新人教必修2高中数学同步练习与单元检测第4章 4.2.1
- 格式:doc
- 大小:217.00 KB
- 文档页数:4
4.1.1 圆的标准方程练习一一、 选择题1、到原点的距离等于4的动点的轨迹方程是( )A 、x 2+y 2=4B 、 x 2+y 2=16C 、x 2+y 2=2D 、()224(4)16x y -+-=2、已知圆的方程是()222(3)4x y -+-=,则点P (1,2)满足( )A 、是圆心B 、在圆上C 、在圆内D 、在圆外3、已知圆心在点P(-2,3),并且与y 轴相切,则该圆的方程是( )A 、()222(3)4x y -++=B 、()222(3)4x y ++-=C 、()222(3)9x y -++=D 、()222(3)9x y ++-=4、方程()22()0x a y b -++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b5、圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( )A 、(1,-1)B 、(12,-1)C 、(-1,2)D 、(-12,-1)、6、方程y=( )A 、一条射线B 、一个圆C 、两条射线D 、半个圆7、(x-3)2 +(y+2)2 =13的周长是( )A B 、C 、 2πD 、8、过点C (-1,1)和D (1,3),圆心在x 轴上的圆的方程为( )A 、22(2)10x y +-=B 、22(2)10x y ++=C 、22(2)10x y ++=D 、22(2)10x y -+=9、直线绕原点按逆时针方向旋转300后所得直线与圆(x-2)2+y 2=3的位置关系是( ) A 、直线过圆心B 、直线与圆相交但不过圆心C 、直线与圆相切D 、直线与圆没有公共点二、填空题10、如果一个圆的圆心在(2,4)点,并且经过点(0,3),那么这个圆的方程是----------------------------------------------。
11、222()()x a y b r -+-=过原点的条件是 。
4.3.2 空间两点间的距离公式【课时目标】 1.掌握空间两点间的距离公式.2.理解空间两点间距离公式的推导过程和方法.3.能够用空间两点间距离公式解决简单的问题.1.在空间直角坐标系中,给定两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则|P 1P 2|=________________________________________________________________________. 特别地:设点A (x ,y ,z ),则A 点到原点的距离为:|OA |=________________.2.若点P 1(x 1,y 1,0),P 2(x 2,y 2,0),则|P 1P 2|=______________________.3.若点P 1(x 1,0,0),P 2(x 2,0,0),则|P 1P 2|=________.一、选择题1.若A (1,3,-2)、B (-2,3,2),则A 、B 两点间的距离为( )A .61B .25C .5D .572.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9B .29C .5D .2 63.到点A (-1,-1,-1),B (1,1,1)的距离相等的点C (x ,y ,z )的坐标满足( )A .x +y +z =-1B .x +y +z =0C .x +y +z =1D .x +y +z =44.已知A (2,1,1),B (1,1,2),C (2,0,1),则下列说法中正确的是( )A .A 、B 、C 三点可以构成直角三角形B .A 、B 、C 三点可以构成锐角三角形C .A 、B 、C 三点可以构成钝角三角形D .A 、B 、C 三点不能构成任何三角形5.已知A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB |取最小值时,x 的值为( )A .19B .-87C .87D .19146.点P (x ,y ,z )满足(x -1)2+(y -1)2+(z +1)2=2,则点P 在( )A .以点(1,1,-1)为球心,以2为半径的球面上B .以点(1,1,-1)为中心,以2为棱长的正方体内C .以点(1,1,-1)为球心,以2为半径的球面上D .无法确定二、填空题7.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A (3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长为________.8.已知P ⎝⎛⎭⎫32,52,z 到直线AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________.9.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B 的距离相等,则M的坐标是________.三、解答题10.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.11.如图所示,BC=4,原点O是BC的中点,点A的坐标为(32,12,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°,求AD的长度.能力提升12.已知正方形ABCD、ABEF的边长都是1,且平面ABCD⊥平面ABEF,点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<2).(1)求MN的长;(2)当a为何值时,MN的长最小.13.在长方体ABCD—A1B1C1D1中,|AB|=|AD|=3,|AA1|=2,点M在A1C1上,|MC1|=2|A1M|,N 在D1C上且为D1C中点,求M、N两点间的距离.