况的发生。
在实际应用中,复合材料失效不仅会造成经济损失,还可能导致人员伤亡,因此需要高度重视。
只有通过加强质量控制、选择合适的使用环境和加强对外部因素的考虑,才能有效预防复合材料的失效,保障产品的安全性和可靠性。
总之,复合材料失效是一个复杂的问题,需要综合考虑材料本身的质量、使用环境和外部因素的影响。
只有通过全面的预防措施,才能有效降低复合材料失效的风险,保障产品的质量和安全。
希望本文的内容能够对复合材料失效问题有所帮助,引起相关领域工作者的重视,共同努力降低复合材料失效的风险,推动行业的发展和进步。
复合材料成型缺陷分析与控制在现代工业领域中,复合材料因其优异的性能,如高强度、高刚度、良好的耐腐蚀性等,被广泛应用于航空航天、汽车、船舶、体育器材等众多领域。
然而,复合材料的成型过程并非一帆风顺,常常会出现各种缺陷,这些缺陷不仅影响产品的外观质量,更可能严重削弱其性能和可靠性,甚至导致产品报废。
因此,对复合材料成型缺陷进行深入分析,并采取有效的控制措施,具有至关重要的意义。
一、复合材料成型缺陷的类型及成因(一)孔隙孔隙是复合材料成型中最常见的缺陷之一。
它表现为材料内部存在的微小空洞,其成因较为复杂。
树脂浸润纤维不充分、固化过程中产生的挥发物无法及时排出、成型压力不足等都可能导致孔隙的产生。
孔隙的存在会降低材料的强度和刚度,影响其耐疲劳性能和耐腐蚀性。
(二)分层分层指的是复合材料层间的分离现象。
通常是由于层间结合力不足、成型过程中的冲击或振动、树脂固化不均匀等原因引起的。
分层会显著降低复合材料的层间强度,使其承载能力大幅下降。
(三)纤维弯曲和断裂在成型过程中,纤维可能会发生弯曲和断裂。
这可能是由于纤维在铺放过程中受到不当的张力或压力,或者在模具中流动的树脂对纤维产生了剪切作用。
纤维的弯曲和断裂会直接影响复合材料的力学性能,使其强度和刚度达不到设计要求。
(四)树脂富脂和贫脂区树脂分布不均匀会导致富脂区和贫脂区的出现。
富脂区树脂含量过高,会增加材料的重量和成本,同时降低其强度;贫脂区则由于树脂不足,无法充分浸润和保护纤维,影响复合材料的性能和耐久性。
(五)表面缺陷表面缺陷包括表面粗糙、凹坑、鼓包等。
这可能是由于模具表面不光滑、脱模剂使用不当、树脂固化收缩不均等原因造成的。
表面缺陷不仅影响产品的外观质量,还可能成为应力集中点,降低材料的使用寿命。
二、复合材料成型缺陷的影响(一)力学性能下降孔隙、分层、纤维弯曲和断裂等缺陷都会导致复合材料的力学性能,如强度、刚度、韧性等下降。
这使得复合材料在使用过程中无法承受预期的载荷,增加了失效的风险。
复合材料模压成型工艺的优缺点在现代工业制造领域中,复合材料模压成型工艺是一种常用的生产技术,其在航空航天、汽车、船舶、建筑等领域具有广泛的应用。
本文将探讨复合材料模压成型工艺的优缺点,以帮助读者更好地理解这一制造工艺。
优点1. 良好的成型质量复合材料模压成型工艺可以实现高精度、高稳定性的产品成型,能够生产出表面平整、尺寸精准的制品,有利于保证产品的质量和性能稳定性。
2. 高效率生产相比手工复合工艺,模压成型工艺具有生产效率高、周期短的优势,能够满足大规模生产的需求,提高生产效率,降低生产成本。
3. 环保节能制造过程中,复合材料模压成型工艺可以有效减少废料产生,降低能源消耗,具有较好的环保节能效果,符合现代工业可持续发展的要求。
4. 设计灵活性通过合理设计模具,复合材料模压成型工艺可以生产各种复杂形状的产品,具有良好的设计灵活性和可塑性,能够满足不同客户的需求。
缺点1. 初期投资高复合材料模压成型工艺需要大量的设备投资和技术支持,特别是生产模具的制造成本较高,会增加企业的初期投资压力。
