Extrusion of Polystyrene Nanocomposite Foams
- 格式:pdf
- 大小:2.76 MB
- 文档页数:15
复旦大学碾士学位论文1.4.6复合材料中纳米二氧化硅的形貌表征图1—11和1-12是纳米二氧化硅SPl和A200分散在丙烯酸树脂中的透射电镜照片。
与纳米二氧化硅在醋酸丁酯中的分散性一样,用MAPTS改性的二氧化硅相对未改性的二氧化硅来说,具有较好的分散性,这点对于SPl来说尤为明显(见图1—1la和1.1lb)。
另外,通过原位聚合制备的纳米复合材料中,二氧化硅的分散性优于通过共混法制各的(见图1-llb和】.1lc),这是由于改性的二氧化硅中含有可与丙烯酸酯单体反应的基团,在原位聚合中,与丙烯酸酯链段有较强作用,有利其分散。
然而这些对于纳米二氧化硅A200来说都不是那么明显(见图1-12),无论是否改性,无论使用原位或者共混得方法,对于A200在丙烯酸树脂中的分散性没有很大影响。
这可能是纳米二氧化硅A200相对SPl而言,本身就具有较小的比表面积以及较低的羟基含量,使其在丙烯酸树脂中具有比较好的分散性,所以通过MAPTS对其改性,欲使其更易分散并没有在A200中体现出来。
(a)复旦大学硕士学位论文(c)图1-ll含有SPl的复合涂层的TEM照片(a)含有共混的未改性的二氧化硅(b)含有共混的改性的二氧化硅(c)含有原位生成改性的二氧化硅Figure1-11TEMpicturesofcompositescontainingSPIpreparedby【a)blendingwithunmodifiednano-silica,(b)blendingwithmodifiednano·silicaand(c)in—situmethodwithmodifiednano-silica(a)(b)复旦大学硕士学位论文(c)图1-12含有A200的复合涂层的TEM照片(a)含有共混的未改性的二氧化硅(b)含有共混的改性的二氧化硅(c)古有原位生成改性的二氧化硅Figure1-12TEMpicturesofcompositescontainingA200preparedby(a)blendingwithunmodifiednano-silica,(b)blendingwithmodifiedriano-silicaand(c)in-situmethodwithmodifiednano.silica1.4.7改性对复合树脂Tg的影响图1.13至图1.15为纳米复合树脂的DMA损耗曲线。
北方民族大学学士学位论文论文题目:乳液聚合法合成聚苯乙烯的DSC及XRD分析院(部)名称:材料科学与工程学院学生姓名:王磊专业:高分子材料与工程学号: 20104028指导教师姓名:梁博论文提交时间:2014年5月2日论文答辩时间:2014年5月17日学位授予时间:北方民族大学教务处制摘要随着化学工业的飞速发展,高分子材料在生产、生活中具有越来越重要的地位。
由于高分子材料具有多种多样的优越性能,因而在几乎所有部门都得到了应用。
聚苯乙烯(Polystyrene,缩写PS)是一种无色透明的热塑性塑料,电学性能优异,熔融时稳定性和流动性都非常的好,易于成型,并且有高于100℃的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。
同时还可以与其他材料共聚生成具有不同特性的高性能材料,应用于汽车,橡胶,航空航天等领域。
本文以苯乙烯溶液为单体,十二烷基磺酸钠和十二烷基硫酸钠为乳化剂,过流酸钾为引发剂,水为分散介质,利用乳液聚合法合成聚苯乙烯。
运用X射线衍射仪(XRD),差示扫描量热仪(DSC)表征其特性。
结果表明在改变单体用量,水浴温度,以及反应时间,乳化剂的种类等条件,对聚苯乙烯玻璃化温度的影响几乎没有影响,同时发现聚苯乙烯中存在结晶区域。
关键词:聚苯乙烯乳液聚合DSC XRDABSTRACTWith the development of the chemical industry.Polymer material has an increasingly important role in the production and life.The polymer material has a variety of advantages Thus in almost all departments has been applied.Polystyrene(PS) is a colorless transparent thermoplastics.it has excellent electrical properties melting stability and liquidity are very good , easy to shape , and there are over 100 ℃glass transition temperature , it is often used to make a variety of needs to withstand the temperature of boiling water disposable containers and disposable foam lunch boxes , etc. Copolymer also can generate high-performance materials with different characteristics with other materials used in the automotive , rubber , aerospace and other fields.With high purity styrene solution as monomer, sodium dodecyl sulfate(SDS) and sodium dodecyl sulfonate as emulsifier,potassium persulfate as the initiator and water as the dispersion to carry out emulsion e of X-ray diffraction ( WXRD ) , differential scanning calorimetry (DSC) characterization of the characteristics.The results showed that changing the dosage of monomers, water bath temperature and reaction time, types of emulsifiers and other conditions, little impact on glass transition temperature of polystyrene 。
硅溶胶的制备及其影响因素作者:张翠,李绍纯,金祖权,赵铁军来源:《科技视界》 2015年第5期张翠李绍纯金祖权赵铁军(青岛理工大学土木工程学院,山东青岛 266033)【摘要】硅溶胶是二氧化硅的胶体分散于水中或溶剂中的一种胶体溶液,具有一系列优异的性能,广泛应用于涂料、纺织等行业。
本文综述了以正硅酸乙酯为原料采用溶胶-凝胶法制备硅溶胶的过程及稳定性的影响因素。
【关键词】硅溶胶;正硅酸乙酯;稳定性;溶胶-凝胶法【Abstract】Silica sol is a colloidal dispersion of silica in water or solventin a kind of colloid solution, Silica sol has many excellent performance, thus it widely used in paint, textile and other industries, the ethyl silicate as the raw material is to be the reaction of silica sol prepared by sol-gel method process and the influence factors of stability are summarized in the paper , in order to make certain directive significance to the design process of silica sol.【Key words】Silica sol; Ethyl silicate; Stability; Sol - gel method0 引言硅溶胶是二氧化硅的胶体粒子分散于水中或溶剂中的一种胶体溶液,又名硅酸溶液或二氧化硅水溶液[1]。
根据pH值的不同硅溶胶分为酸性硅溶胶和碱性硅溶胶。
苯乙烯悬浮聚合的实验探索唐晓红;王瑾;郑会勤;李成未;李永【摘要】考察了引发剂用量、悬浮剂用量、搅拌速度与反应温度对苯乙烯悬浮聚合反应的影响.结果表明,在苯乙烯用量为16 mL、去离子水用量为130 mL、引发剂过氧化二苯甲酰(BPO)用量为0.3g、悬浮剂0.3%的聚乙烯醇溶液用量为7~8 mL、搅拌速度为300 r·min-1、反应温度为85~90℃的最佳悬浮聚合条件下,可得到颗粒尺寸均匀适中、透明度良好的聚苯乙烯产品,产率高达98.60%左右.%The effects of initiator dosage,suspension agent dosage,stirring speed and reaction temperature on styrene suspension polymerization were investigated. The optimum conditions were obtained as follows :Sty-rene amount 16 mL,deionized water amount 130 mL,initiator(benzoyl peroxide)dosage 0. 3 g,suspension agent (0.3% polyvinyl alcohol solution)dosage 7~8 mL, stirring speed 300 r·min-1, reaction temperature 85~ 90℃. Under above conditions,the polystyrene with appropriate particle size,good transparency and high yield of about 98. 60% could be obtained.【期刊名称】《化学与生物工程》【年(卷),期】2012(029)002【总页数】3页(P44-46)【关键词】苯乙烯;悬浮聚合;实验探索【作者】唐晓红;王瑾;郑会勤;李成未;李永【作者单位】河南教育学院化学系,河南郑州450046;河南教育学院化学系,河南郑州450046;河南教育学院化学系,河南郑州450046;河南教育学院化学系,河南郑州450046;河南教育学院化学系,河南郑州450046【正文语种】中文【中图分类】TQ316.335;TQ325.2在苯乙烯悬浮聚合过程中,引发剂用量[1]、悬浮剂[2]用量、搅拌速度[3]与反应温度[4]对珠体的粒度分布影响很大,若控制不当,容易引起粒料的粘结,甚至粘结成块,影响单体聚合[5~11]。
