1.2正、余弦定理应用举例
- 格式:ppt
- 大小:377.50 KB
- 文档页数:13
1.2 应用举例(二)[学习目标] 1.利用正、余弦定理解决生产实践中的有关角度的测量问题.2.能够运用正、余弦定理解决力学或几何方面的问题.[学问链接] 有人说物理学科中的题实质上是数学的应用题,事实上学习物理离不开数学,数学在物理学中的应用格外广泛,本节课我们来争辩正、余弦定理在测量方面,及在物理中的力学、平面几何方面的应用.要点一 测量角度问题例1 如图在海岸A 处发觉北偏东45°方向,距A处(3-1)海里的B 处有一艘走奉命以103私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船海里/时的速度追截走私船,此时走私船正以10海里/时的速度,从B 处向北偏东30°方向逃跑.问:缉私船应沿什么方向行驶才能最快截获走私船?并求出所需时间.解 设缉私船应沿CD 方向行驶t 小时,才能最快截获(在D 点)走私船,则CD =103t 海里,BD =10t 海里. 在△ABC 中,由余弦定理, 得BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2(3-1)·2·cos 120°=6, ∴BC =6(海里). 又∵BC sin A =AC sin ∠ABC,∴sin ∠ABC =AC ·sin A BC =2·sin 120°6=22,∴∠ABC =45°,∴B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°.在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBD CD =10t ·sin 120°103t=12.∴∠BCD =30°,∴缉私船应沿北偏东60°的方向行驶,又在△BCD 中,∠CBD =120°,∠BCD =30°,∴∠CDB =30°,∴BD =BC ,即10t = 6. ∴t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.规律方法 航海问题是解三角形应用问题中的一类很重要的问题,解决这类问题肯定要搞清方位角,再就是选择好不动点,然后依据条件,画出示意图,转化为三角形问题.跟踪演练1 甲船在A 点发觉乙船在北偏东60°的B 处,乙船以每小时a 海里的速度向北行驶,已知甲船的速度是每小时3a 海里,问甲船应沿着什么方向前进,才能最快与乙船相遇? 解 如图所示.设经过t 小时两船在C 点相遇,则在△ABC 中,BC =at 海里,AC =3at 海里, B =90°+30°=120°,由BC sin ∠CAB =ACsin B 得:sin ∠CAB =BC sin B AC =at ·sin 120°3at =323=12.∵0°<∠CAB <90°,∴∠CAB =30°. ∴∠DAC =60°-30°=30°.所以甲船应沿着北偏东30°的方向前进,才能最快与乙船相遇. 要点二 正、余弦定理在几何中的应用例2 如图所示,半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC ,问:点B 在什么位置时,四边形OACB 面积最大?解 设∠AOB =α,在△ABC 中,由余弦定理, 得AB 2=12+22-2×2cos α=5-4cos α,α∈(0,π),于是,四边形OACB 的面积为S =S △AOB +S △ABC=12OA ·OB ·sin α+34AB 2=12×2×1×sin α+34(5-4cos α) =sin α-3cos α+543=2sin(α-π3)+543.由于0<α<π,所以当α-π3=π2,α=56π,即∠AOB =56π时,四边形OACB 面积最大.规律方法 利用正弦定理和余弦定理来解题时,要学会审题及依据题意画示意图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.跟踪演练2 如图所示,在△ABC 中,已知BC =15,AB ∶AC =7∶8,sin B =437,求BC边上的高AD 的长.解 在△ABC 中,由已知设AB =7x ,AC =8x ,x >0, 由正弦定理得7x sin C =8xsin B .∴sin C =7x sin B 8x =78×437=32.∴C =60°(C =120°舍去,否则由8x >7x ,知B 也为钝角,不合要求). 由余弦定理得(7x )2=(8x )2+152-2×8x ×15cos 60°, ∴x 2-8x +15=0,解得x =3或x =5. ∴AB =21或AB =35,在△ABD 中,AD =AB sin B =437AB ,∴AD =123或20 3.1.已知两座灯塔A ,B 与海洋观看站C 的距离相等,灯塔A 在观看站C 的北偏东40°,灯塔B 在观看站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°答案 B解析 如图,因△ABC 为等腰三角形,所以∠CBA =12(180°-80°)=50°,60°-50°=10°,故选B.2.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危急区,城市B 在A 的正东40 km 处,B 城市处于危急区内的时间为( ) A .0.5 h B .1 h C .1.5 h D .2 h 答案 B解析 设A 地东北方向上点P 到B 的距离为30 km ,AP =x . 