2. 模具制造周期长复合材料模压成型工艺中的模具制造周期相对较长,制造成本高,需要较长的制造周期,并且模具使用寿命有限,需要定期更换。
3. 需要专业技术人才复合材料模压成型工艺需要专业的操作技术和工艺经验支持,操作者需要接受相关的培训和指导,增加了生产管理的难度。
4. 模具设计复杂复合材料模压成型工艺的成功与否与模具设计密切相关,复杂的产品结构需要复杂的模具设计,增加了工艺的难度和成本。
综合来看,复合材料模压成型工艺具有诸多优点,如良好的成型质量、高效率生产、环保节能和设计灵活性,但也存在一些缺点,如初期投资高、模具制造周期长、需要专业技术人才和模具设计复杂。
在实际生产中,企业需要综合考虑这些因素,选择合适的生产工艺,以实现生产效率与产品质量的最佳平衡。
复合材料缺陷
复合材料是由两种或两种以上的材料组合而成的新材料,具有轻质、高强度、
耐腐蚀等优点,被广泛应用于航空航天、汽车、建筑等领域。
然而,复合材料也存在着一些缺陷,这些缺陷可能会影响其性能和使用寿命。
首先,复合材料的制造过程中可能会产生气泡和孔洞。
这些气泡和孔洞会降低
材料的密度和强度,导致材料的性能下降。
因此,在制造过程中需要严格控制工艺,避免气泡和孔洞的产生。
其次,复合材料的层间结合质量可能存在问题。
由于复合材料是由多层材料叠
加而成的,如果层间结合质量不好,会导致材料的层间剥离和开裂,进而影响材料的整体性能。
因此,在制造过程中需要加强对层间结合质量的监控和检测,确保各层材料之间的结合牢固。
另外,复合材料的表面可能会出现划痕和凹陷。
这些表面缺陷会降低材料的外
观质量,同时也会影响材料的耐磨性和耐久性。
因此,在使用过程中需要注意保护材料的表面,避免表面划痕和凹陷的产生。
此外,复合材料还可能存在着内部缺陷,如裂纹和夹杂物。
这些内部缺陷会在
材料受力时扩展,导致材料的破坏。
因此,需要通过非破坏检测技术对复合材料进行全面的检测,及时发现和修复内部缺陷。
综上所述,复合材料的缺陷主要包括制造过程中的气泡和孔洞、层间结合质量、表面缺陷以及内部缺陷。
为了确保复合材料的质量和性能,需要在制造和使用过程中加强质量控制和检测,及时发现和修复各种缺陷,提高复合材料的可靠性和使用寿命。
1、层压板表面发花层压板表面发花一般有两种情况:一种是表面出现白斑;一种是表面有麻孔。
表面发花易出现在薄板中。
(1)白斑白斑产生的原因:①玻璃布含胶量低;②胶布太嫩,在压制时胶布上的树脂流掉较多,形成白斑。
解决办法:①玻璃布的含胶量、可溶性树脂含量,要在规定的范围内;②压制初期压力不要太大,以防树脂流失,形成白斑。
(2)麻孔麻孔产生的原因:①胶布太老,树脂流动性差;②压制时压力过小或受压不均;③压制预热阶段时间长,加压不及时。
解决办法:①选用含胶量较高、可溶性树脂含量稍高的表面胶布;②加大成型压力,增加衬纸数量,并经常更换;③预热阶段时间不宜过长,加压要及时。
2、层压板分层产生原因:①胶布中有老胶布;②胶布含胶量过小;③成型压力太低或加压过迟。
解决办法:严格检查胶布质量,不合格的胶布不要用。
压制时掌握好加压时机及注意保压。
3、板芯发黑,四周发白产生原因:胶布可溶性含量及挥发分含量过大。
预热阶段,板料四周挥发物容易逸出,而中间残留多,呈现板芯发黑,周围发白。
解决办法:降低胶布可溶性树脂含量和挥发分含量,且防止胶布受潮。
4、胶布滑出压制时,胶布从钢板中滑出来。
在压制环氧玻璃布板时比压制环氧酚醛玻璃布板较为常见。
产生原因:①胶布含胶量多;②胶布含胶量不匀,一边高,另一边低;③可溶性树脂含量高;④压制过程中预压阶段的升温过快,起始压力过大;⑤压机本身受力不匀。