复合材料与工程专业专业英语复合材料原理中文英文复合材料composite material基体matrix增强体reinforcement纤维fiber颗粒particle晶须whisker纳米管nanotube石墨烯graphene复合效应composite effect复合理论composite theory增强机制reinforcement mechanism界面interface界面层interphase界面粘结强度interfacial bond strength界面物理化学interfacial physical chemistry聚合物基复合材料polymer matrix composite (PMC)金属基复合材料metal matrix composite (MMC)陶瓷基复合材料ceramic matrix composite (CMC)碳-碳复合材料carbon-carbon composite (C-C)遗态复合材料biomimetic composite分级结构复合材料hierarchical composite剪切增稠柔性复合材料shear thickening fluid composite (STFC)连续缠绕工艺filament winding process拉挤工艺pultrusion process注射成型工艺injection molding process压缩成型工艺compression molding process热压工艺hot pressing process热等静压工艺hot isostatic pressing process (HIP)化学气相沉积法chemical vapor deposition (CVD)物理气相沉积法physical vapor deposition (PVD)液相浸渗法liquid phase infiltration (LPI)气相浸渗法gas phase infiltration (GPI)反应浸渗法reaction infiltration (RI)自蔓延高温合成法self-propagating high-temperature synthesis (SHS)电泳沉积法electrophoretic deposition (EPD)溶胶-凝胶法sol-gel method复合材料工艺中文英文复合材料工艺学composite material processing science复合材料加工技术composite material processing technology复合材料成型方法composite material forming method复合材料固化方法composite material curing method复合材料后处理方法composite material post-processing method复合材料接头技术composite material joint technology复合材料修复技术composite material repair technology复合材料表面处理技术composite material surface treatment technology复合材料工艺参数composite material process parameters复合材料工艺性能composite material process performance复合材料工艺缺陷composite material process defects复合材料工艺模拟composite material process simulation复合材料工艺优化composite material process optimization手糊法hand lay-up method喷射成型法spray-up method真空吸附法vacuum bagging method自动糊层机法automatic tape laying method (ATL)自动纤维放置法automated fiber placement method (AFP)树脂传输成型法resin transfer molding method (RTM)树脂膜层叠加成型法resin film infusion method (RFI)真空辅助树脂传输成型法vacuum assisted resin transfer molding method (VARTM)真空辅助树脂注射成型法vacuum assisted resin injection molding method (VARI)树脂浸渍拉挤成型法resin impregnation pultrusion method树脂浸渍缠绕成型法resin impregnation winding method树脂浸渍编织成型法resin impregnation weaving method预浸料成型法prepreg molding method预浸料自动糊层机法prepreg automatic tape laying method预浸料自动纤维放置法prepreg automated fiber placement method预浸料真空吸附法prepreg vacuum bagging method预浸料热压成型法prepreg hot pressing method预浸料热等静压成型法prepreg hot isostatic pressing method预浸料自动模具线成型法prepreg automatic mold line method (AML)模塑复合材料成型法molded compound molding method压缩模塑复合材料成型法compression molded compound molding method注射模塑复合材料成型法injection molded compound molding method转移模塑复合材料成型法transfer molded compound molding method挤出模塑复合材料成型法extrusion molded compound molding method热解复合材料制备方法pyrolysis composite preparation method复合材料结构设计中文英文复合材料结构设计composite material structural design复合材料结构分析composite material structural analysis复合材料结构优化composite material structural optimization复合材料结构可靠性composite material structural reliability复合材料结构失效模式composite material structural failure mode复合材料结构失效准则composite material structural failure criterion复合材料结构强度composite material structural strength复合材料结构刚度composite material structural stiffness复合材料结构稳定性composite material structural stability复合材料结构疲劳性能composite material structural fatigue performance 复合材料结构断裂韧性composite material structural fracture toughness 复合材料结构损伤容限composite material structural damage tolerance复合材料层合板composite material laminate复合材料夹层板composite material sandwich panel复合材料桁架composite material truss复合材料梁composite material beam复合材料板壳composite material plate-shell复合材料管壳composite material tube-shell复合材料网格壳composite material grid-shell复合材料蜂窝板composite material honeycomb panel纤维方向角fiber orientation angle层厚比thickness ratio层间剪切模量interlaminar shear modulus层间剪切强度interlaminar shear strength层间正应力强度因子interlaminar normal stress intensity factor层间剪应力强度因子interlaminar shear stress intensity factor层间断裂韧度interlaminar fracture toughness层间脱层interlaminar delamination层间裂纹扩展速率interlaminar crack propagation rate层间裂纹扩展阻力曲线interlaminar crack resistance curve (R-curve)层内应力分布intralaminar stress distribution层内应变分布intralaminar strain distribution层内失效模式intralaminar failure mode层内失效准则intralaminar failure criterion复合材料力学中文英文复合材料力学composite material mechanics复合材料弹性理论composite material elasticity theory复合材料弹塑性理论composite material elasto-plasticity theory复合材料粘弹性理论composite material viscoelasticity theory复合材料热弹性理论composite material thermoelasticity theory复合材料非线性力学composite material nonlinear mechanics复合材料动力学composite material dynamics复合材料疲劳力学composite material fatigue mechanics复合材料断裂力学composite material fracture mechanics复合材料损伤力学composite material damage mechanics复合材料微观力学composite material micromechanics复合材料宏观力学composite material macromechanics复合材料多尺度力学composite material multiscale mechanics复合材料本构关系composite material constitutive relation复合材料本构方程composite material constitutive equation复合材料本构模型composite material constitutive model复合材料本构参数composite material constitutive parameter复合材料本构参数识别方法composite material constitutive parameter identification method纤维增强复合材料单元细胞模型fiber reinforced composite unit cell model纤维增强复合材料等效模量计算方法fiber reinforced composite