“运动的分解与合成”的依据是什么?
- 格式:doc
- 大小:59.50 KB
- 文档页数:2
物理与运动力的分解与合成在物理学中,运动力的分解与合成是一个重要的概念。
它帮助我们理解物体在平面上的运动以及相互作用力的效果。
本文将介绍物理学中关于运动力分解与合成的概念、原理和应用。
一、运动力的分解分解力是指将一个力拆解成两个或多个分力的过程。
物理学中常用的方法是将一个力分解成两个垂直于彼此的分力,分别在水平方向和垂直方向产生作用。
以斜面上滑动的物体为例,斜面对物体施加的力可以分解成两个分力:垂直于斜面的重力分力和平行于斜面的分力。
这样,我们可以更好地理解物体在斜面上的运动规律。
二、运动力的合成合成力是指通过将两个或多个力合并为一个力的过程。
在平面运动中,我们常常将两个力合成为一个力,用来研究物体的复合运动效果。
以平面力学问题为例,当一个物体受到两个力的作用时,我们可以将这两个力合成为一个力,既满足大小也满足方向。
这样,我们可以通过分析这个合力来理解物体的运动状态。
三、分解与合成的应用分解与合成概念的应用非常广泛,涉及到各个物理学领域。
1. 动力学中的应用:通过对作用力的分解和合成,可以更好地分析物体的加速度、速度和位移,从而揭示物体运动的规律。
2. 静力学中的应用:将复杂的力系统分解成多个简单的力,有助于我们研究物体的平衡条件和受力分布。
3. 弹性力学中的应用:通过将弹性体受力分解成各个方向的力,可以研究物体的形变和恢复力。
4. 流体力学中的应用:通过将流体的作用力分解,可以研究流体的压强、流速和流量等参数。
总结:物理与运动力的分解与合成是一种常用的思维工具,它帮助我们分析和理解各类物理现象。
通过分解与合成,我们可以更好地认识物体的运动规律和相互作用力的效果。
这种思维方法在物理学、力学和工程学的研究中得到了广泛的应用。
运动的合成与分解1. 引言运动是物质存在的基本特征之一,在我们的日常生活中无处不在。
运动的合成与分解是物理学中一个重要的概念,它可以帮助我们更好地理解和描述物体的运动状态。
本文将介绍运动的合成与分解的概念、原理和应用。
2. 运动的合成运动的合成是指将两个或多个独立运动合成为一个总运动的过程。
在运动的合成过程中,我们需要考虑两个方面的因素:运动的方向和运动的速度。
2.1 运动的方向合成首先,我们来看运动的方向合成。
当两个运动的方向相同时,它们的合成就相对简单。
例如,当一个物体以向东方向匀速运动,同时另一个物体也以向东方向匀速运动,那么它们的合成运动也是向东方向匀速运动。
但是当运动的方向不同时,我们就需要考虑两个方向的夹角了。
为了方便计算,我们通常使用向北为正方向,向东为正方向。
当两个运动的方向夹角为90度时,它们的合成运动将形成一个直角三角形。
根据三角函数的定义,我们可以计算出合成运动的方向与两个运动方向的夹角,以及它相对向北和向东方向的夹角。
2.2 运动的速度合成除了考虑运动的方向合成外,我们还需要考虑运动的速度合成。
运动的速度合成可以通过向量的几何法进行分析。
具体而言,我们可以将两个运动的速度向量相加或相减,从而得到合成运动的速度向量。
在进行速度合成时,我们需要注意两个运动的速度单位要相同。
如果速度单位不同,我们需要首先进行单位转换。
例如,如果一个物体以每小时50千米的速度向东运动,另一个物体以每小时30千米的速度向北运动,那么我们可以将这两个速度向量进行合成。
使用向量的几何法,我们可以将速度向量按照合理的比例进行分解,从而得到合成运动的速度向量。
3. 运动的分解运动的分解是指将一个总运动分解为两个或多个独立运动的过程。
与运动的合成相反,运动的分解需要考虑合成物体的总运动在不同方向上的分解。
在进行运动的分解时,我们需要首先确定合成物体的总运动的方向和速度。
然后,根据需要我们可以选择将总运动分解为多个独立运动,或者将总运动分解为两个或多个运动的合成。
抛体运动;运动的合成与分解问题归纳一. 教学内容:抛体运动;运动的合成与分解问题归纳二. 学习目标:1、理解曲线运动的条件,能够根据条件判断运动的性质及轨迹。
2、掌握运动的合成与分解的方法,理解合运动是物体的实际运动,合运动与分运动的关系。
3、重点理解牵连速度的分解问题及小船渡河类问题的分析方法。