解决办法:①严格控制胶布含胶量和可溶性树脂含量在规定范围内;②配布时注意胶布的搭配;③如压制时出现“滑移”情况,要及时关闭热流,保持原来的压力,注意滑移情况,待稳定后,再逐步加热加压,继续进行压制;④利用多层加热板进行加压时,将所有的加热板固定。
5、层压板粘钢板产生原因:①叠料时没放面子胶布,或者面子胶布中没加脱模剂;②钢板上涂的脱模剂不均匀;③压制温度过高。
解决办法:①面子胶布中要含有脱模剂,胶布要适当老一点,即可溶性树脂含量稍低点;②钢板上脱模剂要涂均匀,或改用聚丙烯薄膜作脱模剂;③热压温度要适当。
模压制品缺陷型式、发生原因、纠正措施中国玻璃钢工业协会模压专业委员会匡伯铭为了界定和解决出现的故障,采用一套有规则的工艺方法是很关键的。
对于在排除故障/缺陷的过程中这会有助于避免误判。
举例而言,如果缺陷来自成型过程则应集中力量从工艺参数和设备上着手,最终希望能正确、快速地排除故障,下述的指导性意见将是有益的。
当问题产生后应如何排除故障?1.首先应快速反应,因为随着时间的拖延,问题会愈加复杂。
例如,工艺参数要变、材料配方也会变,模塑零件的供应商说不定会退出。
2.研究所有的问题,要系统地进行,不可带偏见,决不要跳过某些环节而下结论。
3.要认真听取他人对问题的描述,决不能自己主观臆测。
4.要了解问题的第一手资料,首先要听取压机工和检验员的分析,只有生产现场的观察才是首位的。
5.要对问题作出最后的定论,要对问题的性质、环境、时间一一做出回答。
6.根据你自己的调研制备一张可能引起各种缺陷的原因表,就像本文所提示的各种信息。
7.利用这张表的可能原因,逻辑地鉴定其可能的趋势,并利用本章的指导意见尽力地纠正它,为了避免混乱,尽量在此刻只考虑其一个原因。
Blisters 气泡乃是加压BMC基材时出现气体导致在制品表层突起。
可能的原因及纠正的措施:1.BMC原料中的“干玻纤”引起模塑料铺层中的空隙,这些空隙在成型时其内集合的气体可能膨胀为气泡。
要完全纠正就要在制备BMC时改变工艺或减少玻纤的含量。
2.BMC原料被湿气、压机的油花、润滑油或外脱模剂所沾染,在成型时受热可能转变成蒸汽而引成气泡,碳酸钙和硬脂酸盐都是亲水物质故所以容易沾染水份。
3.捕获空气的机会应减到最少,这种机会取决于BMC铺料的面积和位置,实际上采用减少铺料的面积,类似像金字塔一样铺放在模具中央部位是有效的,可以迫使空气在成型中跑在BMC料流的前面而逸出。
4.当合模至最后尺寸前,应尽量减慢合模速度,较低的合模速度会减少物料的搅动并削弱捕获空气的机会。
热压罐成型复合材料成型工艺的常见缺陷及对策热压罐成型复合材料成型是一种常见的制造工艺,它可以生产出具有优良性能的复合材料制品,被广泛应用于航空航天、汽车、船舶、建筑等领域。
由于材料的特殊性和成型工艺的复杂性,常常会出现各种缺陷,影响产品的质量和性能。
本文将就热压罐成型复合材料成型工艺常见的缺陷及对策进行详细的介绍。
一、常见的缺陷1. 毛细孔毛细孔是指在复合材料制品内部出现的微小气孔。
造成毛细孔的原因有很多,比如树脂固化不完全、吸湿、气泡等,常常出现在厚度较大的复合材料制品中。
2. 气泡气泡是指在复合材料制品内部或表面出现的气体囊泡。
气泡的出现会导致产品密度不均匀,降低其抗压强度和韧性。
3. 残余应力残余应力是指在成型过程中产生,但又没有完全消除的应力。
残余应力会导致产品在使用过程中产生变形或开裂现象。
4. 凹坑和凸起凹坑是指在产品表面出现的凹陷,凸起则是指在产品表面出现的凸起。
这些缺陷会影响产品的外观质量。
5. 产品几何尺寸不合格由于成型过程中操作不当或模具设计不合理等原因,产品的几何尺寸可能出现偏差,不符合设计要求。