equivalent modulus calculation method纤维增强复合材料等效泊松比计算方法fiber reinforced composite equivalent poisson ratio calculation method纤维增强复合材料等效热膨胀系数计算方法fiber reinforced composite equivalent thermal expansion coefficient calculation method纤维增强复合材料等效热导率计算方法fiber reinforced composite equivalent thermal conductivity calculation method 纤维增强复合材料等效电导率计算方法fiber reinforced composite equivalent electrical conductivity calculation method 纤维增强复合材料等效介电常数计算方法fiber reinforced composite equivalent dielectric constant calculation method 颗粒增强复合材料单元细胞模型particle reinforced composite unit cell model颗粒增强复合材料等效模量计算方法particle reinforced composite equivalent modulus calculation method颗粒增强复合材料等效泊松比计算方法particle reinforced composite equivalent poisson ratio calculation method颗粒增强复合材料等效热膨胀系数计算方法particle reinforced composite equivalent thermal expansion coefficient calculation method颗粒增强复合材料等效热导率计算方法particle reinforced composite equivalent thermal conductivity calculation method 颗粒增强复合材料等效电导率计算方法particle reinforced composite equivalent electrical conductivity calculation method 颗粒增强复合材料等效介电常数计算方法particle reinforced composite equivalent dielectric constant calculation method 晶须增强复合材料单元细胞模型whisker reinforced composite unit cell model晶须增强复合材料等效模量计算方法whisker reinforced composite equivalent modulus calculation method晶须增强复合材料等效泊松比计算方法whisker reinforced composite equivalent poisson ratio calculation method晶须增强复合材料等效热膨胀系数计算方法whisker reinforced composite equivalent thermal expansion coefficient calculation method晶须增强复合材料等效热导率计算方法whisker reinforced composite equivalent thermal conductivity calculation method 晶须增强复合材料等效电导率计算方法whisker reinforced composite equivalent electrical conductivity calculation method晶须增强复合材料等效介电常数计算方法whisker reinforced composite equivalent dielectric constant calculation method 纳米复合材料中文英文纳米复合材料nanocomposite material纳米粒子nanoparticle纳米纤维nanofiber纳米管nanotube纳米线nanowire纳米带nanoribbon纳米棒nanorod纳米片nanosheet纳米球nanosphere纳米星nanostar纳米花nanoflower纳米棘轮nanoratchet纳米泡沫nanofoam纳米多孔材料nanoporous material纳米气凝胶nanoaerogel纳米海绵nanosponge纳米网格nanogrid纳米蜂窝结构nanohoneycomb structure纳米层状结构nanolayered structure纳米纤维素复合材料nanocellulose composite material石墨烯复合材料graphene composite material二维纳米材料复合材料two-dimensional nanomaterial composite material量子点复合材料quantum dot composite material全息纳米复合材料holographic nanocomposite material超分子纳米复合材料supramolecular nanocomposite material生物医用复合材料中文英文生物医用复合材料biomedical composite material生物相容性biocompatibility生物降解性biodegradability生物吸收性bioabsorbability生物活性bioactivity生物力学性能biomechanical performance生物功能化biofunctionalization药物缓释drug delivery组织工程tissue engineering骨组织工程bone tissue engineering软骨组织工程cartilage tissue engineering皮肤组织工程skin tissue engineering神经组织工程nerve tissue engineering血管组织工程vascular tissue engineering心脏组织工程cardiac tissue engineering肝脏组织工程liver tissue engineering肾脏组织工程kidney tissue engineering胰腺组织工程pancreas tissue engineering肺组织工程lung tissue engineering骨水泥复合材料bone cement composite material骨替代材料复合材料bone substitute material composite material 骨修复板复合材料bone fixation plate composite material骨钉复合材料bone screw composite material骨髓钉复合材料bone nail composite material骨髓钉复合材料bone nail composite material人工关节复合材料artificial joint composite material人工韧带复合材料artificial ligament composite material人工心脏瓣膜复合材料artificial heart valve composite material人工血管复合材料artificial blood vessel composite material 人工角膜复合材料artificial cornea composite material人工耳蜗复合材料artificial cochlea composite material人工牙齿复合材料artificial tooth composite material人工皮肤复合材料artificial skin composite material人工肝脏复合材料artificial liver composite material复合材料测试与评价中文英文复合材料测试与评价composite material testing and evaluation复合材料测试方法composite material testing method复合材料测试标准composite material testing standard复合材料测试仪器composite material testing instrument复合材料测试数据composite material testing data复合材料测试结果composite material testing result复合材料测试分析composite material testing analysis复合材料评价方法composite material evaluation method复合材料评价指标composite material evaluation index复合材料评价模型composite material evaluation model复合材料评价系统composite material evaluation system复合材料评价报告composite material evaluation report静态力学性能测试static mechanical performance test动态力学性能测试dynamic mechanical performance test疲劳性能测试fatigue performance test断裂性能测试fracture performance test热性能测试thermal performance test电性能测试electrical performance test光学性能测试optical performance test磁学性能测试magnetic performance test磁学性能测试magnetic performance test损伤性能测试damage performance test环境适应性能测试environmental adaptability performance test 耐腐蚀性能测试corrosion resistance performance test耐磨性能测试wear resistance performance test耐老化性能测试aging resistance performance test耐辐射性能测试radiation resistance performance test耐火性能测试fire resistance performance test耐水性能测试water resistance performance test耐化学品性能测试chemical resistance performance test。