空间中两点的距离公式,是数轴上和平面上两点间距离公式的进一步推广,反之,它可以适用于平面和数轴上两点间的距离的求解.设P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2),则d (P 1,P 2)=(x 2-x 1)2+(y 2-y 1)2+(z 2-z 1)2,当P 1,P 2两点落在了坐标平面内或与坐标平面平行的平面内时,此公式可转化为平面直角坐标系中的两点间距离公式,当两点落在坐标轴上时,则公式转化为数轴上两点间距离公式.4.3.2 空间两点间的距离公式 答案知识梳理1.(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2x 2+y 2+z 22.(x 1-x 2)2+(y 1-y 2)23.|x 1-x 2|作业设计1.C [|AB |=(1+2)2+(3-3)2+(-2-2)2=5.]2.B [由已知求得C 1(0,2,3),∴|AC 1|=29.]3.B [|AC |=|BC |⇒(x +1)2+(y +1)2+(z +1)2=(x -1)2+(y -1)2+(z -1)2.即x +y +z =0.]4.A [|AB |=2,|BC |=3,|AC |=1,∴|AB |2+|AC |2=|BC |2.故构成直角三角形.]5.C [|AB |=(x -1)2+(3-2x )2+(3x -3)2=14x 2-32x +19,∴当x =--322×14=87时,|AB |最小.] 6.C 7.23938.0或-4解析 利用中点坐标公式,则AB 中点C ⎝⎛⎭⎫12,92,-2,|PC |=3,即 ⎝⎛⎭⎫32-122+⎝⎛⎭⎫52-922+[z -(-2)]2=3, 解得z =0或z =-4.9.(0,-1,0)解析 设M 的坐标为(0,y,0),由|MA |=|MB |得(0-1)2+(y -0)2+(0-2)2=(0-1)2+(y +3)2+(0-1)2,整理得6y +6=0,∴y =-1,即点M 的坐标为(0,-1,0).10.解 ∵点M 在直线x +y =1(xOy 平面内)上,∴可设M (x,1-x,0).∴|MN |=(x -6)2+(1-x -5)2+(0-1)2 =2(x -1)2+51≥51,当且仅当x =1时取等号,∴当点M 坐标为(1,0,0)时,|MN |min =51.11.解 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°,∴BD =2,CD =23,z =3,y =-1.∴D (0,-1,3).又∵A (32,12,0), ∴|AD |=(32)2+(12+1)2+(3)2=6. 12.解 ∵平面ABCD ⊥平面ABEF ,平面ABCD ∩平面ABEF =AB ,AB ⊥BE ,∴BE ⊥平面ABCD ,∴AB 、BC 、BE 两两垂直.过点M 作MG ⊥AB ,MH ⊥BC ,垂足分别为G 、H ,连接NG ,易证NG ⊥AB . ∵CM =BN =a ,∴CH =MH =BG =GN =22a ,∴以B 为原点,以AB 、BE 、BC 所在的直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Bxyz ,则M ⎝⎛⎭⎫22a ,0,1-22a , N ⎝⎛⎭⎫22a ,22a ,0. (1)|MN |=⎝⎛⎭⎫22a -22a 2+⎝⎛⎭⎫0-22a 2+⎝⎛⎭⎫1-22a -02 =a 2-2a +1=⎝⎛⎭⎫a -222+12, (2)由(1)得,当a =22时,|MN |最短,最短为22,这时M 、N 恰好为AC 、BF 的中点. 13.解 如图分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系. 由题意可知C (3,3,0),D (0,3,0),∵|DD 1|=|CC 1|=2,∴C 1(3,3,2),D 1(0,3,2),∵N 为CD 1的中点,∴N ⎝⎛⎭⎫32,3,1.M 是A 1C 1的三分之一分点且靠近A 1点,∴M (1,1,2). 由两点间距离公式,得|MN |=⎝ ⎛⎭⎪⎫32-12+(3-1)2+(1-2)2=212.。
4.1.2 圆的一般方程一、基础过关1.方程x 2+y 2-x +y +m =0表示一个圆,则m 的取值范围是( ) A .m ≤2 B .m <12 C .m <2 D .m ≤122.设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A .1 B. 2C. 3 D .2 3.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( ) A .x +y -3=0B .x -y -3=0C .2x -y -6=0D .2x +y -6=0 4.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在 ( ) A .圆内 B .圆外C .圆上D .圆上或圆外 5.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为________.6.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.7.已知圆的方程为x 2+y 2-6x -6y +14=0,求过点A (-3,-5)的直线交圆的弦PQ 的中点M 的轨迹方程.8.求经过两点A (4,2)、B (-1,3),且在两坐标轴上的四个截距之和为2的圆的方程.二、能力提升9.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( ) A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0 10.