三. 考点地位:曲线运动的条件及运动的合成与分解问题是高中物理问题的难点所在,特别是绳子的牵连速度问题,小般渡河问题是学生们学习曲线运动问题的难点,同时这部分内容也是学习和理解好平抛运动问题的基础,对于本部分内容的考查,在出题的形式上既可以通过选择题的形式单独考查,也可以融合在大型的计算题当中,如2007年广东卷理科基础卷的第5题,第6题,2005年上海卷的第10题是通过选择题目的形式出现的。
四. 重难点解析:(一)抛体运动:1、曲线运动的概念及性质:所有物体的运动从轨迹的不同可以分为两大类,即直线运动和曲线运动。
运动轨迹是直线的运动称为直线运动;运动轨迹是曲线的运动称为曲线运动。
2、曲线运动的速度:曲线运动中质点在某一时刻的(或在某一点的瞬时速度方向,就是质点从该时刻(或该点)脱离曲线后自由运动的方向,也就是曲线上这一点的切线方向。
3、曲线运动的性质速度是矢量,速度的变化,不仅指速度大小的变化,也包括速度方向的变化。
物体曲线运动的速度(即轨迹上各点的切线方向)时刻在发生变化,所以曲线运动是一种变速运动,一定具有加速度。
4、物体做曲线运动的条件曲线运动既然是一种变速运动,就一定有加速度,由牛顿第二定律可知,也一定受到合外力的作用。
当运动物体所受合外力的方向跟物体的速度方向在一条直线上(同向或反向)时,物体做直线运动。
这时合外力只改变速度大小,不改变速度的方向,当合外力的方向跟速度方向不在同一直线上时,可将合外力分解到沿着速度方向和垂直于速度方向上,沿着速度方向的分力改变速度大小,垂直于速度方向的分力改变速度的方向,这时物体做曲线运动。
运动的合成与分解1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动与分运动的关系(1)等时性:合运动和分运动经历的时间相等,即同时开始、同时进行、同时停止. (2)独立性:一个物体同时参与几个分运动,各分运动独立进行,不受其他运动的影响. (3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的效果. 3.合运动的性质判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断标准:看合初速度方向与合加速度方向是否共线.题目1.(教科版必修2P4第2题)(多选)一质点做曲线运动,它的速度方向和加速度方向的关系是( )A.质点速度方向时刻在改变B.质点加速度方向时刻在改变C.质点速度方向一定与加速度方向相同D.质点速度方向一定沿曲线的切线方向答案AD2.(人教版必修2P7第2题改编)(多选)跳伞表演是人们普遍喜欢的观赏性体育项目,如图1所示,当运动员从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是()图1A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力无关D.运动员着地速度与风力无关答案BC3.(多选)物体受到几个力的作用处于平衡状态,若再对物体施加一个恒力,则物体可能做()A.匀速直线运动或静止B.匀变速直线运动C.非匀变速曲线运动D.匀变速曲线运动答案BD4.(人教版必修2P6演示实验改编)小文同学在探究物体做曲线运动的条件时,将一条形磁铁放在桌面的不同位置,让小钢珠在水平桌面上从同一位置以相同初速度v0运动,得到不同轨迹.图2中a、b、c、d为其中四条运动轨迹,磁铁放在位置A时,小钢珠的运动轨迹是______(填轨迹字母代号),磁铁放在位置B时,小钢珠的运动轨迹是______(填轨迹字母代号).实验表明,当物体所受合外力的方向跟它的速度方向______(选填“在”或“不在”)同一直线上时,物体做曲线运动.图2答案 b c 不在5.(人教版必修2P4演示实验改编)如图3甲所示,在一端封闭、长约1 m 的玻璃管内注满清水,水中放置一个蜡块,将玻璃管的开口端用胶塞塞紧.然后将这个玻璃管倒置,在蜡块沿玻璃管上升的同时,将玻璃管水平向右移动.假设从某时刻开始计时,蜡块在玻璃管内每1 s 上升的距离都是10 cm ,玻璃管向右匀加速平移,每1 s 通过的水平位移依次是2.5 cm 、7.5 cm 、12.5 cm 、17.5 cm.