解直角三角形应用1仰角俯角
- 格式:doc
- 大小:167.50 KB
- 文档页数:1
解直角三角形的应用-仰角俯角问题能量储备仰角、俯角:如图2446(1)所示,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
通关宝典★ 基础方法点方法点:解直角三角形在实际问题中的应用中正确选取直角三角形的边角关系是求解的关键。
例1:如图24410所示,某电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°。
(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)。
解:(1)在△ABC 中,∵ ∠ACB =45°,∠A =90°,∴ AC =AB =610米。
答:大楼与电视塔之间的距离AC 为610米。
(2)由矩形的性质可知DE =AC =610米。
在Rt △BDE 中,由tan ∠BDE =BE DE,得BE =DE·tan 39°。
又∵CD =AE ,∴CD =AB -DE·tan 39°=610-610×tan 39°≈116(米)。
答:大楼的高度CD 约为116米。
例2:如图24428所示,为了测得电视塔的高度AB ,在D 处用高为1.2米的测角仪CD ,测得电视塔顶端A 的仰角为42°,再向电视塔方向前进120米,又测得电视塔顶端A 的仰角为61°.求这个电视塔的高度AB .(精确到1米)解:如图24429所示,设AE 为x 米,则塔的高度为(x +1.2)米.∵ tan 61°=AE EF =x EF ,∴ EF =x tan 61°. 又∵ tan 42°=AE CE ,∴ CE =x tan 42°. ∵ CE =120+x tan 61°, ∴ x tan 42°=120+x tan 61°, 解得x ≈215.7,∴ x +1.2≈217(米).∴ 这个电视塔的高度AB 约为217米。
28.2.2解直角三角形的应用(仰角和俯角)教案
中,
D
设计意图:通过分析题意,引导学生构造直角三角形,把已知条件转化到两个直角三角形里,根据已知的边角条件,恰当地选择锐角三角函数关系,解决实际问题,让学生初步认识到解直角三角形在实际问题中的应用;同时通过
一方面让学生进一步认识到解直角三角形在实际问题中的应用,另一方面,让学生意识到通过设未知数,建立方程也是解决实际问题时常用到
处,看另一栋楼楼顶的俯角为30°,看这
BC有多高?
A
E
尽管实际问题的背景发生了变化,
C E。
备考2023年中考数学一轮复习-解直角三角形的应用﹣仰角俯角问题-综合题专训及答案解直角三角形的应用﹣仰角俯角问题综合题专训1、(2018山西.中考真卷) 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB的长度38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).2、(2019石家庄.中考模拟) 如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在0B的位置时俯角∠FOB=60°,若OCLEF,点A比点B高7cm.(要求:本题中的计算结果均保留整数。
参考值:≈1.7;π≈3.1)求:(1)单摆的长度;【答案】解:解:设单摆的长度为x.过A作AM⊥OC于点M,过B作BN⊥OC于点N∵OC⊥EF.∴∠COE=∠COF=90°∴∠AOM=∠COE-∠AOE=90°-30°=60°∠BON=∠COF-∠BOF=90°-60°=30°在Rt△AOM中,OM=OA·cos60°= x在Rt△BON中,ON=OB·cos30°= x由题知:MN=7∴ON-OM= x- x=7解得:x=7 +7≈7×1.7+7≈19答:单摆的长度约19cm.(1)从点A摆动到点B经过的路径长.3、(2019丹东.中考模拟) 如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°(1)求证:AB=BD;(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41 )4、(2019海宁.中考模拟) 如图,小聪和小明在校园内测量钟楼MN的高度.小聪在A 处测得钟楼顶端N的仰角为45°,小明在B处测得钟楼顶端N的仰角为60°,并测得A,B两点之间的距离为27.3米,已知点A,M,B依次在同一直线上.(1)求钟楼MN的高度,(结果精确到0.1米)(2)因为要举办艺术节,学校在钟楼顶端N处拉了一条宣传竖幅,并固定在地面上的C处(点C在线段AM上).小聪测得点C处的仰角∠NCM等于75°,小明测得点C,M之间的距离约为5米,若小聪的仰角数据正确,问小明测得的数据“5米”是否正确?为什么?(参考数据: 1.41, 1.73)5、(2014绍兴.中考真卷) 九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.6、(2018广州.中考模拟) 如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7、(2016盐田.中考模拟) 如图,某高楼顶部有一信号发射塔,小凡在矩形建筑物ABCD的A、C两点处测得塔顶F的仰角分别为α和β,AD=18m,CD=78m.