新型碳气凝胶的制备及表征何蕊;刘振法【摘要】以氨水作为间苯二酚和甲醛反应的催化剂,经溶胶-凝胶制备有机气凝胶,再经过常温常压干燥、高温碳化形成碳气凝胶.采用X射线衍射、比表面仪、扫描电镜能谱分析仪对样品进行表征.结果表明:以氨水为催化剂所得碳气凝胶比表面积在900m2/g左右,呈现连续颗粒状.%Carbon aerogels are prepared by sol-gel process via reaction of resorcinol and formaldehyde with ammonia water as catalyst and afterward ambient drying followed by carbonization. The structure of products is characterized by X-ray diffraction, gas physisorption, scanning electron microscopy and energy spectrum analysis. Results indicte that the carbon aerogels with ammonia as catalyst show a coarser surface, and its specific surface area is about 900 m2/g, presenting continuous granular.【期刊名称】《河北科技大学学报》【年(卷),期】2013(034)001【总页数】4页(P26-29)【关键词】碳气凝胶;催化剂;氨水【作者】何蕊;刘振法【作者单位】河北省科学院能源研究所,河北石家庄050081;河北省科学院能源研究所,河北石家庄050081【正文语种】中文【中图分类】O648碳气凝胶是一种由高聚物分子构成的多空非晶凝聚态材料,可以用在力学、热学、光学及声学等方面,具有独特的性能和用途。
生态毒理学报Asian Journal of Ecotoxicology第18卷第5期2023年10月V ol.18,No.5Oct.2023㊀㊀基金项目:国家自然科学基金面上项目(51978001);安徽省高等学校科学研究重大项目(2023AH040122);安徽未来技术研究院企业合作项目(2023qyhz01);安徽省高校协同创新项目(GXXT -2021-057)㊀㊀第一作者:陶开燕(1996 ),女,硕士研究生,研究方向为生态毒理学,E -mail:*****************㊀㊀*通信作者(Corresponding author ),E -mail:****************㊀㊀#共同通信作者(Co -corresponding author ),E -mail:*******************.cnDOI:10.7524/AJE.1673-5897.20221121002陶开燕,徐晓平,杨晓凡,等.聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用[J].生态毒理学报,2023,18(5):236-245Tao K Y ,Xu X P,Yang X F,et bined toxicity of polystyrene nanoplastics and bromate to rotifer Brachionus calyciflorus [J].Asian Journal of Eco -toxicology,2023,18(5):236-245(in Chinese)聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用陶开燕1,徐晓平1,2,*,杨晓凡1,#,陈涛1,李彬彬1,李锦程11.安徽工程大学建筑工程学院,芜湖2410002.皖江流域退化生态系统的恢复与重建省部协同创新中心,芜湖241000收稿日期:2022-11-21㊀㊀录用日期:2023-02-19摘要:聚苯乙烯纳米塑料(polystyrene nanoplastics,PSNPs)和溴酸盐(BrO -3)广泛存在于水环境中,会对水生生物产生不利影响㊂为了探究PSNPs 和溴酸钠(NaBrO 3)共存条件下对轮虫的联合毒性效应,以萼花臂尾轮虫(Brachionus calyciflorus )为受试生物,探究了PSNPs (0.001㊁0.1mg ㊃L -1)㊁NaBrO 3(0.001㊁0.1mg ㊃L -1)以及它们的联合作用对轮虫生命表参数㊁种群增长㊁个体及卵大小的影响㊂PSNPs 和NaBrO 3单一及联合暴露显著影响萼花臂尾轮虫的生命表参数,其中,内禀增长率是最为灵敏的参数㊂0.1mg ㊃L -1PSNPs 和0.001㊁0.1mg ㊃L -1NaBrO 3联合暴露使轮虫个体显著减小,0.001mg ㊃L -1PSNPs 和0.001㊁0.1mg ㊃L -1NaBrO 3联合暴露使轮虫的卵体积显著增大㊂PSNPs 和NaBrO 3联合作用对轮虫种群增长的抑制产生协同效应,0.001㊁0.1mg ㊃L -1PSNPs 与0.001mg ㊃L -1NaBrO 3联合作用对轮虫个体的抑制表现出拮抗作用,0.001㊁0.1mg ㊃L -1NaBrO 3能够降低0.1mg ㊃L -1PSNPs 对轮虫净生殖率的抑制作用㊂结果表明,PSNPs 和NaBrO 3联合作用对轮虫产生了复杂的毒性效应,且联合毒性效应与PSNPs ㊁NaBrO 3的浓度配比有关㊂关键词:聚苯乙烯纳米塑料;溴酸盐;萼花臂尾轮虫;联合毒性作用;生命表参数;种群增长;个体及卵大小文章编号:1673-5897(2023)5-236-10㊀㊀中图分类号:X171.5㊀㊀文献标识码:ACombined Toxicity of Polystyrene Nanoplastics and Bromate to Rotifer Brachionus calyciflorusTao Kaiyan 1,Xu Xiaoping 1,2,*,Yang Xiaofan 1,#,Chen Tao 1,Li Binbin 1,Li Jincheng 11.College of Civil Engineering and Architecture,Anhui Polytechnic University,Wuhu 241000,China2.Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt,Wuhu 241000,ChinaReceived 21November 2022㊀㊀accepted 19February 2023Abstract :Polystyrene nanoplastics (PSNPs)and bromate (BrO -3)exist widely in aquatic environment,which canadversely affect aquatic organisms.In order to explore the combined toxic effects of PSNPs and sodium bromate (NaBrO 3)on rotifers,the effects of PSNPs (0.001,0.1mg ㊃L -1),NaBrO 3(0.001,0.1mg ㊃L -1)and their combined actions on life -table parameters,population growth,body and egg size of rotifers Brachionus calyciflorus were in -第5期陶开燕等:聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用237㊀vestigated in this study.The results showed that the single and combined exposure of PSNPs and NaBrO3signifi-cantly affected the life-table parameters of Brachionus calyciflorus,in which intrinsic rate of population increase was the most sensitive parameter.The combined exposure of0.1mg㊃L-1PSNPs and0.001,0.1mg㊃L-1NaBrO3 significantly reduced the size of the rotifer body,and the combined exposure of0.001mg㊃L-1PSNPs and0.001, 0.1mg㊃L-1NaBrO3significantly increased the egg size of the rotifers.PSNPs and NaBrO3had a synergistic effect on the inhibition of the population growth of rotifers.0.001,0.1mg㊃L-1PSNPs and0.001mg㊃L-1NaBrO3showed an antagonistic effect on the inhibition of the body size of rotifers.0.001,0.1mg㊃L-1NaBrO3could reduce the in-hibitory effect of0.1mg㊃L-1PSNPs on the net reproductive rate of rotifers.The results showed that the combina-tion of PSNPs and NaBrO3produced complex toxic effects on rotifers,and the combined toxic effects depend onthe concentration ratio of PSNPs and NaBrO3.Keywords:polystyrene nanoplastics;bromate;Brachionus calyciflorus;combined toxic effect;life-table parame-ters;population growth;body and egg size㊀㊀塑料制品由于便捷和经济得到了广泛的使用,然而塑料的大量使用㊁不当处置和难降解造成了大量的塑料垃圾[1]㊂研究表明,全球每年大约有4.80ˑ106~1.27ˑ107t塑料垃圾排入到水环境中[2]㊂这些进入到水体中的塑料在水解㊁光降解和生物分解等作用下会形成粒径更小的塑料微粒,其中,粒径ɤ100nm的塑料微粒被称为纳米塑料(nanoplastics, NPs)[3]㊂NPs在水体中分布广泛,种类繁多[4]且易被贻贝㊁蚤状溞㊁轮虫等水生生物误食或吸附于生物体表面[5-7],并通过食物链进行传递,进而影响水生生物的生理代谢㊁生长发育和繁殖等过程[8-10]㊂此外,NPs具有粒径小㊁比表面积大㊁疏水性强等特点,容易吸附和转移水环境中的其他物质形成复合污染物[11-12],造成不可预知的生态风险㊂聚苯乙烯(PS)是需求量最大的聚合物之一,在水环境中被广泛检出[13-14]㊂目前,已有的研究表明,PSNPs的长期暴露显著降低海水青鳉(Oryzias melastigma)的子代孵化率,造成胚胎发育畸形[15],PSNPs可以作为水杨酸乙基己酯(EHS)的载体,促进EHS在斑马鱼(Danio re-rio)体内的生物积累及其向后代的转移[16]㊂溴酸盐(BrO-3)经常在自然水体和处理水中被检出㊂美国地下水和地表水中溴酸盐浓度分别为2.6μg㊃L-1和204.6μg㊃L-1[17],英国受化学品生产厂长期泄露影响的地下水中溴酸盐浓度则达到了2mg㊃L-1[18],我国沈阳㊁上海两地地表水中溴酸盐浓度分别为6.96μg㊃L-1和33.2μg㊃L-1[19]㊂我国新修订的‘生活饮用水卫生标准“(GB5749 