二、对策要避免毛细孔的出现,首先要保证树脂的固化充分,可以加长固化时间或提高固化温度。
其次要保持材料的干燥状态,避免吸湿现象的发生。
在成型过程中需要注意排气,尽量避免气泡的出现。
对于气泡的对策,可以采用真空吸气技术,在成型过程中对材料进行真空处理,尽量排除内部空气,减少气泡的生成。
还可以在树脂中添加消泡剂,提高材料的抗气泡能力。
残余应力的消除是一个比较复杂的问题,可以通过优化成型工艺、合理设计模具结构等措施来减少残余应力的产生。
在产品成型后,可以通过热处理或添加应力消除功能层来消除残余应力。
对于凹坑和凸起,可以通过优化模具结构、调整成型参数等措施来改善产品表面质量。
选用适当的脱模剂和表面处理工艺也能减少这些表面缺陷的发生。
产品几何尺寸不合格的原因有很多,可能是成型模具设计不合理,也可能是操作过程中出现失误。
RTM工艺成型的制品主要缺陷及对策质量与工艺控制是复合材料RTM工艺成功应用的一个关键。
复合材料的质量主要取决于以下特性孔隙率:复合材料中气泡或空隙的含量必须低于结构设计所容许的值。
压实水平:树脂含量、纤维体积含量以及相关的分布梯度。
固化度:聚合物树脂及其结构的形成。
纤维方向:满足设计要求。
界面粘接:树脂和纤维之间的粘接程度。
模具设计不当、预成形体制造质量偏低以及工艺参数的选择不合理等会导致RTM工艺成型制件出现各种缺陷。
缺陷的存在降低了复合材料的质量,体现在材料力学性能、表观质量、以及耐环境湿热性能的下降。
气泡和干斑以及富树脂区是RTM制品的主要缺陷,有必要弄清楚这些典型缺陷的形成机理,以便在RM工艺实施过程中采取适当的措施,抑制或者消除这些缺陷以提高RTM制件质量。
干斑一般在进出胶口设置不合理、快速流道效应、预制体中渗透率异常变化或者树脂预先凝胶等情况下产生。
在有快速流道效应的情况下,树脂优先流向预制体中自由空间较大的边界区域,并在充满整个模腔前到达出胶口,然后该部分树脂回流导致袋装气泡裹在预制体中,此后袋装气泡随着与树脂压力的平衡而收缩,在固化后最终形成气泡。
通过憋胶和放胶工艺如何形成干斑和消除干斑的方法憋胶工艺时在注射的过程中利用反向压力封堵出胶口管路,这种工艺增加了作用于干斑周围的压力,这将使得干斑收缩,且使得干斑内部压力增大。
放胶是在憋胶后打开出胶口、管路,导致干斑和出胶机构间瞬时的压力变化将驱使被困空气向出胶口方向移动。
还有一种情况是在树脂的流动前沿交汇处形成空隙。
由于增强材料一般是各项异性的,树脂流动前沿不是光滑的曲线,而是呈现锯齿状,左右两股树脂前沿上锯齿的齿峰与齿峰先接触,从而包裹出空气,形成空隙。
把这种树脂流动前沿交汇处包裹有气泡的结构称为熔接痕。
熔接痕的气泡含量比其他地方大的多,使得制件在熔接痕处的性能降低很多,应当尽量合理安排注胶口的位置,使熔接痕痕的长度最短。
熔接痕的长度将作为工艺性能指数中权重最大的一项用以评价浇口设置优劣。
热压罐成型复合材料成型工艺的常见缺陷及对策摘要:复合材料工业的基础和条件是复合材料成型工艺,复合材料应用的进一步拓宽,将使复合材料工业进入一个崭新的阶段。
热塑性复合材料是以玻璃纤维、碳纤维、芳纶纤维等增强各种热塑性树脂的总称,国外称Fiber Rinforced Thermo Plastics(简称FRTP)。
热固性复合材料是指在受热或其他条件下能固化或具有不溶(熔)特性的复合材料。
由于热塑性树脂和增强材料种类不同,其生产工艺和制成的复合材料性能差别很大。
复合成型工艺优点很突出,近十年在我国得到了快速发展但未能有重大突破,与其他发达国家相比还有距离。