图乙中,y 表示蜡块竖直方向的位移,x 表示蜡块随玻璃管运动的水平位移,t =0时蜡块位于坐标原点.图3(1)请在图乙中画出蜡块4 s 内的运动轨迹; (2)求出玻璃管向右平移的加速度大小; (3)求t =2 s 时蜡块的速度大小v . 答案 (1)见解析图 (2)5×10-2 m/s 2 (3)210m/s 解析 (1)蜡块在竖直方向做匀速直线运动,在水平方向向右做匀加速直线运动,根据题中的数据画出的轨迹如图所示.(2)由于玻璃管向右为匀加速平移,根据Δx =at 2可求得加速度,由题中数据可得:Δx =5.0 cm ,相邻时间间隔为1 s ,则a =Δx t 2=5×10-2 m/s 2(3)由运动的独立性可知,竖直方向的速度为 v y =yt=0.1 m/s水平方向做匀加速直线运动,2 s 时蜡块在水平方向的速度为v x =at =0.1 m/s2则2 s时蜡块的速度:v=v2x+v2y=10m/s.。
高考物理备考微专题精准突破专题2.1运动的合成与分解【专题诠释】1.运动类型的判断(1)判断物体是否做匀变速运动,要分析合力是否为恒力。
(2)判断物体是否做曲线运动,要分析合力方向是否与速度方向成一定夹角。
①当合力方向与速度方向的夹角为锐角时,物体的速率增大;②当合力方向与速度方向的夹角为钝角时,物体的速率减小;③当合力方向与速度方向垂直时,物体的速率不变。
2.合运动的性质和轨迹的判断合运动的性质和轨迹,由两个分运动的性质及合初速度与合加速度的方向关系决定。
(1)根据加速度判定合运动的性质:若合加速度不变,则为匀变速运动;若合加速度(大小或方向)变化,则为非匀变速运动。
(2)根据合加速度的方向与合初速度的方向判定合运动的轨迹:若合加速度的方向与合初速度的方向在同一直线上则为直线运动,否则为曲线运动。
(3)合力(或合加速度)方向与轨迹的关系物体做曲线运动的轨迹一定夹在合力(或合加速度)方向和速度方向之间,速度方向与轨迹相切,合力(或合加速度)方向指向曲线的凹侧。
3.小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=dv 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=d cos α=v2v 1d .4.关联体:通过绳子、轻杆或者其他之间联系的两个相互作用的物体【高考领航】【2016·全国卷Ⅰ】(多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变【答案】BC【解析】施加一恒力后,质点的速度方向可能与该恒力的方向相同,可能与该恒力的方向相反,也可能与该恒力方向成某一角度且角度随时间变化,但不可能总是与该恒力的方向垂直,若施加的恒力方向与质点初速度方向垂直,则质点做类平抛运动,质点速度方向与恒力方向的夹角随时间的增大而减小,A 错误,B 正确。
运动的合成与分解的基本原理1、运动的独立性原理任何一个分运动不会因其它运动而受到影响.如:蜡烛在竖直方向上的速度不会因其水平速度的改变而改变,即只要竖直方向分速度v y不变,蜡块从底端到顶端的时间只由竖直速度决定.如:小船渡河小船驶向对岸所用时间与水流速度大小无关,只由小船垂直流水方向驶向对岸的速度和河宽决定.2、等时性原理:合运动与分运动同时发生,同时消失,合运动与分运动具有效时性.3、等效性原理:分运动与合运动具有等效性.四、两个直线运动的合成①两个匀速直线运动的合运动仍是匀速直线运动.②一个匀速直线运动与一个匀变速直线运动.③两个初速为0的匀变速直线运动:.④两个初速不为0的匀变速直线运动运动的合成分解的应用一、绳拉物体模型例1、在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大?命题意图:考查分析综合及推理能力,B级要求.错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图所示分解,从而得出错解v物=v1=vcosθ.解法一:应用合运动与分运动的关系绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v物是合速度,将v物按如图所示进行分解.