第11章静磁学
- 格式:ppt
- 大小:3.45 MB
- 文档页数:80
大学物理电磁学公式总结汇总普通物理学教程大学物理电磁学公式总结,下面给大家整理了关于大学物理电磁学公式总结,方便大家学习大学物理电磁学公式总结1定律和定理1. 矢量叠加原理:任意一矢量可看成其独立的分量的和。
即:=∑ (把式中换成、、、、、就分别成了位置、速度、加速度、力、电场强度和磁感应强度的叠加原理)。
2. 牛顿定律:=m (或= );牛顿第三定律:′= ;万有引力定律:3. 动量定理:→动量守恒:条件4. 角动量定理:→角动量守恒:条件5. 动能原理:(比较势能定义式:)6. 功能原理:A外+A非保内=ΔE→机械能守恒:ΔE=0条件A 外+A非保内=07. 理想气体状态方程:或P=nkT(n=N/V,k=R/N0)8. 能量均分原理:在平衡态下,物质分子的每个自由度都具有相同的平均动能,其大小都为kT/2。
克劳修斯表述:不可能把热量从低温物体传到高温物体而不产生其它影响。
开尔文表述:不可能从单一热源吸取热量,使之完全变为有用的功而不产生其它影响。
实质:在孤立系统内部发生的过程,总是由热力学概率小的宏观状态向热力学概率大的状态进行。
亦即在孤立系统内部所发生的过程总是沿着无序性增大的方向进行。
9. 热力学第一定律:ΔE=Q+A10.热力学第二定律:孤立系统:ΔS0(熵增加原理)11. 库仑定律:(k=1/4πε0)12. 高斯定理:(静电场是有源场)→无穷大平板:E=σ/2ε013. 环路定理:(静电场无旋,因此是保守场)θ2Ir P o Rθ1I14. 毕奥—沙伐尔定律:直长载流导线:无限长载流导线:载流圆圈:,圆弧:电磁学1. 定义:= /q0 单位:N/C =V/mB=Fmax/qv;方向,小磁针指向(S→N);单位:特斯拉(T)=104高斯(G)① 和:=q( + × )洛仑兹公式②电势:电势差:电动势:( )③电通量:磁通量:磁通链:ΦB=NφB单位:韦伯(Wb)Θ ⊕-q +qS④电偶极矩:=q 磁矩:=I =IS⑤电容:C=q/U 单位:法拉(F)乘自感:L=Ψ/I 单位:亨利(H)乘互感:M=Ψ21/I1=Ψ12/I2 单位:亨利(H)⑥电流:I = ; 乘位移电流:ID =ε0 单位:安培(A)⑦乘能流密度:2. 实验定律① 库仑定律:②毕奥—沙伐尔定律:③安培定律:d =I ×④电磁感应定律:ε感= –动生电动势:感生电动势:( i为感生电场)乘⑤欧姆定律:U=IR( =ρ )其中ρ为电导率3. 乘定理(麦克斯韦方程组)电场的高斯定理:( 静是有源场)( 感是无源场)磁场的高斯定理:( 稳是无源场)( 感是无源场)电场的环路定理:(静电场无旋)(感生电场有旋;变化的磁场产生感生电场)安培环路定理:(稳恒磁场有旋)(变化的电场产生感生磁场)4. 常用公式①无限长载流导线:螺线管:B=nμ0I② 带电粒子在匀强磁场中:半径周期磁矩在匀强磁场中:受力F=0;受力矩③电容器储能:Wc= CU2 乘电场能量密度:ωe= ε0E2 电磁场能量密度:ω= ε0E2+ B2乘电感储能:WL= LI2 乘磁场能量密度:ωB= B2 电磁场能流密度:S=ωV④ 乘电磁波:C= =3.0×108m/s 在介质中V=C/n,频率f=ν=波动学大学物理电磁学公式总结2概念(2113定义和相关公式)1. 位置矢量:,其5261在直角坐标系中:; 角位置:4102θ16532. 速度:平均速度:速率:( )角速度:角速度与速度的关系:V=rω3. 加速度:或平均加速度:角加速度:在自然坐标系中其中(=rβ),(=r2 ω)4. 力:=m (或= ) 力矩:(大小:M=rFcosθ方向:右手螺旋法则)5. 动量:,角动量:(大小:L=rmvcosθ方向:右手螺旋法则)6. 冲量:(= Δt);功:(气体对外做功:A=∫PdV)mg(重力) → mgh-kx(弹性力) → kx2/2F= (万有引力) → =Ep(静电力) →7. 动能:mV2/28. 势能:A保= –ΔEp不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=EK+EP9. 热量:其中:摩尔热容量C与过程有关,等容热容量Cv 与等压热容量Cp之间的关系为:Cp= Cv+R10. 压强:11. 分子平均平动能:;理想气体内能:12. 麦克斯韦速率分布函数:(意义:在V附近单位速度间隔内的分子数所占比率)13. 平均速率:方均根速率:;最可几速率:14. 熵:S=KlnΩ(Ω为热力学几率,即:一种宏观态包含的微观态数)15. 电场强度:= /q0 (对点电荷:)16. 电势:(对点电荷);电势能:Wa=qUa(A= –ΔW)17. 电容:C=Q/U ;电容器储能:W=CU2/2;电场能量密度ωe=ε0E2/218. 磁感应强度:大小,B=Fmax/qv(T);方向,小磁针指向(S→N)。