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=011. 已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为________.12.求一个动点P 在圆x 2+y 2=1上移动时,它与定点A (3,0)连线的中点M 的轨迹方程.三、探究与拓展13.已知一圆过P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.答案1.B 2.D 3.B 4.B5.(0,-1)6.-27.解 设所求轨迹上任一点M (x ,y ),圆的方程可化为(x -3)2+(y -3)2=4.圆心C (3,3).∵CM ⊥AM ,∴k CM ·k AM =-1,即y -3x -3·y +5x +3=-1,即x 2+(y +1)2=25.∴所求轨迹方程为x 2+(y +1)2=25(已知圆内的部分).8.解 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,令y =0,得x 2+Dx +F =0,所以圆在x 轴上的截距之和为x 1+x 2=-D ;令x =0,得y 2+Ey +F =0,所以圆在y 轴上的截距之和为y 1+y 2=-E ;由题设,得x 1+x 2+y 1+y 2=-(D +E )=2,所以D +E =-2.① 又A (4,2)、B (-1,3)两点在圆上,所以16+4+4D +2E +F =0,②1+9-D +3E +F =0,③由①②③可得D =-2,E =0,F =-12,故所求圆的方程为x 2+y 2-2x -12=0.9.D 10.A12.解 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0).由于点A 的坐标为(3,0)且M 是线段AP 的中点,所以x =x 0+32,y =y 02,于是有x 0=2x -3,y 0=2y .因为点P 在圆x 2+y 2=1上移动,所以点P 的坐标满足方程x 20+y 20=1,则(2x -3)2+4y 2=1,整理得⎝⎛⎭⎫x -322+y 2=14.所以点M 的轨迹方程为⎝⎛⎭⎫x -322+y 2=14.13.解 设圆的方程为:x 2+y 2+Dx +Ey +F =0,①将P 、Q 的坐标分别代入①,得⎩⎪⎨⎪⎧ 4D -2E +F =-20 ②D -3E -F =10 ③令x =0,由①得y 2+Ey +F =0,④由已知|y 1-y 2|=43,其中y 1,y 2是方程④的两根.∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=E 2-4F =48.⑤解②③⑤联立成的方程组,得⎩⎪⎨⎪⎧ D =-2E =0F =-12或⎩⎪⎨⎪⎧ D =-10E =-8F =4.故所求方程为:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.。
第四章 章末检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.圆(x +2)2+y 2=5关于y 轴对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=52.方程y =-25-x 2表示的曲线( ) A .一条射线 B .一个圆 C .两条射线 D .半个圆3.两圆x 2+y 2-1=0和x 2+y 2-4x +2y -4=0的位置关系是( ) A .内切 B .相交 C .外切 D .外离4.以点P (2,-3)为圆心,并且与y 轴相切的圆的方程是( ) A .(x +2)2+(y -3)2=4 B .(x +2)2+(y -3)2=9 C .(x -2)2+(y +3)2=4 D .(x -2)2+(y +3)2=95.已知圆C :x 2+y 2-4x -5=0,则过点P (1,2)的最短弦所在直线l 的方程是( ) A .3x +2y -7=0 B .2x +y -4=0 C .x -2y -3=0 D .x -2y +3=06.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( )A .-3或7B .-2或8C .0或10D .1或117.若直线y =kx +1与圆x 2+y 2+kx -y -9=0的两个交点恰好关于y 轴对称,则k 等于( ) A .0 B .1 C .2 D .38.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A .5B .10C .252D .2549.空间直角坐标系中,点A (-3,4,0)和B (x ,-1,6)的距离为86,则x 的值为( ) A .2 B .-8 C .2或-8 D .8或-210.与圆C :x 2+(y +5)2=9相切,且在x 轴与y 轴上的截距都相等的直线共有( ) A .1条 B .2条 C .3条 D .4条 11.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,则△EOF (O 是原点)的面积为( )A .32B .34C .2 5D .65512.从直线x -y +3=0上的点向圆x 2+y 2-4x -4y +7=0引切线,则切线长的最小值为( )A .322B .142C .324D .322-1二、填空题(本大题共4小题,每小题5分,共20分)13.在空间直角坐标系Oxyz 中,点B 是点A (1,2,3)在坐标平面yOz 内的正射影,则OB =______.14.动圆x 2+y 2-(4m +2)x -2my +4m 2+4m +1=0的圆心的轨迹方程是______________.15.若x ∈R ,y 有意义且满足x 2+y 2-4x +1=0,则yx的最大值为________.16.对于任意实数k ,直线(3k +2)x -ky -2=0与圆x 2+y 2-2x -2y -2=0的位置关系是________.