在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB cos A , 即302=x 2+402-2x ·40cos 45°, 化简得x 2-402x +700=0. 设该方程的两根为x 1,x 2,则|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=400,|x 1-x 2|=20,即P 1P 2=20,故t =P 1P 2v =2020=1.故选B.3.一艘海轮从A 处动身,以40 n mile/h 的速度沿南偏东40°方向直线航行,30 min 后到达B 处,在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是南偏东70°,在B 处观看灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( ) A .10 2 n mile B .10 3 n mile C .20 2 n mile D .20 3 n mile答案 A解析 如图所示,由已知条件可得,∠CAB =30°, ∠ABC =105°,AB =40×12=20(n mile).∴∠BCA =45°.∴由正弦定理可得AB sin 45°=BCsin 30°.∴BC =20×1222=102(n mile).4.如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =6,AD =5,S △ADC =152,则AB =________.答案 43解析 在△ADC 中,已知AC =6,AD =5,S △ADC =152,则由S △ADC =12·AC ·AD ·sin ∠DAC ,求得sin ∠DAC =12,即∠DAC =30°,∴ ∠BAC =30°.而∠ABC =60°,故△ABC 为直角三角形; ∵ AC =6,∴ AB =AC cos 30°=632=4 3.1.在求解三角形中,我们可以依据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必需检验上述所求的解是否符合实际意义,从而得出实际问题的解. 2.解三角形的应用题时,通常会遇到两种状况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先争辩,再逐步在其余的三角形中求出问题的解.一、基础达标1.从高出海平面h m 的小岛看正东方向有一只船俯角为30°,看正南方向有一只船俯角为45°,则此时两船间的距离为 ( )A .2h m B.2h m C.3h m D .22h m 答案 A解析 如图所示,BC =3h m ,AC =h m ,∴AB =3h 2+h 2=2h (m).2.甲船在岛B 的正南A 处,AB =10 km ,甲船以每小时4 km 的速度向正北航行,同时,乙船自B 动身以每小时6 km 的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( ) A.1507分钟 B.157小时 C .21.5分钟 D .2.15分钟答案 A解析 设行驶x h 后甲到点C ,乙到点D , 两船相距y km ,则∠DBC =180°-60°=120°. ∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x -514)2-257+100∴当x =514小时=1507分钟,y 2有最小值.∴y 最小.3.已知A 船在灯塔C 北偏东80°处,且A 船到灯塔的距离为2 km ,B 船在灯塔C 北偏西处40°,A ,B 两船间的距离为3 km ,则B 船到灯塔的距离为________ km. 答案6-1解析 由题意知,∠ACB =80°+40°=120°,AC =2,AB =3,设B 船到灯塔的距离为x ,即BC =x .由余弦定理可知AB 2=AC 2+BC 2-2AC ·BC cos120°,即9=4+x 2-2×2x ×(-12),整理得x 2+2x -5=0,解得x =-1-6(舍去)或x =-1+ 6.4.在平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是________. 答案 16解析 设两邻边AD =b ,AB =a ,∠BAD =α,则a +b =9,a 2+b2-2ab cos α=17,a 2+b 2-2ab cos(180°-α)=65. 解得:a =5,b =4,cos α=35,∴S ▱ABCD =ab sin α=16.5.两座灯塔A 和B 与海洋观看站C 的距离都等于a km ,灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,则灯塔A 与灯塔B 的距离为________km. 答案3a解析 由于灯塔A 在观看站C 的北偏东20°,灯塔B 在观看站C 的南偏东40°,所以∠ACB =120°.又由于AC 和BC 的距离都是a km ,由余弦定理,得AB 2=a 2+a 2-2×a ×a ×cos 120°=3a 2,所以A ,B 的距离是3a km.6.某地出土一块类似三角形刀状的古代玉佩(如右图),其一角已破损,现测得如下数据:BC =2.57 cm ,CE =3.57 cm ,BD =4.38 cm ,B =45°,C =120°.为了复原,请计算原玉佩两边的长(结果精确到0.01 cm).解 如下图所示,将BD ,CE 分别延长相交于一点A ,在△ABC 中,已知BC 的长及角B 与角C ,可以通过正弦定理求AB ,AC 的长.