关键词:复合材料;成型工艺;缺陷热压罐成型方法具有许多其他工艺不具备的优点,可制造形状复杂的制件,制品质量问题,成型工艺灵活,适于生产大面积整体成型构件,纤维含量高,孔隙率低。
热压罐成型工艺具有设备投资高,成型周期长的特点,热压罐成型复合材料构件主要缺陷包括外形尺寸与内部治理等,内部质量包括分层,夹杂等。
造成缺陷的原因种类繁多,包括制造中的人机料法环各环节的相关工序。
热压罐工艺是目前复合材料构件最主要的成型方法, 复合材料构件复杂的结构形式往往导致其在热压成型过程中热传导、压力传递及其引起的树脂流动、纤维密实与变形、固化反应等物理化学作用机制更加复杂, 易产生多种缺陷, 工艺控制难度加大。
一、热压罐成型工艺1、热压罐成型工艺过程。
热压罐(HotAirAutoclave 或简写 Autoclave)是一种针对聚合物基复合材料成型工艺特点的工艺设备,使用这种设备进行成型工艺的方法叫热压罐法。
热压罐成型法是制造连续纤维增强热固性复合材料制件的主要方法,目前广泛应用于先进复合材料结构、蜂窝夹层结构及金属或复合材料胶接结构的成型中。
热压罐成型法也有一定的局限性,结构很复杂的构件,用该方法成型有一定困难。
同时此法对模具的设计技术要求很高,模具必须有良好的导热性、热态刚性和气密性。
热压罐成型复合材料成型工艺的常见缺陷及对策【摘要】热压罐成型复合材料成型工艺在现代工业生产中具有重要性,但在实际生产过程中常常出现各种缺陷。
本文通过研究背景引入了热压罐成型复合材料成型工艺的重要性,并探讨了常见缺陷包括气泡、浸透不良、层间剥离和成型不良等。
针对这些缺陷,我们提出了一系列对策,如优化制造工艺、增加浸透时间和改进成型模具等。
我们展望了热压罐成型复合材料成型工艺的未来发展,并对整个文章进行了总结。
通过本文的研究和分析,希望能够为相关领域的从业者提供参考和借鉴,促进热压罐成型复合材料成型工艺的进步与发展。
【关键词】关键词:热压罐成型、复合材料、成型工艺、常见缺陷、气泡、浸透不良、层间剥离、成型不良、对策、未来发展、总结1. 引言1.1 热压罐成型复合材料成型工艺的重要性热压罐成型复合材料成型工艺在现代工业生产中扮演着重要的角色。
复合材料是一种由两种或两种以上的不同性质的原材料组成的新材料,具有轻质、高强度、耐腐蚀等优点。
而热压罐成型工艺是一种常用的成型方法,通过高温和高压的作用,将复合材料原料进行热压成型,从而得到需求形状的制品。
这种工艺在航空航天、汽车、船舶、建筑等领域都有广泛的应用。
热压罐成型复合材料成型工艺不仅可以实现对复合材料的成型加工,还可以提高产品的质量和性能。
深入研究热压罐成型复合材料成型工艺的关键技术和常见缺陷,对于提高产品的质量和效率具有重要意义。
通过不断改进和优化热压罐成型复合材料成型工艺,可以更好地满足市场需求,推动相关产业的发展和进步。
1.2 研究背景热压罐成型是一种常见的复合材料成型工艺,通过高温和高压的条件下使树脂基复合材料固化,经过成型后可以获得具有优异特性的复合材料制品。
在工业生产中,热压罐成型工艺被广泛应用于航空航天、汽车、船舶、建筑等领域。
热压罐成型过程中常常会出现各种缺陷,影响制品的质量和性能。
这些缺陷包括气泡、浸透不良、层间剥离和成型不良等。
为了解决这些问题,需要对热压罐成型复合材料成型工艺进行深入研究,找出缺陷产生的原因并提出有效的对策措施。
SMC模压常见缺陷、原因与解决方法一、气泡和空洞缺陷描述:在SMC模压成型后,产品内部或表面出现不规则的气泡或空洞。
原因分析:原料混合不均匀,存在空气囊。
模压过程中排气不充分,导致气体被困。
模压温度过高或过低,影响气体排出。
解决方法:加强原料混合工艺,确保物料均匀无气泡。