静磁场中的唯一性定理作者:戴振翔郑赣鸿张青等来源:《赤峰学院学报·自然科学版》 2014年第14期戴振翔,郑赣鸿,张青,马永青(安徽大学物理与材料科学学院,安徽合肥 230039)摘要:唯一性定理是解决静电磁场问题的重要理论依据,应用构造恰当函数的技巧和一些数学运算,从给定的边界条件出发,本文给出了静磁场唯一性定理的证明,最后给出了唯一性定理关于静磁场实际问题的应用举例.关键词:电动力学;唯一性定定理;边界条件中图分类号:O442 文献标识码:A 文章编号:1673-260X(2014)07-0022-02静电场和静磁场中的唯一性定理是电动力学中的重要定理.静电场的唯一性定理在郭硕鸿的《电动力学》已经给出非常清晰的证明.然而,关于静磁场中的唯一性定理,却没有给出.因此,有必要对静电场和静磁场的唯一性定理给出一个统一的系统证明,为解决静场问题提供理论依据.1 静磁场边界条件对于存在有限边界的静磁场问题,边界条件一般只有一种选择,那就是给定边界上的磁感应强度的法向分量:即通过边界的净磁通为零.2 静磁场唯一性定理的证明任意两个相邻的介质分界面上满足边值关系:即A1和A2相差一个常数,两者所确定的磁感应强度矢量相同,即磁场唯一确定.由以上的论证,可以得到不随时间变化的矢量场,在给定的边界条件和其满足的可以完备描述其不含时的矢量场下,是唯一确定的.3 结论从静场的角度论证电动力学中的唯一性定理业已完成.在时变电磁场中论证唯一性定理和在运动的参考系下即相对论情形下论证电磁张量的特定给定的边界条件下的唯一性定理是今后进一步的研究工作.参考文献:〔1〕蔡圣善,朱耘.经典电动力学[M].上海:复旦大学出版社,1985.120-210.〔2〕赵凯华,陈熙谋.电磁学上册[M].北京:高等教育出版社,1985.213-219.〔3〕胡友秋,程福臻.电磁学与电动力学上册[M].北京:科学出版社,2008.30-85.〔4〕张玉民,戚伯云.电磁学[M].北京:科学出版社2007.213-241.〔5〕郭硕鸿,电动力学[M].北京:高等教育出版社,2008.37-90.〔6〕林璇英,张之翔.电动力学题解[M].北京:科学出版社,2007.99-263.〔7〕梁昌洪,褚庆昕.运动边界的电磁场边界条件[J].物理学报,2002,51(10):2201-2204(10).〔8〕雷银照,徐纪安.时变电磁场唯一性定理的完整表述[J].电工技术报,2000,15(1):16-20.〔9〕胡森.静磁场矢势A的唯一性定理及其证明[J].湖北第二师范学院学报,2008,25(2):31-32.〔10〕张福恒.静电唯一性定理的意义与应用[J].海南师范大学学报,2008,21(2):161-166.〔11〕张国文,王福谦.在电磁学中讲授静电场的唯一性定理[J].长治学院学报,2005,22(2):45-47.〔12〕邵建军.论电磁势的唯一性(非动力物理效应)与相对论[J].湖北教育学院学报,2002,19(2):22-26.。
《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。
力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。
物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。
通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。
在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。
二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。
2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。
3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。
三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。
大学物理磁学总结大学物理磁学总结篇一:大学物理电磁学公式总结免费下载普通物理学教程——大学物理电磁学公式总结(各种归纳差不多都一样)?第一章(静止电荷的电场)1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2. 库仑定律:两个静止的点电荷之间的作用力 F3. 电力叠加原理:F=ΣFi kq1q2r2 =?? 4πε0r2?? q1q2 4. 电场强度:0为静止电荷q ??5.场强叠加原理: E=ΣEi 用叠加法求电荷系的静电场:E= i E= ??6. 电通量:Φe= ?? ?? qi4πε0ridq ??? (离散型) (连续型) ?? 4πε0r2??7. 高斯定律:?=int s ε018. 典型静电场:1) 均匀带电球面:E=0 (球面内) 2) 均匀带电球体:qqq 4πε0r2 ????