将BD ,CE 分别延长相交于一点A ,在△ABC 中,BC =2.57 cm ,B =45°,C =120°, A =180°-(B +C )=180°-(45°+120°)=15°.∵BC sin A =AC sin B ,∴AC =BC sin B sin A =2.57sin 45°sin 15°. 利用计算器算得AC ≈7.02(cm). 同理,AB ≈8.60(cm).答 原玉佩两边的长分别约为7.02 cm,8.60 cm.7.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在货轮的南偏东60°. 求:(1)A 处与D 处的距离;(2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,B =45°.由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).所以A 处与D 处的距离为24 n mile.(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°.解得:CD =83(n mile).即灯塔C 与D 处的距离为8 3 n mile. 二、力量提升8.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°的方向上,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为________海里/时. 答案 20(6-2) 解析 由题意,得∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2)(海里).则v 货=20(6-2) (海里/时).9.某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,马上测出该渔船在方位角为45°,距离为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇马上以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间. 解 如图所示,设所需时间为t 小时, 则AB =103t 海里,CB =10t 海里,在△ABC 中,依据余弦定理,则有 AB 2=AC 2+BC 2-2AC ·BC cos 120°,可得(103t )2=102+(10t )2-2×10×10t cos 120°, 整理得2t 2-t -1=0,解得t =1或t =-12(舍去).即舰艇需1小时靠近渔船,此时AB =103(海里),BC =10(海里), 在△ABC 中,由正弦定理得BC sin ∠CAB =ABsin 120°,所以sin ∠CAB =BC sin 120°AB =10×32103=12,所以∠CAB =30°,所以舰艇航行的方位角为75°.10.为保障高考的公正性,高考时每个考点都要安装手机屏蔽仪,要求在考点四周1千米处不能收到手机信号,检查员抽查青岛市一考点,在考点正西约1.732千米有一条北偏东60°方向的大路,在此处检查员用手机接通电话,以每小时12千米的速度沿大路行驶,问最长需要多少分钟检查员开头收不到信号,并至少持续多长时间该考点才算合格?解 如图所示,考点为A ,检查开头处为B , 设大路上C ,D 两点到考点的距离为1千米. 在△ABC 中,AB =3≈1.732(千米),AC =1(千米), ∠ABC = 30°,由正弦定理sin ∠ACB =sin 30°AC ·AB =32,∴∠ACB =120°(∠ACB =60°不合题意), ∴∠BAC =30°,∴BC =AC =1(千米), 在△ACD 中,AC =AD ,∠ACD =60°, ∴△ACD 为等边三角形,∴CD =1(千米). ∵BC12×60=5,∴在BC 上需5分钟,CD 上需5分钟. 所以最长需要5分钟检查员开头收不到信号,并持续至少5分钟才算合格.11.某工厂生产产品后,留下大量中心角为60°,半径为R 的扇形边角料,现要利用边角料,从中剪裁出矩形毛坯,要求矩形面积尽可能大,请问如何裁剪?解 如图所示,矩形有两个顶点在半径OA 上,设∠AOP =θ, 则PM =R sin θ,∵扇形中心角为60°, ∴∠PQO =120°.在△OPQ 中,由正弦定理, 得OP sin 120°=PQsin (60°-θ),即PQ =23R sin(60°-θ). ∴矩形MPQR 的面积为 S 1=PM ·PQ =23R 2sin θsin(60°-θ), sin θsin(60°-θ)=sin θ(32cos θ-12sin θ) =32sin θcos θ-12sin 2 θ =34sin 2θ-1-cos 2θ4 =34sin 2θ+14cos 2θ-14=12sin(2θ+30°)-14, 当sin(2θ+30°)=1时,取得最大值14,即θ=30°时,sin θsin(60°-θ)≤14.此时S 1=23R 2sin θsin(60°-θ)≤36R 2,故θ=30°时,S 1取最大值36R 2,由θ=30°确定P 点,通过做平行线不难确定出另三点. 三、探究与创新12.现有一块直径为30 cm 的圆形钢板,需截去直径分别为20 cm,10 cm 的圆形钢板各一块,现需在剩余的钢板中再截出同样大小的圆形钢板两块,问这两块钢板的半径最大为多少?解 如图,设⊙A ,⊙B 分别是直径为20 cm 和10 cm 的圆,⊙D 是直径为30 cm 的圆,则⊙A ,⊙B 相外切且与⊙D 内切,再设最终截下的两个最大的圆为⊙C ,⊙E ,则它们与⊙A ,⊙B 相外切,且与⊙D 相内切,连接AB 、AC 、BC 、CD .设⊙C 的半径为r ,在△ABC 中,AB =15,AC =10+r , BC =5+r ,AD =5,CD =15-r , 由余弦定理得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC=152+(10+r )2-(5+r )22×15×(10+r )=30+r 30+3r .在△ADC 中,cos ∠DAC =AD 2+AC 2-CD 22AD ·AC=52+(10+r )2-(15-r )22·5·(10+r )=5r -10r +10.故30+r30+3r =5r -10r +10,整理得7r 2+40r -300=0, ∴r =307或r =-10(舍去).所以在剩余的钢板中还可以截出半径最大为307cm 的同样大小的圆形钢板两块.。