(1)用α和β的三角函数表示CE;(2)当α=30°、β=60°时,求EF(结果精确到1m).(参考数据:≈1.414,≈1.732)8、(2019贵阳.中考模拟) 如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2 米到达点D,在点D 处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).9、(2019桂林.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:(沿斜坡从B到D时,其升高的高度与水平前进的距离之比),另一段斜坡AD的长400米,在斜坡BD的坡顶D处测得山顶A的仰角为45°(1)求斜坡BD的坡顶D到地面BC的高度是多少米?(2)求BC.(结果保留根号)10、(2017桂林.中考模拟) 如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6 米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号).11、(2018海南.中考真卷) 如图,某数学兴趣小组为测量一棵古树BH和教学楼CG 的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G 的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树 BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)12、(2018遵义.中考模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE 和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?13、(2020铁岭.中考真卷) 如图,小明利用学到的数学知识测量大桥主架在水面以上的高度,在观测点处测得大桥主架顶端的仰角为30°,测得大桥主架与水面交汇点的俯角为14°,观测点与大桥主架的水平距离为60米,且垂直于桥面.(点在同一平面内)(参考数据)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度.(结果精确到1米)14、(2021八步.中考模拟) 如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.(,)(1)求的值;(2)求教学楼的高度.(结果精确到)15、随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量翡翠湖某处东西岸边,两点之间的距离.如图所示,小星站在湖边的处遥控无人机,无人机在处距离地面的飞行高度是,此时从无人机测得岸边处的俯角为,他抬头仰视无人机时,仰角为,若小星的身高,(点,,,在同一平面内).(1)求仰角的正弦值;(2)求,两点之间的距离(结果精确到).(,,,,,)解直角三角形的应用﹣仰角俯角问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
解直角三角形的仰角俯角问题
仰角和俯角是解直角三角形问题中常见的概念。
在直角三角形中,仰角是锐角的补角,而俯角是锐角的余角。
1.仰角:在直角三角形中,与直角的锐角相邻的角叫做仰角。
仰角是锐角的
补角,即仰角= 90° - 锐角。
2.俯角:与直角的锐角相对的角叫做俯角。
俯角是锐角的余角,即俯角= 锐
角。
解这类问题时,通常需要利用三角函数的性质和关系,如正切、正弦、余弦等,以及直角三角形的边和角的关系,如勾股定理等。
以下是一个简单的例子:
题目:一个塔的高度是30米,从塔顶测得某建筑物顶部的仰角为24°,从地面测得该建筑物顶部的俯角为66°,求这个建筑物的高度。
解:设建筑物的高度为h 米。
根据三角函数的性质和关系,我们有:
塔顶到建筑物顶部的距离= 塔的高度× 正切(仰角) = 30 × tan(24°)。
建筑物顶部到底部的距离= 建筑物的高度× 正切(俯角) = h × tan(66°)。
由于直角三角形中的勾股定理,我们有:
塔顶到建筑物顶部的距离^2 + 建筑物顶部到底部的距离^2 = 塔高度的^2。
代入已知数值,我们可以得到一个关于h 的方程,并解出h 的值。
28.2.2解直三角形应用(1)教学目标(一)知识与能力:了解仰角、俯角的概念,能根据直角三角形的知识解决实际问题.(二)方法与过程:逐步培养分析问题、解决问题的能力.(三)情感、态度与价值观:渗透数形结合的数学思想,培养学生良好的学习习惯.教学重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.教学过程:(一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)合作探究一例 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km 的圆形轨道上运行.如图,当飞船运行到地球表面上P 点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6 400 km ,结果保留整数)分析:从飞船上能最远直接看到的地球上的点,应是视线与地球相切时的切点. 