其中:v=v物cosθ,使绳子收缩.v⊥=v物sinθ,使绳子绕定滑轮上的A点转动.所以v物=解法二:应用微元法设经过时间Δt,物体前进的位移Δs1=BC,如图所示.过C点作CD⊥AB,当Δt→0时,∠BAC极小,在△ACD中,可以认为AC=AD,在Δt时间内,人拉绳子的长度为Δs2=BD,即为在Δt时间内绳子收缩的长度.由图可知:BC=①由速度的定义:物体移动的速度为v物=②人拉绳子的速度v=③由①②③解之:v物=例2、A、B质量均为m,且分别用轻绳连接跨过定滑轮,不计一切摩擦力.当用水平力F拉物体B沿水平方向向右做匀速直线运动过程中()A.物体A也做匀速直线运动B.绳子拉力始终大于物体A所受重力C.物体A的速度小于物体B的速度D.地面对物体B的支持力逐渐增大分析:设物体B匀速速度为v,物体B的运动使绳子参与两种分运动:绳子沿定滑轮为圆心垂直于绳子转动,另一分运动是沿绳伸长的分运动,合运动就是物体以速度v向右匀速直线运动.v1=vsinθθ↓sinθ↓v1↓v A=v2=vcosθθ↓cosθ↑v2↑物体A作变加速运动对B:T y+N=mg开始时N<mg,当B运动至无穷远处时T y∝0,N=mg∴地面对物体B的支持力逐渐增大.例3、两光滑环AB用不可伸长的轻绳相连,当线与竖直方向夹角为时,此时v A=4m/s, 求B沿杆方向的速度.v B cos37°=v A cos53°二、小船渡河模型一条宽为d的河流,河水流速为v1,船在静水中速度为v2.(1)要使船划到对岸时间最短,船头应指向什么方向?最短时间为多少?(2)要使船划对对岸的航程最短,船头指向什么方向?最短航程是多少?解:①设船头斜向上游与河岸成θ角,这时船速v船在y方向的分量为v2′=v船sinθ=v2sinθ,渡河时间为.可见,在河宽d和船速v2一定情况下,渡河驶向对岸的时间t随sinθ的增大而减小.当θ=90°时,sinθ=1(最大),即船头与河岸垂直时,渡河时间最短,且t min=.②求航程最短问题应根据v1和v2的大小关系分成以下三种情况讨论:(i)当v2>v1时,即船头斜向上游与岸夹角为θ,船的合速度可垂直于河岸,航程最短为d,此时沿水流方向合速度为零.v2cosθ=v1即船头斜指向上游,与河岸夹角,船航线就是位移d.渡河时间(ii)当v2<v1时,由于船在静水中的速度v2小于水流速度v1,则无论船头驶向何方,总被水流冲向下游,怎样使船所走航线的位移最短呢?虽然位移不可能垂直河岸,但当位移越靠近垂直河岸的方向,位移越短,,船头与水平方向上游夹角,最短航程,所花时间.例1、如图所示,排球场地长为18m,设球网高度为2m,运动员站在离网3m的线上(图中用虚线表示)正对网前跳起将球水平击出(空气阻力不计).(1)设击球点在3m线正上方2.5m处,试问击球的速度在什么范围内才能使球既不能触网也不越界?(2)若击球点在3m线正上方小于某一个值,那么无论以多大速度击球,球不是触网就是越界.试求这个高度.解:若击球水平速度过小,球可能触网;若击球水平速度过大,球可能越界.(1)若刚好不触网,设击球速度为v1,则水平位移为3m的过程中,水平方向:x=v1t v1t=3①竖直方向:②由①②得:同理刚好不越界,设击球速度为v2,则则球既不能触网也不越界的速度满足(2)设击球高度为H时,击出的球刚好触网或落在边界线上.刚好不触网时:v0t1=3③④此时也刚好到达边界:v0t2=12⑤⑥由③④⑤⑥得:H=2.13m即当击球高度小于2.13时,无论水平速度多大,球不是触网就是越界.例2、从高为H的A点平抛一物体,其水平射程为2s,在A点正上方距地面高为2H的B点,向同一方向平抛另一物体,其水平射程为s.两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度.例3、如图示,AB为斜面,倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B 点.求:(1)AB间的距离;(2)物体在空中飞行的时间;(3)从抛出开始经多少时间小球与斜面间距离最大?解:(1)水平位移:(2)物体在空中飞行时间(3)当小球作平抛运动轨迹上某一点速度与斜面平行时,该点离斜面距离最远.方法①:方法②:由分运动的独立性,把平抛运动分解成垂直斜面方向的分运动和平行于斜面方向的分运动的合运动.v⊥=v0sin30°=a⊥=gcos30°=垂直斜面作初速为,加速度为的匀减速直线运动平行于斜面作v11=v0cos30°=,a11=gcos60°=的匀加速直线运动当在垂直斜面方向速度减为0时距斜面最远:例5、如图所示,一根轻弹簧下端固定,竖立在水平面上。