三、解答题(本大题共6小题,共70分)17.(10分)已知一个圆和直线l :x +2y -3=0相切于点P (1,1),且半径为5,求这个圆的方程.18.(12分)求圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2)的圆的方程.19.(12分)圆x 2+y 2=8内有一点P (-1,2),AB 为过点P 且倾斜角为α的弦.(1)当α=3π4时,求AB 的长;(2)当弦AB 被点P 平分时,写出直线AB 的方程.20.(12分)设圆上的点A (2,3)关于直线x +2y =0的对称点仍在圆上,且与直线x -y +1=0相交的弦长为22,求圆的方程.21.(12分)求与两平行直线x +3y -5=0和x +3y -3=0相切,圆心在2x +y +3=0上的圆的方程.22.(12分)已知坐标平面上点M (x ,y )与两个定点M 1(26,1),M 2(2,1)的距离之比等于5. (1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中的轨迹为C ,过点M (-2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程.第四章 圆与方程(A) 答案1.A [(x ,y )关于y 轴的对称点坐标(-x ,y ),则得(-x +2)2+y 2=5.] 2.D [化简整理后为方程x 2+y 2=25,但还需注意y ≤0的隐含条件.]3.B [将两圆化成标准方程分别为x 2+y 2=1,(x -2)2+(y +1)2=9,可知圆心距d =5,由于2<d <4,所以两圆相交.]4.C [圆心为(2,-3),半径为2,故方程为(x -2)2+(y +3)2=4.]5.D [化成标准方程(x -2)2+y 2=9,过点P (1,2)的最短弦所在直线l 应与PC 垂直,故有k l ·k PC=-1,由k PC =-2得k l =12,进而得直线l 的方程为x -2y +3=0.]6.A [直线2x -y +λ=0沿x 轴向左平移1个单位得2x -y +λ+2=0,圆x 2+y 2+2x -4y =0的圆心为C (-1,2),r =5,d =|-2+λ|5=5,λ=-3,或λ=7.]7.A [将两方程联立消去y 后得(k 2+1)x 2+2kx -9=0,由题意此方程两根之和为0,故k =0.]8.D [因为点A (1,2)在圆x 2+y 2=5上,故过点A 的圆的切线方程为x +2y =5,令x =0得y =52.令y =0得x =5,故S △=12×52×5=254.]9.C [由距离公式得(x +3)2+52+62=86,解得x =2或-8.] 10.D [依题意画图如图所示,可得有4条.]11.D [弦长为4,S =12×4×35=655.]12.B [当圆心到直线距离最短时,可得此时切线长最短.d =322,切线长=⎝⎛⎭⎫3222-12=142.] 13.13解析 易知点B 坐标为(0,2,3),故OB =13. 14.x -2y -1=0(x ≠1)解析 圆心为(2m +1,m ),r =|m |,(m ≠0),令x =2m +1,y =m 消去m 即得方程. 15. 3解析 x 2+y 2-4x +1=0(y ≥0)表示的图形是位于x 轴上方的半圆,而yx的最大值是半圆上的点和原点连线斜率的最大值,结合图形易求得最大值为3.16.相切或相交解析 直线恒过(1,3),而(1,3)在圆上. 17.解 设圆心坐标为C (a ,b ), 则圆的方程为(x -a )2+(y -b )2=25. ∵点P (1,1)在圆上,∴(1-a )2+(1-b )2=25. 又∵CP ⊥l , ∴b -1a -1=2, 即b -1=2(a -1).解方程组⎩⎪⎨⎪⎧b -1=2(a -1),(a -1)2+(b -1)2=25, 得⎩⎨⎧a =1+5,b =1+25,或⎩⎨⎧a =1-5,b =1-2 5.故所求圆的方程是(x -1-5)2+(y -1-25)2=25或(x -1+5)2+(y -1+25)2=25.18.解 由于过P (3,-2)垂直于切线的直线必定过圆心,故该直线的方程为 x -y -5=0. 由⎩⎪⎨⎪⎧x -y -5=0,y =-4x ,得⎩⎪⎨⎪⎧x =1,y =-4,故圆心为(1,-4),r =(1-3)2+(-4+2)2=22, ∴所求圆的方程为(x -1)2+(y +4)2=8.19.解 (1)∵α=3π4,k =tan 3π4=-1,AB 过点P ,∴AB 的方程为y =-x +1.代入x 2+y 2=8,得2x 2-2x -7=0, |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=30. (2)∵P 为AB 中点,∴OP ⊥AB .∵k OP =-2,∴k AB =12.∴AB 的方程为x -2y +5=0.20.解 设圆的方程为(x -a )2+(y -b )2=r 2,∵圆上的点A (2,3)关于x +2y =0的对称点仍在圆上,∴圆心(a ,b )在直线x +2y =0上, 即a +2b =0. ① 圆被直线x -y +1=0截得的弦长为22,∴⎝⎛⎭⎪⎫|a -b +1|22+(2)2=r 2. ② 由点A (2,3)在圆上得(2-a )2+(3-b )2=r 2. ③ 由①②③解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.∴圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.21.解 设所求圆的方程是(x -a )2+(y -b )2=r 2.由题意知,两平行线间距离d =|5-3|10=210,且(a ,b )到两平行线x +3y -5=0和x +3y -3=0的距离相等,即|a +3b -5|10=|a +3b -3|10,∴a +3b -5=-(a +3b -3)或a +3b -5=a +3b -3(舍). ∴a +3b -4=0. ① 又圆心(a ,b )在2x +y +3=0上,∴2a +b +3=0. ②由①②得a =-135,b =115.