2022)[20]中规定了溴酸盐限值为10μg㊃L-1㊂溴酸盐在水中的溶解度和热稳定性高,会在水环境中长期存在并富集,对水中生物造成影响㊂研究发现,溴酸盐对大型溞(Daphnia magna)48h㊁96h的LC50为55.3mg㊃L-1和46.8mg㊃L-1,对萼花臂尾轮虫(Brachionus calyciflo-rus)24h的LC50为365.29mg㊃L-1,还抑制萼花臂尾轮虫的游泳速度,降低其净繁殖率㊁种群增长率,缩短寿命[21-22]㊂轮虫是淡水浮游动物群落的重要类群,在维持水生态系统正常的物质循环和能量流动中发挥着重要作用,其中,萼花臂尾轮虫具有分布广泛㊁世代周期短㊁易培养和对毒物敏感等特点,是开展水生态毒理学研究的模式生物[23]㊂鉴于环境中PSNPs与溴酸盐的污染现象日益严重,两者共存时的相互作用很可能对轮虫等重要浮游生物产生复杂的毒性效应,影响水生态系统生物群落结构的稳定㊂本研究以萼花臂尾轮虫为受试生物,从存活㊁繁殖㊁种群增长及形态变化等多个方面研究了低浓度PSNPs和NaBrO3对其的联合毒性效应,结果可为探明PSNPs与NaBrO3共存条件下对轮虫类浮游生物的影响提供参考,同时为水环境中复合污染物的生态风险评价和控制提供理论支持㊂1㊀材料与方法(Materials and methods)1.1㊀轮虫的采集与培养实验所用的萼花臂尾轮虫采自芜湖市汀棠湖㊂采样后,随机挑选非混交雌体置于实验室(25ʃ1)ħ的恒温光照培养箱中进行单克隆培养,光照强度为100lx,光暗比为14hʒ10h,在实验室的培养时间超过6个月㊂使用美国环境保护局(US EPA)配方[24]配制轮虫培养液,斜生四链藻(Tetradesmus obliquus)为轮虫唯一食物来源㊂斜生四链藻采用HB-4培养液培养,待其处于指数增长期时进行离心浓缩收集,238㊀生态毒理学报第18卷储存于4ħ下保存备用,投喂密度为2.0ˑ106cells㊃mL-1㊂实验开始前,将一定数量的轮虫置于(25ʃ1)ħ的恒温培养箱内进行预培养,此过程中,每12h悬浮一次沉淀于试管底部的藻类食物,每24h更换一次轮虫培养液并投喂新的食物,同时通过去除一部分轮虫个体使种群始终处于指数增长期,预培养时间为1周㊂1.2㊀测试液的配制实验所用的聚苯乙烯微球(粒径为0.05~0.1μm,2.5%m/V,CAS:9003-53-6)购自上海阿拉丁生化科技股份有限公司,原液在4ħ下避光保存㊂表征结果显示,该聚苯乙烯纳米塑料平均粒径为(83.34ʃ0.60)nm,Zeta电位为(26.20ʃ0.46)mV,且呈较为规则的球形,分散效果良好(图1)㊂NaBrO3(分析纯,99.8%)购自国药集团化学试剂有限公司㊂实验开始前,用蒸馏水配制100mg㊃L-1的PSNPs母液和1000mg㊃L-1的NaBrO3母液,并置于4ħ下保存㊂为了减小PSNPs的聚集作用,每次使用前进行30min的超声处理,并每24h配制一次测试液㊂结合溴酸盐的实际环境检测浓度及水质标准中规定的限值等因素,设置测试液的浓度为PSNPs:0.001mg㊃L-1(低浓度,L)㊁0.1mg㊃L-1(高浓度,H),NaBrO3:0.001mg㊃L-1(低浓度,L)㊁0.1mg㊃L-1(高浓度,H),参考杨越等[25]不同毒性比联合毒性实验的设计思路,设置了PSNPs-NaBrO3相同浓度比和不同浓度比的联合处理组,探究联合毒性作用中2种污染物的浓度配比对毒性效应的影响,测试液(PSNPs-NaBrO3)的组成及浓度见表1㊂1.3㊀生命表实验实验开始时,从完成预培养的轮虫中随机吸取若干个带卵的非混交雌体,置于和预培养条件相同的小玻璃杯中进行培养,并每隔2h把孵化出的轮虫幼体取出用于生命表实验㊂实验在24孔培养板中进行,每个孔中放入一只幼体(龄长<2h),并加入0.5mL测试液(含有2.0ˑ106cells㊃mL-1斜生四链藻),每个浓度设置3组重复,将培养板置于(25ʃ1)ħ㊁无光照的恒温培养箱中进行实验㊂实验开始12h后的48h内,每4h观察一次㊁48h之后每8h观察一次轮虫的存活及产卵情况,记录轮虫母体的存活情况及产生的幼体数量,并移出所产幼体㊂实验期间每24h更换一次测试液并投喂新的斜生四链藻,实验至母体全部死亡为止㊂基于实验记录,参照Xue等[26]的方法计算轮虫主要发育阶段的历时,包括幼年期(JP,指从幼体孵出到其产出第一枚卵所经历的时间);胚胎发育时间(ED,指从卵的产出到幼体孵出所经历的时间);生殖期(RP,从第一枚卵产出到最后一枚卵产出所经历的时间);生殖后期(PP,从轮虫产出最后一枚卵到其死亡所经历的时间)㊂生命表参数的定义和计算方法参照Ge等[27]的方法,特定年龄存活率(l x)为X年龄组开始时存活个体百分数;特定年龄繁殖率(m x)为X年龄组平均每个个体所产的后代数;生命期望(e)为各轮虫个体出生时能存活多久的估计值;净生殖率(R)为种群经过一个世代后的净增长率,R0=ðl x㊃m x;世代时间(T)为轮虫完成一个世代所经历的时间,T=ðl x㊃m x㊃xR;平均寿命(LS)为所有个体平均存活时间的观察值;内禀增长率(rm)为种群在特定实验条件下图1㊀聚苯乙烯纳米塑料(PSNPs)的形貌Fig.1㊀Morphology of polystyrene nanoplastics(PSNPs)表1㊀实验测试液PSNPs-NaBrO3的浓度组成Table1㊀The concentration composition of the experimental test solution PSNPs-NaBrO30-0L-0H-00-L0-H L-L L-H H-L H-H PSNPs/(mg㊃L-1)00.0010.1000.0010.0010.10.1 NaBrO3/(mg㊃L-1)0000.0010.10.0010.10.0010.1第5期陶开燕等:聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用239㊀的最大增长率,先根据方程rm =ln RT粗略计算,再根据方程ðnx=0e-r m㊃x l x㊃m x=1在Excel中试算求得种群内禀增长率的精确值㊂1.4㊀种群增长实验从预培养好的试管中随机取10只龄长<2h的轮虫幼体,将其置于5mL刻度试管中,加入5mL 测试液(含有2.0ˑ106cells㊃mL-1斜生四链藻),每个浓度设置3组重复,置于(25ʃ1)ħ㊁无光照的恒温培养箱中进行群体累积培养㊂实验期间,每12h悬浮一次沉积于试管底部的藻类食物,每24h更换一次测试液;72h后,分别计数存活轮虫的携卵雌体数㊁不携卵雌体数㊁混交雌体数和休眠卵数㊂轮虫种群增长率(r)的计算公式为:r=ln Nt-ln N0t,式中:N0㊁N t分别为实验开始时和实验进行到第t 天时的种群密度,t为时间,本研究中t=3㊂计算种群中携卵雌体数与不携卵雌体数的比值(OF/NOF),混交雌体数与总雌体数的比值(MR)㊂1.5㊀轮虫个体大小和卵体积实验从预培养好的烧杯中随机取30只龄长<2h的轮虫幼体,将其置于10mL刻度试管中,加入10mL 测试液(含有2.0ˑ106cells㊃mL-1斜生四链藻),每个浓度设置3组重复,置于(25ʃ1)ħ㊁无光照的恒温培养箱中进行培养㊂实验开始8h后每2h观察一次轮虫,待轮虫携带第一枚卵后取出,用5%甲醛固定㊂采用蔡康光学(XSP-8CC)显微装置和图像采集系统对固定的轮虫进行拍照并进行测量㊂根据萼花臂尾轮虫的形态学特征,本实验采用Fu等[28]和Ciros-Pérez 等[29]的方法,测量轮虫的背甲宽度㊁背甲长度㊁卵长径和卵短径4个形态参数,根据Sarma和Rao[30]的公式计算轮虫的个体大小(body size,BS)和卵体积(eggsize,ES):BS=a2ˑb5,ES=π(m2ˑn+n2ˑm)12,式中:a和b分别为背甲长度和背甲宽度,m和n分别为卵长径和卵短径㊂1.6㊀数据统计与分析采用Excel和SPSS21.0对数据进行处理与分析,Origin2019作图,数据以平均值ʃ标准差(MeanʃSD)表示㊂对所得数据进行正态分布检验和方差齐性检验,符合以上条件的数据,采用单因素方差分析和多重比较(LSD)检验各实验组与空白组之间的差异显著性㊂P<0.05表示差异显著㊂2㊀结果(Results)2.1㊀PSNPs和NaBrO3对萼花臂尾轮虫生命表参数的影响㊀㊀生存分析结果表明,H-H处理组的存活率显著高于对照组(P<0.05)㊂繁殖率在对照组和各实验组中没有呈现出显著变化(P>0.05),但L-L㊁L-H㊁H-L㊁H-H处理组均使繁殖率的最高点降低且延长了较高繁殖率的时间(图2)㊂发育阶段的结果表明,与对照组相比,0-H㊁L-L㊁H-L㊁H-H处理组的JP显著延长(P<0.05),H-L处理组的ED显著缩短;0-H㊁L-L㊁H-H处理组的RP 显著延长(P<0.05);0-H处理组的PP显著缩短(P <0.05)(图3)㊂单因素方差分析结果表明,与对照组相比,H-L㊁H-H处理组使e0㊁LS值显著延长(P<0.05),H-0处理组使R值显著降低,L-H处理组使R值显著升高(P<0.05),0-H㊁L-L㊁L-H㊁H-L和H-H处理组显著延长了T(P<0.05),H-0㊁0-L㊁0-H㊁L-L㊁H-L㊁H-H处理组显著降低了rm(P<0.05)(表2)㊂2.2㊀PSNPs和NaBrO3对萼花臂尾轮虫种群增长的影响㊀㊀与对照组相比,0-L㊁0-H㊁L-L㊁L-H㊁H-L和H-H 处理组的r显著降低,所有处理组对轮虫的OF/NOF 均不产生显著影响(图4),所有处理组下均无混交雌体和休眠卵产生㊂2.3㊀PSNPs和NaBrO3对萼花臂尾轮虫个体大小和卵体积的影响㊀㊀与对照组相比,L-0㊁H-0㊁0-L㊁0-H单独处理组及H-H联合处理组均使轮虫个体显著减小,L-L联合处理组使轮虫的卵体积显著增大(图5)㊂3㊀讨论(Discussion)生命表参数能够综合反映轮虫的存活和繁殖情况,且对特定毒物具有不同的敏感性[31]㊂通常情况下,繁殖参数对环境压力和化学药物的敏感性大于存活参数[32]㊂如Rao和Sarma[33]的研究表明,低浓度滴滴涕(DDT)的暴露会使轮虫的R0㊁r m显著降低,却不会影响轮虫的存活率㊂R0㊁r m对不同的毒物也表现出不同的敏感性,研究表明,R对龙须菜抽提液的敏感性大于rm,而对石油水溶性成分来说,rm的敏感性大于R[34-35]㊂本研究中,相对于其他指标而言,rm在多数处理组(6组)中受到毒物单一和联合作用的显著影响,特别是在低浓度组中也与对照组显示出显著差异,而R则只在少数处理组240㊀生态毒理学报第18卷(2组)中显示出差异性,表明PSNPs 和NaBrO 3的单一和联合暴露对r m 的影响更大,r m 比R 0和其他参数更加适合监测PSNPs 和NaBrO 3的单一和联合暴露对轮虫种群的毒性影响㊂图2㊀PSNPs-NaBrO 3暴露下萼花臂尾轮虫的存活率和繁殖率Fig.2㊀Age -specific survivorship and age -specific fecundity of B.calyciflorus exposed to PSNPs -NaBrO 3表2㊀PSNPs-NaBrO 3暴露对萼花臂尾轮虫生命表参数的影响Table 2㊀Effects of PSNPs -NaBrO 3exposure on life -table parameters of B.calyciflorusPSNPs -NaBrO 3处理组PSNPs -NaBrO 3treatmente 0/hR 0T /hr mLS/h 0-0181.56ʃ15.91bc 16.87ʃ2.00bcd 83.33ʃ4.83d 