重点:正交分解、解直角三角形等方法。
说明:(1)分运动合运动例1. 如图1所示,在河岸上用绳拉船,拉绳的速度是,当绳与水平方向夹角为θ时,船的速度为多大?际效果分别是:使绳子缩短和使绳子绕滑轮顺时针旋转,设船速为,沿绳子方向的分速度为,垂直绳子的分速度为,如图2所示。
=/cosθ, 而=得=/ cosθ点评:运动的合成是唯一的,而运动的分解是无限的,在实际问题中通常例2.有关运动的合成,以下说法中正确的是[ ]A.两个直线运动的合运动一定是直线运动B.两个不在一直线上的匀速直线运动的合运动一定是直线运动C.两个初速度为零的匀加速直线运动的合运动一定是匀加速直线运动D. 匀加速运动和匀速直线运动的合运动一定是直线运动解析:两个直线运动合成,其合运动的性质和轨迹由分运动的性质及合初速度与合加速度的方向关系来决定:两个匀速直线运动的合运动无论它们的方向如何,它们的合运动仍是匀速直线运动. 一个匀速直线运动和一个匀变速直线运动的合运动一定是匀变速运动——两者共线时为匀变速直线运动,两者不共线时为匀变速曲线运动。
两个匀变速直线运动的合运动仍为匀变速运动——当合初速度与合加速度共线时为匀变速直线运动,当合初速度与合加速度不共线时为匀变速曲线运动。
所以,正确选项为B、C点拨:判别两个分运动合成的合运动是否为直线运动,要看其合运动的初速度与合运动的加速度是否在同一条直线上。
三、小船过河专题:1.最短时间过河:水流只会将小船推向下游,要使过河时间最短,则船自身的速度v1全部用来过河,即船自身的速度v1垂直于河岸,船舷垂直于河岸,如图3最短时间为t m=s/v=d/v1此过程位移s=vd/v1 v=(1)v1>v2时,为使位移最小,合速度与河岸垂直,v1偏向上游(船舷偏向上游),与上游河岸的夹角为α,如图4。
cosα=v2/v1时间t=s/v=d/(2)v1<v2时,不可能构建图4中的平行四边形,为使路程最小,合速度与河岸夹角尽可能接近直角,如图5所示。
“运动的分解与合成”的依据是什么?
湖北省恩施高中 陈恩谱
关于运动的分解与合成的依据,很多资料和老师认为是运动的独立性原理或者相对运动。
笔者认为这两种观点都是错误的,运动的分解与合成纯粹是个几何问题,与相对运动等等没有任何关系。
一、“运动的独立性原理”是一个历史名词,而不是普遍的事实
“运动的独立性原理”是伽利略在研究平抛物体的运动规律时提出来的,平抛物体在水平方向和竖直方向的两个分运动的确是彼此独立的,但实际上,分运动彼此独立并不是普遍的——比如洛伦兹力作用下带电粒子在磁场中的曲线运动,若将带电粒子的运动分解到两个确定直线方向,则任意一个方向的运动速度的变化都直接影响了另一个方向的受力,进而影响另一个方向上的速度。
再比如平抛物体的运动,如果 考虑空气阻力,且空气阻力与速度不成一次函数关系,比如2kv f =,则水平、竖直方向两个分运动也是不独立的。
就算是课本上所举蜡块的例子也是如此,我们知道,当玻璃管水平向右加速运动时,蜡块受到玻璃管水平方向的管壁弹力作用,这个弹力x ma F =N ,蜡块向上运动就必然受到管壁摩擦力,这个摩擦力N f F F μ=与玻璃管水平加速度有关,它影响着蜡块的竖直运动,即蜡块的竖直分运动与水平分运动彼此并不独立。
二、相对运动也不是运动的分解与合成的依据
为了看出把相对运动当做运动的分解与合成的依据的荒谬性,我们把问题推向极端——我们来考察下述两个问题:
1、两个光源并排放置,同时打开开关,两个光源同时发出两束光,在地面参考系看来,两束光将同时到达前方某物体。
取两束光中“前端”的光子A 、B 为研究对象,在地面参考系看来,两个光子的速度相等,那么,我们似乎可以这样看其中一个光子A 的行为,它对地的速度c 等于B 光子的速度c 加上相对B 光子的速度0,即:相对v v v B A +=,其中0=相对v . 那么,A 光子相对B 光子的速度真的是0吗?由相对论可知,其实A 光子相对B 光子的速度是c !
