解直角三角形的应用(仰角和俯角问题) PPT
- 格式:ppt
- 大小:656.50 KB
- 文档页数:24
知识点 1、仰角、俯角 铅垂线: 水平线:视线: 视角: 仰角:从______看,_____与_____的夹角 俯角:从______看,_____与_____的夹角 2、方向角:在平面上过观测点O ,画一水平线和一条铅垂线,则从点O 出发的视线与铅垂线的夹角,叫做点O 的方向角。
注:(1)方向角通常以南北方向线为主分,分南偏和北偏(东、西) (2)观测点不同,所得方向角不同,但各观测点的南北方向线是互相平行的。
3、方位角:从某点的正北方向线按顺时针方向转到目标方向的水平角叫做方位角。
1、如图,为了测量电线杆的高度AB,在离线电线杆22.7米的C 处,用高为1.20米的测角仪CD 测量电线杆顶端B 的仰角α=220,求电线杆的高度(精确到0.1米) 2、为了测量顶部不能达到的建筑物AB 的高度,现在地平面上取一点C ,用测量仪测得A 点的仰角为450,再前进20米取一点D ,使点D 在BC 的延长线上,此时得A 的仰角为300,已知测量仪的高为1.5米,求建筑物AB 的高度。
3、 4、小王同学在学校某建筑物的C 处测得顶部A的仰角为300,旗杆底部B 的俯角为450,若旗杆底部点B 到建筑物的水平距离BE=9米,旗杆台阶高1米,求旗杆顶点A 离地面的高为多少米 总结:两个基本图形BC=AD(cot α+cot β) BC=AD(cot α-cot β)提升: 1、如图,A 城气象部门测得今年第9号台风上午8时在A 城南偏东300的海面生成,并以每小时40海里的速度向正北方向移动,上午10时测得台风中心移到A 城南偏东450的方向,若台风中心120海里将受台风影响, (1)问A 城是否受9号台风影响?(2)若受到台风影响,A 城什么时候受到台风影响?什么时候脱离台风影,受台风影响几个小时分析:A 城是否受9号台风影响,就是要看A 城到台风中心的距离是否大小120海里。
台风中心是运动的,而A 城与台风中心的距离是变化的,因而只看A 城到台风移动路线BC 的距离是否大于120海里。