1.2正、余弦定理的应用学习目标1.能依据三角形中的边角关系和正弦定理余弦定理解决实际问题;2.能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题;学习过程一、课前准备1、三角形ABC ∆中的一些常用结论①内角和定理:②边角关系: ③()=+B A sin , ()=+B A cos , =+2sinBA , 2、正弦定理:设c b a ,,分别为△ABC 中角A ,B ,C 的对边,R 为外接圆的半径,则有 ________ =__________=___________=__________ 变形一(化边为角):_________________________________________________________________ 变形二(化角为边): 变形三(三角形的面积公式): 3、余弦定理:设c b a ,,分别为△ABC 中角A ,B ,C 的对边,R 为外接圆的半径, 则有 , , 常用变形:_____________________________________________________________________4、解三角形(1) 由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形。
(2) 正弦定理可解决以下两类问题:① ②(3) 余弦定理可解决以下两类问题:① ② 二、新课导学1.求解斜三角形中的基本元素 例1:2.判断三角形的形状3例2:3.正余弦定理综合应用例3:在△ABC 中,角A ,B ,C 的对边分别为a,b,c,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;【分析】 (1)b 2+c 2-a 2+bc=0的结构形式,可联想到余弦定理,求出cosA,从而求出A 的值. 及b 2+c 2-a 2+bc=0,可求出关于b,c 的关系式,利用不等式,即可求出bc 的最大值.(2)由a=(3)由正弦定理可实现将边化为角的功能,从而达到化简求值的目的.4.实际应用利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量距离问题、测量高度问题、测量角度问题、计算面积问题、航海问题、物理问题等方面都要用到解三角形的知识,下面我们分类例析:实际应用问题中有关的名称、术语在解决与三角形有关的实际问题时,经常出现一些有关的名词、术语,如仰角、俯角、方位角、方向角、铅直平面等。
三角形中的正弦定理和余弦定理1. 三角形的世界三角形,嘿,不就是那种三条边、三个角的几何形状吗?没错!但它的魅力可不止于此。
想象一下,你站在一个漂亮的山谷里,四周都是高耸入云的山峰,那个形状,就是个大三角形!三角形在我们的生活中无处不在,从建筑物到桥梁,再到你最爱的三角形切片披萨(谁不爱披萨呢?)。
今天,我们就来聊聊两位三角形界的明星——正弦定理和余弦定理,它们可是帮你解决很多三角形问题的好帮手哦!1.1 正弦定理:边与角的关系首先,正弦定理就像是一位善解人意的朋友,告诉我们三角形的边和角之间的关系。
简而言之,正弦定理的意思是:在任意一个三角形里,每条边的长度跟它对着的角的正弦值成正比。
听起来有点复杂,但其实很简单!你只需要记住这句话:“边长除以它对的角的正弦,结果是个常数!”就是这样!举个例子,假设你有一个三角形ABC,边分别是a、b、c,对应的角是A、B、C。
那么你可以写出这样的公式:a/sin(A) = b/sin(B) = c/sin(C)。
听到这里,是不是感觉自己瞬间成了三角形的“侦探”?只要知道某些边和角,你就能推算出其他的。
这种感觉,简直像是解谜游戏一样有趣!而且这条定理在现实生活中也超级实用,比如在测量地形的时候,正弦定理能帮你快速计算出未知的边和角,真是让人刮目相看。
1.2 余弦定理:边与角的深厚情谊接下来,咱们说说余弦定理。
这可是个更为深奥的朋友,专门处理三角形的边和角之间的深厚关系。
余弦定理可以用来计算三角形任意两边和夹角之间的关系。
换句话说,如果你知道了两条边的长度和它们夹角的度数,你就能找到第三条边的长度,反之亦然。
它的公式长得有点像数学的魔咒:c² = a² + b² 2ab * cos(C)。
看起来是不是有点吓人?其实不然!这就是告诉你,只要知道两条边的长度和夹角,想找到第三条边的长度,就不是问题了。
这种能力在计算斜坡、船只航行和很多工程设计中都派上了用场,简直是三角形界的“万金油”!2. 定理的实用场景2.1 在建筑中说到这儿,大家可能会问,这些定理在生活中真的有用吗?那可多了!想象一下,你在设计一座大楼,建筑师需要知道每个角度和边的长度,以确保大楼能安全稳固地屹立不倒。
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。