2、两个光源相距l 相对放置,同时打开开关,两个光源同时发出两束光,在地面参考系来看,两束光经过相等的时间t 到达两光源的中点。
取两束光中“前端”的光子A 、B 为研究对象,在地面参考系看来,两个光子的速度大小相等,方向相反,c
l t 2=,那么,我们似乎可以这样看其中一个光子A 的行为,它对地的速度c 等于B 光子的速度c 加上相对B 光子的速度-2c ,即:相对v v v B A +=,其中c v 2-=相对. 然而,由相对论可知,其实A 光子相对B 光子的速度还是c !
从上述两个例子看来,对地参考系,我的确可以把A 光子的速度任意分解——0+=c c 或者)2(c c c -+=-,但这分解明显没有相对运动的含义。
有人以飞机平抛物体为例说,抛出物体水平方向速度v 0与飞机相同,竖直方向做自由落体运动——因此在飞机参考系看来,物体水平方向静止,竖直方向自由落体运动。
这似乎是理所当然的,然而,在飞机上观察物体,它真的是相对飞机做自由落体运动吗?这并不是理所当然的,而是需要实验来判定的——实 验表明,在飞机参考系下,物体的竖直速度为20)(1c v v v y
y -=',只有在v 0远小于光速时才有y y v v ='!
显然,平抛物体的运动的水平竖直分解并不是基于相对运动!
显然,把“运动的分解与合成”与“相对运动”(或者说参考系的变换)混淆的原因是我们认为伽利略变换是理所当然的事实,然而伽利略变换的科学性实际上是需要实验检验的,实验表明,参考系变换导致的速度运算规则,并不是平行四边形定则,而是洛伦兹变换!
三、运动的分解与合成是纯几何问题
比如平抛物体的运动,我可以任意建立坐标系xOy (并不一定是直角坐标系,也可以是斜交坐标系),我只要按平行四边形定则对位移、速度、加速度进行分解即可,或者干脆直接用坐标表示法,写出x =x (t )、y =y (t )函数,然后对时间一阶求导得沿坐标轴的分速度,对时间二阶求导得沿坐标轴的分加速度。
进一步从动力学角度讲,若将物体的受力也按平行四边形定则沿坐标轴分解,则有:沿x 轴方向的加速度是由x 轴方向的合外力决定,沿y 轴方向的加速度是由y 轴方向的合外力决定;对平抛物体来说,不考虑空气阻力时,由与沿两个坐标轴的分力是确定的,因此,两个分运动的确互相独立。
再比如一个初速度不等于零的物体做匀加速直线运动,其中一种分解方法是将其分解为一个等于初速
度的匀速运动和一个初速度为零的匀加速运动,即:at v v +=0可写成v v v '+=0,
at v =';2021at t v x +=可写成x t v x '+=0,22
1at x ='。
然而,切忌不要以为可以把物体的运动看作是相对“一个速度为v 0的物体”做初速度为零、加速度为a 的匀加速运动,因为在“速度为v 0的物体”参考系中,物体的相对运动是不是“初速度为零、加速度为a 的匀加速运动”是需要实验加以判定的,而不是理所当然的——当然,我们知道这实际上要用到洛伦兹变换,低速情况下近似为伽利略变换。
运动分解之后,几个分运动即可按平行四边形定则合成,这也仍然是纯几何问题。
现在讨论小船渡河问题。
小船被水冲击获得一个速度,我们通常认为这个速度等于水流速度v 1;同时,船在静水(实际上是选 水为参考系的意思)中的速度为v 2。
那么船相对岸的实际速度应该是怎样的呢?通常我们认为是
21v v v +=,然而实际上应该是:沿河岸方向221121c v v v v v x x x ++=,垂直河岸y x y v c
v v c v v 22212
11)(1+-=。
可见,参考系变换与“运动的分解与合成”根本就是两码事!即便是低速情况下,两者相差极小,但是概念却不能混淆。