(球面外)ρ??ε0 4πε0R?? =3 ??(球体内) 4πε0r2λ(球体外)方向垂直于带电直线 3) 均匀带电无限长直线: 2πε0r? 4) 均匀带电无限大平面:ε0 ,方向垂直于带电平面9. 电偶极子在电场中受到的力矩:M=p×E ? 第三章(电势)1.静电场是保守场:?=0 L2. 电势差:φ1 –φ2=(p1) 电势:φp= ??? (P0是电势零点) (p)电势叠加原理:φ=Σφi3. 点电荷的电势:q4πε0r (p0) (p2) dq 电荷连续分布的带电体的电势:φ= 4πεr4. 电场强度E与电势φ的关系的微分形式: E=-gradφ=-▽φ=-(i) ?x ?y ?z ?φ?φ?φ电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
5. 电荷在外电场中的电势能:=qφ移动电荷时电场力做的功:A12=q(φ1 –φ2)=1-2 电偶极子在外电场中的电势能:=-p?E ? 第四章(静电场中的导体)1. 导体的静电平衡条件: Eint=0,表面外紧邻处Es⊥表面或导体是个等势体。
11-1 恒定电流电流密度磁现象:我国是世界上最早发现和应用磁现象的国家之一,早在公元前300年久发现了磁铁矿石吸引铁的现象。
在11世纪,我国已制造出航海用的指南。
在1820年之前,人们对磁现象的研究仅局限于铁磁极间的相吸和排斥,而对磁与电两种现象的研究彼此独立,毫无关联。
1820年7月丹麦物理学家奥斯特发表了《电流对磁针作用的实验》,公布了他观察到的电流对磁针的作用,从此开创了磁电统一的新时代。
奥斯特的发现立即引起了法国数学家和物理学家安培的注意,他在短短的几个星期内对电流的磁效应作出了系列研究,发现不仅电流对磁针有作用,而且两个电流之间彼此也有作用,如图所示;位于磁铁附近的载流线圈也会受到力或力矩的作用而运动。
此外,他还发现若用铜线制成一个线圈,通电时其行为类似于一块磁铁。
这使他得出这样一个结论:天然磁性的产生也是由于磁体内部有电流流动。
每个磁性物质分子内部,都自然地包含一环形电流,称为分子电流,每个分子电流相当于一个极小的磁体,称为分子磁矩。
一般物体未被磁化时,单个分子磁矩取向杂乱无章,因而对外不显磁性;而在磁性物体内部,分子磁矩的取向至少未被完全抵消,因而导致磁铁之间有“磁力”相互作用。
1820年是人们对电磁现象的研究取得重大成果的一年。
人们发现,电荷的运动是一切磁现象的根源。
一方面,运动电荷在其周围空间激发磁场;另一方面,运动电荷在空间除受电场力作用之外,还受磁场力作用。
电磁现象是一个统一的整体,电学和磁学不再是两个分立的学科。
11-1 恒定电流电流密度如前所述,电荷的运动是一切磁现象的根源。
电荷的定向运动形成电流,称为传导电流;若电荷或宏观带电物体在空间作机械运动,形成的电流称为运流电流。
常见的电流是沿着一根导线流动的电流,其强弱用电流强度来描述,它等于单位时间通过某一截面的电量,方向与正电荷流动的方向相同,其数学表达式为dtdq I ,虽然我们规定了电流强度的方向,但电流强度I 是标量而不是矢量,因为电流的叠加服从代数加减法则,而不服从矢量叠加的平行四边形法则。
适用标准文案第一章电磁现象的广泛规律§电荷与电场1、库仑定律( 1)库仑定律如图 1-1-1 所示,真空中静止电荷 Q'对另一个静止电荷Q 的作使劲 F 为F1Q 'Q3 r r '()40 r r '式中0 是真空介电常数。
( 2)电场强度E静止的点电荷 Q'在真空中所产生的电场强度 E 为1Q '3 r'Er 'r4 0r( 3)电场的叠加原理N 个分立的点电荷在r 处产生的场强为N'E Q ir i'3rri'i 1 40r体积 V 内的体电荷散布r '所产生的场强为E1r ' dV 'r r '40V' 3r r式中 r '为源点的坐标,r为场点的坐标。
2、高斯定理和电场的散度(1.1.2 )(1.1.3 )(1.1.4 )高斯定理:电场强度 E 穿出关闭曲面S的总电通量等于S 内的电荷的代数和( Q i ) 除以0 。
用公式表示为i1Q i(分别电荷情况)( 1.1.5 )E dSSi或1dV(电荷连续散布情况)( 1.1.6 )E dSS V此中 V 为 S 所包住的体积, dS 为 S 上的面元,其方向是外法线方向。
应用积分变换的高斯公式E dS EdV( 1.1.7 )S V由( 1.1.6 )式可得静电场的散度为1E3.静电场的旋度由库仑定律可推得静电场 E 的环量为E dl0( 1.1.8 )L应用积分变换的斯托克斯公式E dl E dSL S从( 1.1.8 )式得出静电场的旋度为E0( 1.1.9 )§ 电流和磁场1、电荷守恒定律不与外界交换电荷的系统,其电荷的代数和不随时间变化。
对于体积为V ,界限面为 S 的有限地区内,有Jd dV( 1.2.1 )dSSdtV或J0 ( 1.2.2 )t这就是电荷守恒定律的数学表达式。