优化模具设计,增加排气孔和排气槽,提高排气效率。
调整模压温度,确保在合适的温度范围内进行模压。
二、翘曲变形缺陷描述:SMC模压件在成型后出现形状改变,不符合设计要求。
原因分析:模压过程中温度分布不均匀,导致产品局部收缩不一致。
模具设计不合理,未能完全限制产品变形。
材料性能差异,如收缩率不同。
解决方法:改善模压工艺,确保模腔内温度分布均匀。
优化模具结构,增加支撑和限位装置,减少变形。
选用性能稳定、收缩率一致的原材料。
三、表面瑕疵缺陷描述:SMC模压件表面出现裂纹、划痕、凹坑等缺陷。
原因分析:模具表面不光洁,存在磨损或异物。
脱模过程中操作不当,导致产品损伤。
原材料含有杂质或颗粒过大。
解决方法:定期对模具进行维护和保养,保持其表面光滑清洁。
改进脱模工艺,使用专用脱模剂,避免划伤产品。
严格控制原材料质量,去除杂质和过大颗粒。
四、强度不足缺陷描述:SMC模压件在使用过程中表现出较低的机械强度,易发生断裂或变形。
原因分析:原材料配比不当,影响产品性能。
模压压力不足或时间过长,导致产品内部结构疏松。
产品固化不充分,未能达到设计强度。
解决方法:调整原材料配比,确保各组分含量符合设计要求。
优化模压工艺参数,提高模压压力和缩短模压时间。
延长固化时间或提高固化温度,确保产品充分固化。
综上所述,针对SMC模压常见的气泡和空洞、翘曲变形、表面瑕疵以及强度不足等缺陷,可以通过调整原材料、优化模具设计、改进工艺参数和加强质量控制等方法来有效解决。
在实际生产过程中,应根据具体情况采取相应措施,以提高产品质量和降低成本。
SMC模压工艺中常见质量问题分析及对策SMC材料模压工艺是玻璃钢/复合材料成型工艺中生产效率最高的一种。
SMC模压工艺有很多优点,例如:制品尺寸准确、表面光洁、制品外观及尺寸重复性好、复杂结构也可一次成型、二次加工无需损伤制品等。
但在SMC模压生产过程中也会出现不良缺陷现象,主要表现在以下几个方面:问题一:缺料缺料是指SMC模压成型件没完全充满,其产生部位多集中在SMC制品的边缘,尤其是边角的根部和顶部。
原因分析:1、放料量少;2、SMC材料流动性差;3、设备压力不充足;4、固化太快。
产生机理及对策:1、SMC材料受热塑化后,熔融粘度大,在交联固化反应完成前,没有足够的时间、压力、和体积使融体充满模腔。
2、SMC模压料存放时间过长,苯乙烯挥发过多,造成SMC模压料的流动性能明显降低。
3、树脂糊未浸透纤维。
成型时树脂糊不能带动纤维流动而造成缺料。
由上述原因所引起的缺料,最直接的解决方法是切料时剔除这些模压料。
4、加料量不足引起缺料。
解决方法是适当增大加料量。
5、模压料中裹有过多的空气及大量挥发物。
解决方法有:适当增加排气次数;适当加大加料面积,隔一定时间清理模具;适当增大成型压力。
6、加压过迟,模压料在充满模腔前已完成交联固化。
7、模温过高,交联固化反应提前,应适当降温。
问题二:气孔产品表面上有规则或不规则的小孔,其产生部位多在产品顶端和中间薄壁处。
产生机理及对策:1、SMC模压料中裹有大量空气以及挥发物含量大,排气不畅;SMC料的增稠效果不佳,不能有效赶出气体。
对于上述引起原因,可通过增加排气次数以及清理模具相结合的方法而得到有效的控制。
2、加料面积过大,适当减少加料面积可得到控制。
在实际操作过程中,人为因素也有可能造成砂眼。
比如加压过早,有可能使模压料裹有的气体不易排出,造成制品表面出现气孔的表面缺陷。
问题三:翘曲变形产生的主要原因是模压料固化不均匀和脱模后产品的收缩。
产生机理及对策:在树脂固化反应过程中化学结构发生变化,引起体积收缩,固化的不均匀使得产品有向首先固化的一侧翘曲的趋势。