0.0414ʃ0.0012a 173.56ʃ15.90bc L -0180.44ʃ3.67bc 15.78ʃ0.46de 87.49ʃ1.77d 0.0383ʃ0.001ab 172.44ʃ3.67bc H -0175.33ʃ8.51c 14.17ʃ1.22e 86.28ʃ5.41d 0.0362ʃ0.001bc 167.33ʃ8.51c 0-L 190.67ʃ11.51abc 16.00ʃ1.16de 89.59ʃ2.29cd 0.0371ʃ0.002bc 182.67ʃ11.51abc 0-H 194.22ʃ11.67ab 18.90ʃ1.64ab 99.67ʃ0.27ab 0.0358ʃ0.002bc 186.22ʃ11.67ab L -L 198.67ʃ17.32ab 17.92ʃ1.29abcd 98.92ʃ6.06ab 0.0360ʃ0.002bc 185.26ʃ7.96ab L -H 196.48ʃ9.09ab 19.17ʃ0.58a 94.60ʃ4.08bc 0.0388ʃ0.001ab 188.48ʃ9.09ab H -L 203.18ʃ4.62a 16.41ʃ1.11cd 97.52ʃ4.78ab 0.0347ʃ0.003c 195.18ʃ4.62a H -H205.21ʃ5.26a18.48ʃ1.19abc103.06ʃ3.41a0.035ʃ0.002c197.21ʃ5.26a注:e 0㊁R 0㊁T ㊁r m 和LS 为生命期望㊁净生殖率㊁世代时间㊁内禀增长率和平均寿命;表中同一列数据右上角含相同字母表示差异不显著(P >0.05),不同表示差异显著(P <0.05)㊂Note:e 0,R 0,T ,r m and LS represent life expectancy at hatching,net reproductive rate,generation time,intrinsic rate of population increase and aver -age lifespan;the same superscript letters in the same rank represent no significant difference (P >0.05),while the different letters represent significant difference (P <0.05).第5期陶开燕等:聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用241㊀图3㊀PSNPs-NaBrO 3暴露对萼花臂尾轮虫发育阶段的影响注:(a)㊁(b)㊁(c)㊁(d)分别为胚胎发育期㊁幼年期㊁生殖期和生殖后期;a ㊁b ㊁c ㊁d 表示不同处理组间存在显著差异(P <0.05);表示平均值,表示中位数,误差棒表示ʃ标准差㊂Fig.3㊀Effects of PSNPs -NaBrO 3exposure on the developmental stages of B.calyciflorusNote:(a),(b),(c)and (d)represent embryonic development,juvenile period,reproductive period and post -reproductive period respectively;a,b,c and d represent significant difference between each group (P<0.05);show meanvalue,show median,error bars indicate ʃSD (n =3).㊀㊀生物种群的所有个体都承担着种群繁衍的任务,生物种群的增长或衰亡是所有个体存活和繁殖的累积表现㊂研究表明,面对外界环境和毒物的压力时,轮虫个体会在繁殖和生存之间进行能量的分配权衡[36]㊂如低温下轮虫寿命的延长要以牺牲繁殖为代价,且温度越低,轮虫所摄取的能量就会越倾向于用来维持自身生命活动[37]㊂而Xu 等[38]研究发现,较高浓度DDT 暴露下,轮虫选择降低繁殖率来实现对毒物的适应㊂本研究中,轮虫的JP 和T 值在多个处理组中被显著延长,而R 0值却没有受到显著影响(除了H -0㊁L -H 组外),表明轮虫受到胁迫后,在不降低后代个数的情况下,推迟了繁殖开始的时间,延长了后代产出的周期,降低了繁殖频次,这直接导致了r m 值的显著降低,轮虫个体对种群增长的贡献在减少,其结果必然增加轮虫种群衰亡的风险㊂然而,值得注意的是,在H -L 和H -H 组中,轮虫的LS 值被显著延长了,而这2组的r m 值是所有处理组中最低的2组,表明在耐受压力下,轮虫试图通过延长寿命增加可能的 繁殖机会 以弥补r m 的降低给种群带来的风险㊂在受污染环境中,生物体会把部分能量用于抵抗污染物的胁迫[39]㊂研究表明,轮虫对微囊藻毒素的抵抗是一个耗能过程,它可以通过减小形态学参数,节约生长能量以抵抗微囊藻毒素的胁迫[40]㊂本研究中,L -0㊁H -0㊁0-L ㊁0-H 和H -H 处理组的BS 均显著减小,表明轮虫减少了用于自身发育的能量来增加对PSNPs 和NaBrO 3单一及联合暴露的抵抗㊂同样,当能量有限时,轮虫的繁殖会在卵大小和产卵量之间进行权衡[41]㊂如食物短缺时,桡足类会产出体积较大但数量较少的卵,以保证后代有较高的存242㊀生态毒理学报第18卷活率,能更好地维持种群的延续[42]㊂本实验中,L -L处理组的r m 显著降低,ES 显著增大,表明轮虫采取降低产卵效率,提高卵质量的对策来增强对低浓度PSNPs 和NaBrO 3联合胁迫的抵抗㊂图4㊀PSNPs-NaBrO 3暴露对萼花臂尾轮虫种群增长的影响注:(a)PSNPs -NaBrO 3暴露3d 后萼花臂尾轮虫的种群增长率;(b)PSNPs -NaBrO 3暴露3d 后种群中携卵雌体数与不携卵雌体数的比值(OF/NOF);a ㊁b ㊁c ㊁d 表示不同处理组间存在显著差异(P <0.05)㊂Fig.4㊀Effects of PSNPs -NaBrO 3exposure on population growth rate of B.calyciflorusNote:(a)Population growth rate of B.calyciflorus after 3d exposure to PSNPs -NaBrO 3;(b)Ratio of the number of carrying females to the number of non -carrying females in the population after 3d exposure of PSNPs -NaBrO 3(OF/NOF);a,b,c and d representsignificant difference between each group (P<0.05).图5㊀PSNPs-NaBrO 3暴露对萼花臂尾轮虫个体及卵大小的影响注:(a)PSNPs -NaBrO 3暴露后萼花臂尾轮虫的个体大小;(b)PSNPs -NaBrO 3暴露后萼花臂尾轮虫的卵大小;a ㊁b ㊁c ㊁d 表示不同处理组间存在显著差异(P <0.05)㊂Fig.5㊀Effects of PSNPs -NaBrO 3exposure on body and egg size of B.calyciflorusNote:(a)Body size of B.calyciflorus after exposure to PSNPs -NaBrO 3;(b)Egg size of B.calyciflorus after exposure to PSNPs -NaBrO 3;a,b,c and d represent significant difference between each group (P <0.05).㊀㊀PSNPs 由于粒径小,比表面积大,容易吸附环境中与之共存的污染物,从而影响共存污染物对生物体的毒性效应,同时PSNPs 与污染物之间可能存在复杂的相互合作,造成难以预料的生物效应㊂通常混合物的生物效应大于单一组分的生物效应㊂有研究发现,高浓度微塑料和氟苯尼考联合作用对河蚬摄食率的抑制远大于两者单独作用的抑制之和[43];微塑料和文拉法辛共存时泥鳅体内超氧化物歧化酶(SOD)活性显著高于单独接触文拉法辛时的活性[44],表明微塑料和共存的污染物之间存在协同作第5期陶开燕等:聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用243㊀用㊂本研究中,PSNPs与NaBrO3共存时,所有联合处理组(L-L㊁L-H㊁H-L㊁H-H)的r均受到显著抑制,且抑制效果显著高于各自对应的单独处理组,表明PSNPs与NaBrO3对轮虫r的抑制存在协同作用㊂造成协同毒性效应的原因可能是:轮虫是一种滤食性动物,可以通过摄食使PSNPs进入体内,而PSNPs作为NaBrO3的载体,导致NaBrO3进入到轮虫体内的量增多,污染物的有效浓度增高,对轮虫r 的抑制效果增强㊂或者是PSNPs独特的化学性质改变了细胞膜的通透性,使得NaBrO3更容易进入膜内产生作用㊂然而,不是所有联合作用都会使毒性效应增强㊂研究表明,PS-MPs和罗红霉素(ROX)共同暴露对大型溞的氧化胁迫并没有比单一暴露强[45],阿伏苯宗(A VO)的存在能够减轻PSNPs对斑马鱼的毒性作用[46]㊂本实验中,H-L㊁H-H暴露对r m的抑制作用与H-0㊁0-L㊁0-H单独暴露时无显著差异,呈现出独立作用㊂而L-L㊁H-L暴露对BS的抑制作用与各自对应的单独暴露相比反而减弱了,呈现出拮抗作用㊂此外,NaBrO3的存在降低了0.1mg㊃L-1PSNPs对轮虫R的抑制作用㊂上述情况结合协同效应充分表明,不同浓度PSNPs和NaBrO3以及二者不同的组合方式,对轮虫产生的毒性效应不尽相同,体现出联合毒性效应的复杂性㊂通信作者简介:徐晓平(1979 ),男,博士,教授,主要研究方向为水污染监测与控制㊁生态毒理学㊂共同通信作者简介:杨晓凡(1978 ),男,博士,副教授,主要研究方向为工业污染控制与治理㊂参考文献(References):[1]㊀Xu S,Ma J,Ji R,et al.Microplastics in aquatic environ-ments:Occurrence,accumulation,and biological effects[J].The Science of the Total Environment,2020,703:134699[2]㊀Haward M.Science-based solutions to plastic pollution[J].One Earth,2020,2(1):5-7[3]㊀Mattsson K,Hansson L A,Cedervall T.Nano-plastics inthe aquatic environment[J].Environmental ScienceProcesses&Impacts,2015,17(10):1712-1721[4]㊀Lv M J,Jiang B,Xing Y,et al.Recent advances in thebreakdown of microplastics:Strategies and future pro-spectives[J].Environmental Science and Pollution Re-search International,2022,29(44):65887-65903[5]㊀Kolandhasamy P,Su L,Li J N,et al.Adherence of micro-plastics to soft tissue of mussels:A novel way to uptakemicroplastics beyond ingestion[J].Science of the TotalEnvironment,2018,610-611:635-640[6]㊀Liu Z Q,Cai M Q,Wu D L,et al.Effects of nanoplasticsat predicted environmental concentration on Daphniapulex after exposure through multiple generations[J].En-vironmental Pollution,2020,256:113506[7]㊀Xue Y H,Sun Z X,Feng L S,et al.Algal density affectsthe influences of polyethylene microplastics on the fresh-water rotifer Brachionus calyciflorus[J].Chemosphere, 2021,270:128613[8]㊀陈涛,徐晓平,李彬彬,等.