如图,⊙O 表示地球,点F 是飞船的位置,FQ 是⊙O 的切线,切点Q 是从飞船观测地球时的最远点. 弧PQ 的长就是地面上P, Q 两点间的距离.为计算弧PQ 的长需先求出(即)斜边的邻边A A ∠=cos 斜边的对边A A ∠=sin(引导学生先把实际问题转化成数学模型然后分析提出的问题是数学模型中的什么量在这个数学模型中可用学到的什么知识来求未知量?)解:在上图中,FQ是⊙O的切线,是直角三角形,弧PQ的长为由此可知,当飞船在p点正上方时,从飞船观测地球时的最远点距离P点约2070 km.(三)合作探究二1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义2.例热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?分析:在中,,.所以可以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出B C.解:如图, ,,答:这栋楼高约为277.1m.(四)巩固练习:文峰塔是阜阳标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测塔的高度AB.小明在D处用高1.5m的测角仪CD,测得塔顶端A的仰角为30°,然后向塔前进224m 到达E处,又测得塔顶端A的仰角为60°.求文峰塔的高度AB.(结果保留根号)(五)总结反思请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题.(六)达标检测1.如图(2),在高出海平面100米的悬崖顶A处,观测海平面上一艘小船B,并测得它的俯角为45°,则船与观测者之间的水平距离BC=__ _______米.2.如图(3),两建筑物AB和CD的水平距离为30米,从A点测得D点的俯角为30°,测得C点的俯角为60°,则建筑物CD的高为_____米.(七)作业布置小刘想测量学校操场旗杆顶端到地面的距离,但旗杆底部不能直接到达,请你应用今天所学知识,帮助他设计一个测量方案,画出示意图,相关数据用字母表示,并与同学交流。
28.2解直角三角形应用(1)——仰角俯角备课:杨梅审核:任秀萍
【学习目标】⑴: 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.
⑵: 逐步培养学生分析问题、解决问题的能力.
【学习重点】将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学
知识把实际问题解决.
【学习难点】实际问题转化成数学模型
一.练习:如图所示,平地上一棵树高为5米,两次观察
地面上的影子,•第一次是当阳光与地面成45°时,第二次是
阳光与地面成30°时,第二次观察到的影子比第一次长多少米?
二.例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,
就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上
方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距
离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)
三.合作交流:仰角、俯角
当我们进行测量时,在视线与水平线所成的
角中,视线在水平线上方的角叫做仰角,在
水平线下方的角叫做俯角.
例4:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为
30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为
120 m.这栋高楼有多高(结果精确到0.1m)?
四.练习、1.如图,一架飞机在空中A点处测得飞行高度为h米,
从飞机上看到地面指挥站B的俯角为α,则飞机与地面指挥站间的
水平距离为()米A.h·sinαB.h·cosαC.h·tanαD .
2.如图,在高为h的山顶上,测得一建筑物顶端与底部的俯角分别为30°和60°,用h表示这个
建筑物的高度为()A .h B .h C .h D .h
3.如图,在高楼前点测得楼顶的仰角为,向高楼前进60米到点,
又测得仰角为,则该高楼的高度大约为()米 A.82 B.163 C.52 D.70
4. 为了缓解市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路
况显示牌(如图).已知立杆AB的高度是3 m,从侧面D点测得显示牌
顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.
5已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一
侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在
D点.已知∠BAC=60°,∠DAE=45°.点D
到地面的垂直距离
,求点B到地面的垂直距离BC.
6如图,小红同学用仪器测量一棵大树AB的高度,在C处测得∠ADG=30°,在E处测得
∠AFG=60°,CE=8米,仪器高度CD=1.5米,求这棵树AB
的高度(结果保留两位有效数字,≈1.732).
行?说明理由.(参考数据:=1.414;=1.732;=2.449)。