又r =12d =110.所以,所求圆的方程为⎝⎛⎭⎫x +1352+⎝⎛⎭⎫y -1152=110. 22.解 (1)由题意,得|M 1M ||M 2M |=5.(x -26)2+(y -1)2(x -2)2+(y -1)2=5,化简,得x 2+y 2-2x -2y -23=0. 即(x -1)2+(y -1)2=25.∴点M 的轨迹方程是(x -1)2+(y -1)2=25, 轨迹是以(1,1)为圆心,以5为半径的圆. (2)当直线l 的斜率不存在时,l :x =-2, 此时所截得的线段的长为252-32=8, ∴l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为 y -3=k (x +2),即kx -y +2k +3=0,圆心到l 的距离d =|3k +2|k 2+1, 由题意,得⎝⎛⎭⎪⎫|3k +2|k 2+12+42=52,解得k =512.∴直线l 的方程为512x -y +236=0.即5x -12y +46=0. 综上,直线l 的方程为x =-2,或5x -12y +46=0.。
§4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系【课时目标】 1.能根据给定直线和圆的方程,判断直线和圆的位置关系.2.能根据直线与圆的位置关系解决有关问题.222一、选择题1.直线3x +4y +12=0与⊙C :(x -1)2+(y -1)2=9的位置关系是( ) A .相交并且过圆心 B .相交不过圆心 C .相切 D .相离2.已知圆x 2+y 2+Dx +Ey +F =0与y 轴切于原点,那么( ) A .D =0,E =0,F ≠0 B .D =0,E ≠0,F =0 C .D ≠0,E =0,F =0 D .D ≠0,E ≠0,F =03.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得弦长等于( )A . 6B .522C .1D .54.圆x 2+y 2+2x +4y -3=0上到直线l :x +y +1=0的距离为2的点有( ) A .1个 B .2个 C .3个 D .4个5.已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不存在6.与圆x 2+y 2-4x +2=0相切,在x ,y 轴上的截距相等的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题7.已知P ={(x ,y )|x +y =2},Q ={(x ,y )|x 2+y 2=2},那么P ∩Q 为________. 8.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为______________.9.P (3,0)为圆C :x 2+y 2-8x -2y +12=0内一点,过P 点的最短弦所在的直线方程是______________.三、解答题10.求过点P(-1,5)的圆(x-1)2+(y-2)2=4的切线方程.11.直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得的弦长为45,求l的方程.能力提升12.已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线g是以M为中点的弦所在直线,直线l的方程为ax+by+r2=0,则()A.l∥g且与圆相离B.l⊥g且与圆相切C.l∥g且与圆相交D.l⊥g且与圆相离13.已知直线x+2y-3=0与圆x2+y2+x-2cy+c=0的两个交点为A、B,O为坐标原点,且OA⊥OB,求实数c的值.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去x或y,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l=k2+1·(x1+x2)2-4x1x2=k2+1|x1-x2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上,切线只有一条;当点在圆外时,切线有两条.§4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系答案知识梳理2 1 0 < = > > = < 作业设计1.D [圆心到直线距离d >r .]2.C [与y 轴切于原点,则圆心⎝⎛⎭⎫-D2,0,得E =0,圆过原点得F =0,故选C .] 3.A [分别求出半径r 及弦心距d (圆心到直线距离)再由弦长为2r 2-d 2,求得.]4.C [通过画图可知有三个点到直线x +y +1=0距离为2.]5.B [由题意|c |a 2+b2=1⇒|c |=a 2+b 2⇒c 2=a 2+b 2,故为直角三角形.]6.C [需画图探索,注意直线经过原点的情形.设y =kx 或x a +ya=1,由d =r 求得k=±1,a =4.]7.{(1,1)}解析 解方程组⎩⎪⎨⎪⎧x 2+y 2=2,x +y =2,得x =y =1. 8.x -3y +2=0解析 先由半径与切线的垂直关系求得切线斜率为33,则过(1,3)切线方程为x -3y+2=0.9.x +y -3=0解析 过P 点最短的弦,应为与PC 垂直的弦,先求斜率为-1,则可得直线方程为 x +y -3=0.10.解 ①当斜率k 存在时, 设切线方程为y -5=k (x +1), 即kx -y +k +5=0.由圆心到切线的距离等于半径得|k -2+k +5|k 2+1=2,解得k =-512,∴切线方程为5x +12y -55=0.②当斜率k 不存在时,切线方程为x =-1,此时与圆正好相切. 