聚苯乙烯微塑料和纳米塑料对萼花臂尾轮虫有性生殖的毒性影响[J].环境科学研究,2022,35(5):1306-1314Chen T,Xu X P,Li B B,et al.Effects of polystyrene mi-croplastics and nanoplastics on sexual reproduction of ro-tifer Brachionus calyciflorus[J].Research of Environmen-tal Sciences,2022,35(5):1306-1314(in Chinese)[9]㊀Mao Y F,Ai H N,Chen Y,et al.Phytoplankton responseto polystyrene microplastics:Perspective from an entiregrowth period[J].Chemosphere,2018,208:59-68 [10]㊀Jiang W W,Fang J H,Du M R,et al.Microplastics influ-ence physiological processes,growth and reproduction inthe Manila clam,Ruditapes philippinarum[J].Environ-mental Pollution,2022,293:118502[11]㊀Sui Y M,Wang S Y,Mohsen M,et al.The combinedeffect of plastic particles size and concentration on roti-fers (Brachionus plicatilis)performance[J].Journal ofOcean University of China,2022,21(2):509-519 [12]㊀Drago C,Pawlak J,Weithoff G.Biogenic aggregation ofsmall microplastics alters their ingestion by a commonfreshwater micro-invertebrate[J].Frontiers in Environ-mental Science,2020,8:574274[13]㊀Xiong X,Wu C X,Elser J J,et al.Occurrence and fate ofmicroplastic debris in middle and lower reaches of theYangtze River-From inland to the sea[J].Science of theTotal Environment,2019,659:66-73[14]㊀Li C R,Busquets R,Campos L C.Assessment of micro-plastics in freshwater systems:A review[J].The Scienceof the Total Environment,2020,707:135578[15]㊀靳非,田淼,穆景利,等.聚苯乙烯微塑料长期暴露对海水青鳉(Oryzias melastigma)亲代生长㊁繁殖及子代发育的影响[J].生态毒理学报,2021,16(4):216-223Jin F,Tian M,Mu J L,et al.Effects of polystyrene micro-plastics on growth and reproduction of parental generationand development of filial generation of marine medaka(Oryzias melastigma)after a long-term exposure[J].Asi-244㊀生态毒理学报第18卷an Journal of Ecotoxicology,2021,16(4):216-223(inChinese)[16]㊀Zhou R R,Lu G H,Yan Z H,et al.Interactive transgener-ational effects of polystyrene nanoplastics and ethylhexylsalicylate on zebrafish[J].Environmental Science:Nano, 2021,8(1):146-159[17]㊀Kemsley J.Bromate in Los Angeles water[J].Chemical&Engineering News Archive,2007,85(52):9[18]㊀Cornelissen J P,Kafouros M,Lock A R.Metaphorical im-ages of organization:How organizational researchers de-velop and select organizational metaphors[J].Human Re-lations,2005,58(12):1545-1578[19]㊀Wu Q,Zhang T,Sun H W,et al.Perchlorate in tap water,groundwater,surface waters,and bottled water from Chi-na and its association with other inorganic anions andwith disinfection byproducts[J].Archives of Environmen-tal Contamination and Toxicology,2010,58(3):543-550 [20]㊀国家市场监督管理总局,国家标准化管理委员会.生活饮用水卫生标准:GB5749 2022[S].北京:中国标准出版社,2022[21]㊀Fisher D,Yonkos L,Ziegler G,et al.Acute and chronictoxicity of selected disinfection byproducts to Daphniamagna,Cyprinodon variegatus,and Isochrysis galbana[J].Water Research,2014,55:233-244[22]㊀Xu X P,Chen T,Wei X Y,et al.Effects of bromate onlife history parameters,swimming speed and antioxidantbiomarkers in Brachionus calyciflorus[J].Ecotoxicologyand Environmental Safety,2021,208:111705[23]㊀Dahms H U,Hagiwara A,Lee J S.Ecotoxicology,eco-physiology,and mechanistic studies with rotifers[J].A-quatic Toxicology,2011,101(1):1-12[24]㊀Peltier W,Weber C.Methods for measuring the acute tox-icity of effluents to freshwater and marine organisms[R].Washigton DC:Environmental Monitoring and SupportLaboratory,Office of Research and Development,UnitedStates Environmental Protection Agency,1985[25]㊀杨越,孙昊宇,龙茜,等.氨基糖苷类抗生素与抗菌剂不同毒性比混合对大肠杆菌的联合效应研究[J].生态毒理学报,2022,17(2):118-128Yang Y,Sun H Y,Long X,et bined toxicity ofaminoglycosides and antimicrobials with different ratioson Escherichia coli[J].Asian Journal of Ecotoxicology, 2022,17(2):118-128(in Chinese)[26]㊀Xue Y H,Sun Z X,Feng L S,et al.Algal density affectsthe influences of polyethylene microplastics on the fresh-water rotifer Brachionus calyciflorus[J].Chemosphere, 2021,270:128613[27]㊀Ge Y L,Luo T,Ge C C,et parison of the life-his-tory parameters and competition outcome with Moinamacrocopa between two morphs of Brachionus forficula[J].Scientific Reports,2018,8(1):6022[28]㊀Fu Y,Hirayama K,Natsukari Y.Morphological differ-ences between two types of the rotifer Brachionus plicatil-is O.F.Müller[J].Journal of Experimental Marine Biolo-gy and Ecology,1991,151(1):29-41[29]㊀Ciros-Pérez J,Gómez A,Serra M.On the taxonomy ofthree sympatric sibling species of the Brachionus plicatilis(Rotifera)complex from Spain,with the description of B.ibericus n.sp[J].Journal of Plankton Research,2001,23(12):1311-1328[30]㊀Sarma S S S,Rao T R.Effect of food level on body sizeand egg size in a growing population of the rotifer Bra-chionus patulus Müller[J].Archiv Für Hydrobiologie,1987,111(2):245-253[31]㊀孙帆,葛乐乐,白琰,等.