综上,所求圆的切线方程为x =-1或5x +12y -55=0.11.解 圆心到l 的距离d =r 2-⎝⎛⎭⎫4522=5,显然l 存在斜率.设l :y -5=k (x -5),即kx -y +5-5k =0,d =|5-5k |k 2+1.∴|5-5k |k 2+1=5,∴k =12或2.∴l 的方程为x -2y +5=0或2x -y -5=0.12.A [∵M 在圆内,∴a 2+b 2<r 2.∴(0,0)到l 的距离d =r 2a 2+b2>r 即直线l 与圆相离,又直线g 的方程为y -b =-ab(x -a ),即ax +by -a 2-b 2=0,∴l ∥g .]13.解 设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2). 由OA ⊥OB ,知k OA ·k OB =-1, 即y 1x 1·y 2x 2=-1,∴x 1x 2+y 1y 2=0 ① 由⎩⎪⎨⎪⎧x +2y -3=0x 2+y 2+x -2cy +c =0, 得5y 2-(2c +14)y +c +12=0,则y 1+y 2=15(2c +14),y 1y 2=15(c +12) ②又x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2,代入①得9-6(y 1+y 2)+5y 1y 2=0③ 由②、③得,c =3.。
章末检测一、选择题1.方程x 2+y 2+2ax +2by +a 2+b 2=0表示的图形是( )A .以(a ,b )为圆心的圆B .以(-a ,-b )为圆心的圆C .点(a ,b )D .点(-a ,-b )2.点P (m,3)与圆(x -2)2+(y -1)2=2的位置关系为( )A .点在圆外B .点在圆内C .点在圆上D .与m 的值有关 3.空间直角坐标系中,点A (-3,4,0)和B (x ,-1,6)的距离为86,则x 的值为 ( ) A .2B .-8C .2或-8D .8或-2 4.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是 ( ) A .[-3,-1] B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞) 5.设A 、B 是直线3x +4y +2=0与圆x 2+y 2+4y =0的两个交点,则线段AB 的垂直平分线的方程是( )A .4x -3y -2=0B .4x -3y -6=0C .3x +4y +6=0D .3x +4y +8=06.圆x 2+y 2-4x =0过点P (1,3)的切线方程为( )A .x +3y -2=0B .x +3y -4=0C .x -3y +4=0D .x -3y +2=07.对任意的实数k ,直线y =kx +1与圆x 2+y 2=2的位置关系一定是( )A .相离B .相切C .相交但直线不过圆心D .相交且直线过圆心 8.已知圆O :x 2+y 2=5和点A (1,2),则过A 且与圆O 相切的直线与两坐标轴围成的三角形的面积为( )A .5B .10C.252D.2549.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7B .-2或8C .0或10D .1或1110.已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能 11.若直线mx +2ny -4=0(m 、n ∈R ,n ≠m )始终平分圆x 2+y 2-4x -2y -4=0的周长,则mn 的取值范围是( )A .(0,1)B .(0,-1)C .(-∞,1)D .(-∞,-1) 12.过点P (-2,4)作圆O :(x -2)2+(y -1)2=25的切线l ,直线m :ax -3y =0与直线l 平行,则直线l 与m 的距离为( )A .4B .2C.85D.125二、填空题13.与直线2x +3y -6=0关于点(1,-1)对称的直线方程为________. 14.过点P (-2,0)作直线l 交圆x 2+y 2=1于A 、B 两点,则|P A |·|PB |=________.15.若垂直于直线2x +y =0,且与圆x 2+y 2=5相切的切线方程为ax +2y +c =0,则ac 的值为________.16.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.三、解答题17.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.18. 已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0相交于P ,Q 两点,O 为原点,若OP ⊥OQ ,求实数m 的值.19.已知圆x 2+y 2-6mx -2(m -1)y +10m 2-2m -24=0(m ∈R ).(1)求证:不论m 为何值,圆心在同一直线l 上; (2)与l 平行的直线中,哪些与圆相交、相切、相离;(3)求证:任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等. 20.如图,已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O引切线PQ ,切点为Q , 且有|PQ |=|P A |. (1)求a 、b 间关系; (2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程.答案章末检测1.D 2.A 3.C 4.C 5.B 6.D 7.C 8.D 9.A 10.A 11.C 12.A 13.2x +3y +8=0 14.3 15.±5 16.4317.解 如图所示,已知圆C :x 2+y 2-4x -4y +7=0关于x 轴对称的圆为C 1:(x -2)2+(y +2)2=1,其圆心C 1的坐标为(2,-2),半径为1,由光的反射定律知,入射光线所在直线方程与圆C 1相切.设l 的方程为y -3=k (x +3),即kx -y +3+3k =0. 则|5k +5|1+k2=1,即12k 2+25k +12=0. ∴k 1=-43,k 2=-34.则l 的方程为4x +3y +3=0或3x +4y -3=0.18.解 设P ,Q 两点坐标为(x 1,y 1)和(x 2,y 2),由OP ⊥OQ 可得 x 1x 2+y 1y 2=0, 由⎩⎪⎨⎪⎧x 2+y 2+x -6y +m =0,x +2y -3=0, 可得5y 2-20y +12+m =0.①所以y 1y 2=12+m5,y 1+y 2=4.又x 1x 2=(3-2y 1)(3-2y 2) =9-6(y 1+y 2)+4y 1y 2=9-24+45(12+m ),所以x 1x 2+y 1y 2=9-24+45(12+m )+12+m 5=0,解得m =3.将m =3代入方程①,可得Δ=202-4×5×15=100>0,可知m =3满足题意,即3为所求m 的值. 19.(1)证明 配方得:(x -3m )2+[y -(m -1)]2=25,设圆心为(x ,y ),则⎩⎪⎨⎪⎧x =3m y =m -1, 消去m 得x -3y -3=0,则圆心恒在直线l :x -3y -3=0上.(2)解 设与l 平行的直线是l 1:x -3y +b =0, 则圆心到直线l 1的距离为 d =|3m -3(m -1)+b |10=|3+b |10.∵圆的半径为r =5,∴当d <r ,即-510-3<b <510-3时,直线与圆相交;当d =r ,即b =±510-3时,直线与圆相切;当d >r ,即b <-510-3或b >510-3时,直线与圆相离.(3)证明 对于任一条平行于l 且与圆相交的直线l 1:x -3y +b =0,由于圆心到直线l 1的距离d =|3+b |10,弦长=2r 2-d 2且r 和d 均为常量.∴任何一条平行于l 且与圆相交的直线被各圆截得的弦长相等. 20.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|P A |,所以|OP |2=|OQ |2+|PQ |2=1+|P A |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0.(2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2- 12a +8=5(a -1.2)2+0.8,得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。
4.2.1 直线与圆的位置关系[学习目标] 1.理解直线和圆的三种位置关系.2.会用代数与几何两种方法判断直线和圆的位置关系.知识点一 直线与圆的位置关系及判断思考 用代数法与几何法判断直线与圆的位置关系时,二者在侧重点上有什么不同? 答 代数法与几何法都能判断直线与圆的位置关系,只是角度不同,代数法侧重于“数”的计算,几何法侧重于“形”的直观. 知识点二 圆的切线问题 1.求圆的切线的方法(1)求过圆上一点(x 0,y 0)的圆的切线方程:先求切点与圆心的连线的斜率k ,则由垂直关系,知切线斜率为-1k ,由点斜式方程可求得切线方程.如果k =0或k 不存在,则由图形可直接得切线方程为y =y 0或x =x 0. (2)求过圆外一点(x 0,y 0)的圆的切线方程:几何法:设切线方程为y -y 0=k (x -x 0),即kx -y -kx 0+y 0=0.由圆心到直线的距离等于半径,可求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 代数法:设切线方程y -y 0=k (x -x 0),即y =kx -kx 0+y 0,代入圆的方程,得到一个关于x 的一元二次方程,由Δ=0求得k ,切线方程即可求出.并注意检验当k 不存在时,直线x =x 0是否为圆的切线. 2.切线段的长度公式(1)从圆外一点P (x 0,y 0)引圆(x -a )2+(y -b )2=r 2的切线,则P 到切点的切线段长为 d =(x 0-a )2+(y 0-b )2-r 2.(2)从圆外一点P (x 0,y 0)引圆x 2+y 2+Dx +Ey +F =0的切线,则P 到切点的切线段长为d =x 20+y 20+Dx 0+Ey 0+F .题型一 直线与圆的位置关系的判断例1 已知直线方程mx -y -m -1=0,圆的方程x 2+y 2-4x -2y +1=0.当m 为何值时,圆与直线(1)有两个公共点; (2)只有一个公共点; (3)没有公共点.解 方法一 将直线mx -y -m -1=0代入圆的方程化简整理得, (1+m 2)x 2-2(m 2+2m +2)x +m 2+4m +4=0. ∵Δ=4m (3m +4),∴当Δ>0,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当Δ=0,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当Δ<0,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.方法二 已知圆的方程可化为(x -2)2+(y -1)2=4, 即圆心为C (2,1),半径r =2.圆心C (2,1)到直线mx -y -m -1=0的距离 d =|2m -1-m -1|1+m 2=|m -2|1+m 2.当d <2,即m >0或m <-43时,直线与圆相交,即直线与圆有两个公共点;当d =2,即m =0或m =-43时,直线与圆相切,即直线与圆只有一个公共点;当d >2,即-43<m <0时,直线与圆相离,即直线与圆没有公共点.反思与感悟 直线与圆位置关系判断的三种方法:(1)几何法:由圆心到直线的距离d 与圆的半径r 的大小关系判断. (2)代数法:根据直线与圆的方程组成的方程组解的个数来判断.