亚致死浓度的盐酸四环素对萼花臂尾轮虫存活㊁生殖和种群增长的影响[J].动物学杂志,2021,56(3):377-383Sun F,Ge L L,Bai Y,et al.Effects of sublethal concentra-tion of tetracycline hydrochloride on survival,reproduc-tion and population growth of Brachionus calyciflorus[J].Chinese Journal of Zoology,2021,56(3):377-383(inChinese)[32]㊀Dong L L,Wang H X,Ding T,et al.Effects of TiO2nan-oparticles on the life-table parameters,antioxidant indices,and swimming speed of the freshwater rotifer Brachionuscalyciflorus[J].Journal of Experimental Zoology Part A,Ecological and Integrative Physiology,2020,333(4):230-239[33]㊀Rao T R,Sarma S S S.Demographic parameters of Bra-chionus patulus Müller(Rotifera)exposed to sublethalDDT concentrations at low and high food levels[J].Hydrobiologia,1986,139(3):193-200[34]㊀龙艾虹,梁迪文,罗洪添,等.大型海藻龙须菜抽提液对褶皱臂尾轮虫生命表参数的影响[J].生态学报,2019,39(7):2583-2590Long A H,Liang D W,Luo H T,et al.Effects of seaweedextract(Gracilaria lemaneiformis)on life history parame-ters of the rotifer Brachionus plicatilis[J].Acta EcologicaSinica,2019,39(7):2583-2590(in Chinese)[35]㊀王嘉仪,沙婧婧,张晖,等.石油水溶性成分对褶皱臂尾轮虫(Brachionus plicatilis)生殖㊁发育及种群动态的影响[J].生态毒理学报,2019,14(5):159-167Wang J Y,Sha J J,Zhang H,et al.Water-accommodatedfraction(WAF)of oil exert negative impacts on reproduc-tion,development and population dymanics of marine ro-tifer Brachionus plicatilis[J].Asian Journal of Ecotoxicol-第5期陶开燕等:聚苯乙烯纳米塑料和溴酸盐对萼花臂尾轮虫的联合毒性作用245㊀ogy,2019,14(5):159-167(in Chinese)[36]㊀Bernardes J P,John U,Woltermann N,et al.The evolu-tion of convex trade-offs enables the transition towardsmulticellularity[J].Nature Communications,2021,12(1): 4222[37]㊀金对娇.二甲双胍对萼花臂尾轮虫延寿效果的研究[D].南京:南京师范大学,2021:33-55Jin D J.The life-prolonging effect of metformin on Bra-chionus calyciflorus[D].Nanjing:Nanjing Normal Uni-versity,2021:33-55(in Chinese)[38]㊀Xu X P,Xi Y L,Wang X M.Effects of DDT and dicofolon life table demography of the freshwater rotifer Bra-chionus calyciflorus Pallas[J].Polish Journal of Environ-mental Studies,2020,29(2):1945-1951[39]㊀Oda Y,Sato K,Hanazato T,et al.Enhanced sensitivity toan insecticide carbaryl in Daphnia magna mediated byfish kairomone[J].Limnology,2019,20(2):137-141 [40]㊀项贤领,朱凌云,陈莹莹,等.微囊藻毒素和温度对萼花臂尾轮虫(Brachionus calyciflorus)形态学特征的影响[J].湖泊科学,2018,30(4):1027-1040Xiang X L,Zhu L Y,Chen Y Y,et bined effectsof the microcystin MC-LR and temperature on the mor-phological features of Brachionus calyciflorus[J].Journalof Lake Sciences,2018,30(4):1027-1040(in Chinese) [41]㊀Liang T,Zhou L,He W F,et al.Variations in the repro-ductive strategies of three populations of Phrynocephalushelioscopus in China[J].PeerJ,2018,6:e5705[42]㊀Liu X,Ban S.Size-mediated temperature effect on embry-onic development in Eodiaptomus japonicus(Copepoda,Calanoida)in Lake Biwa,Japan[J].Journal of PlanktonResearch,2020,42(6):779-782[43]㊀Guilhermino L,Vieira L R,Ribeiro D,et al.Uptake andeffects of the antimicrobial florfenicol,microplastics andtheir mixtures on freshwater exotic invasive bivalve Cor-bicula fluminea[J].Science of the Total Environment, 2018,622-623:1131-1142[44]㊀Qu H,Ma R X,Wang B,et al.Enantiospecific toxicity,distribution and bioaccumulation of chiral antidepressantvenlafaxine and its metabolite in loach(Misgurnus anguil-licaudatus)co-exposed to microplastic and the drugs[J].Journal of Hazardous Materials,2019,370:203-211 [45]㊀姜航,丁剑楠,黄叶菁,等.聚苯乙烯微塑料和罗红霉素对斜生栅藻(Scenedesmus obliquus)和大型溞(Daph-nia magna)的联合效应研究[J].生态环境学报,2019,28(7):1457-1465Jiang H,Ding J N,Huang Y J,et bined effects ofpolystyrene microplastics and roxithromycin on the greenalgae(Scenedesmus obliquus)and waterflea(Daphniamagna)[J].Ecology and Environmental Sciences,2019, 28(7):1457-1465(in Chinese)[46]㊀Liu Y X,Wang Y H,Li N,et al.Avobenzone and nano-plastics affect the development of zebrafish nervous sys-tem and retinal system and inhibit their locomotor behav-ior[J].The Science of the Total Environment,2022,806(Pt2):150681Ң。
高分子专业英语翻译[最新]第五课乳液聚合大部分的乳液聚合都是由自由基引发的并且表现出其他自由基体系的很多特点,最主要的反应机理的不同源自小体积元中自由基增长的场所不同。
乳液聚合不仅允许在高反应速率下获得较高分子量,这在本体聚合中是无法实现或效率低下的,,同时还有其他重要的实用优点。
水吸收了大部分聚合热且有利于反应控制,产物在低粘度体系中获得,容易处理,可直接使用或是在凝聚,水洗,干燥之后很快转化成固体聚合物。
在共聚中,尽管共聚原理适用于乳液体系,单体在水相中溶解能力的不同也可能导致其与本体聚合行为不同,从而有重要的实际意义。
乳液聚合的变化很大,从包含单一单体,乳化剂,水和单一引发剂的简单体系到这些包含有2,3个单体,一次或分批添加,,混合乳化剂和助稳定剂以及包括链转移剂的复合引发体系。
单体和水相的比例允许变化范围很大,但是在技术做法上通常限制在30/70到60/40。
单体和水相比更高时则达到了直接聚合允许的极限,只有通过分批添加单体方法来排除聚合产生的大量的热。
更复杂的是随着胶体数的增加粘度也大大增加,尤其是当水溶性的单体和聚合物易容时,反应结束胶乳浓度降低。
这一阶段常常伴随着通过聚集作用或是在热力学不稳定时凝结作用而使胶粒尺寸增大。
第十课高分子的构型和构象本课中我们将使用根据经典有机化学术语而来的构型和构象这两个词。
构型异构是由于分子中存在一个或多个不对称中心,以最简单的C原子为例,每一碳原子的绝对构型为R型和S型,当存在双键时会有顺式和反式几何异构。
以合成聚合物为例,构型异构的典型问题和R.S型不对称碳原子在主链上的排布有关。
这些不对称碳原子要么来自不对称单体,如环氧丙烷,要么来自对称单体,如乙烯单体,,这些物质的聚合,在每个单体单元中形成至少一个不对称碳原子。
大分子中的构型异构源于侧链上存在不对称的碳原子,例如不对称乙烯单体的聚合,也是可能的,现今已经被广泛研究。
和经典有机化学术语一致,构象,旋转体,旋转异构体,构象异构体,指的是由于分子单键的内旋转而形成的空间排布的不同。