(3)直线系法:若直线恒过定点,可通过判断点与圆的位置关系,但有一定的局限性,必须是过定点的直线系.跟踪训练1 若直线4x -3y +a =0与圆x 2+y 2=100有如下关系:①相交;②相切;③相离.试分别求实数a 的取值范围. 解 方法一 (代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8ax +a 2-900=0. Δ=(8a )2-4×25(a 2-900)=-36a 2+90 000. ①当直线和圆相交时,Δ>0, 即-36a 2+90 000>0,-50<a <50; ②当直线和圆相切时,Δ=0, 即a =50或a =-50; ③当直线和圆相离时,Δ<0, 即a <-50或a >50. 方法二 (几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10, 则圆心到直线的距离d =|a |32+42=|a |5, ①当直线和圆相交时,d <r , 即|a |5<10,-50<a <50; ②当直线和圆相切时,d =r , 即|a |5=10,a =50或a =-50; ③当直线和圆相离时,d >r , 即|a |5>10,a <-50或a >50. 题型二 圆的切线问题例2 过点A (4,-3)作圆(x -3)2+(y -1)2=1的切线,求此切线的方程. 解 因为(4-3)2+(-3-1)2=17>1,所以点A 在圆外.(1)若所求直线的斜率存在,设切线斜率为k , 则切线方程为y +3=k (x -4).即kx -y -3-4k =0, 因为圆心C (3,1)到切线的距离等于半径1, 所以|3k -1-3-4k |k 2+1=1,即|k +4|=k 2+1, 所以k 2+8k +16=k 2+1.解得k =-158.所以切线方程为y +3=-158(x -4),即15x +8y -36=0. (2)若直线斜率不存在,圆心C (3,1)到直线x =4的距离也为1,这时直线与圆也相切,所以另一条切线方程是x =4. 综上,所求切线方程为15x +8y -36=0或x =4.反思与感悟 1.过一点P (x 0,y 0)求圆的切线方程问题,首先要判断该点与圆的位置关系,若点在圆外,切线有两条,一般设点斜式y -y 0=k (x -x 0)用待定系数法求解,但要注意斜率不存在的情况,若点在圆上,则切线有一条,用切线垂直于过切点的半径求切线的斜率,再由点斜式可直接得切线方程.2.一般地,有关圆的切线问题,若已知切点则用k 1·k 2=-1(k 1,k 2分别为切线和圆心与切点连线的斜率)列式,若未知切点则用d =r (d 为圆心到切线的距离,r 为半径)列式.跟踪训练2 圆C 与直线2x +y -5=0相切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程.解 设圆C 的方程为(x -a )2+(y -b )2=r 2. 因为两切线2x +y -5=0与2x +y +15=0平行, 所以2r =|15-(-5)|22+12=4 5.所以r =2 5.所以|2a +b +15|22+1=r =25,即|2a +b +15|=10;①|2a +b -5|22+1=r =25,即|2a +b -5|=10.② 又因为过圆心和切点的直线与切线垂直, 所以b -1a -2=12.③联立①②③,解得⎩⎪⎨⎪⎧a =-2,b =-1.故所求圆C 的方程为(x +2)2+(y +1)2=20. 题型三 圆的弦长问题例3 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.解 方法一 直线x -3yy +23=0和圆x 2+y 2=4的公共点坐标就是方程组⎩⎨⎧x -3y +23=0,x 2+y 2=4的解. 解这个方程组,得⎩⎨⎧x 1=-3,y 1=1,⎩⎪⎨⎪⎧x 2=0,y 2=2. 所以公共点的坐标为(-3,1),(0,2),所以直线x -3y +23=0被圆x 2+y 2=4截得的弦长为(-3-0)2+(1-2)2=2. 方法二 如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点), 所以|OM |=|0-0+23|12+(-3)2= 3.所以|AB |=2|AM |=2OA 2-OM 2 =222-(3)2=2. 反思与感悟求直线与圆相交时弦长的两种方法:(1)几何法:如图1,直线l 与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB |,则有⎝⎛⎭⎫|AB |22+d 2=r 2. 即|AB |=2r 2-d 2.(2)代数法:如图2所示,将直线方程与圆的方程联立,设直线与圆的两交点分别是A (x 1,y 1),B (x 2,y 2), 则|AB |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2|x 1-x 2| =1+1k2|y 1-y 2|, 其中k 为直线l 的斜率.跟踪训练3 直线x +2y -5+5=0被圆x 2+y 2-2x -4y =0截得的弦长为( ) A.1 B.2 C.4 D.46 答案 C解析圆的方程可化为C:(x-1)2+(y-2)2=5,其圆心为C(1,2),半径r=5.如图所示,取弦AB的中点P,连接CP,则CP⊥AB,圆心C到直线AB的距离d=|CP|=|1+4-5+5|12+22=1.在Rt△ACP中,|AP|=r2-d2=2,故直线被圆截得的弦长|AB|=4.数形结合思想例4直线y=x+b与曲线x=1-y2有且只有一个交点,则b的取值范围是()A.|b|= 2B.-1<b≤1或b=-2C.-1≤b<1D.非以上答案分析曲线x=1-y2变形为x2+y2=1(x≥0),表示y轴右侧(含与y轴的交点)的半圆,直线y=x+b表示一系列斜率为1的直线,利用数形结合思想在同一平面直角坐标系内作出两种图形求解.解析曲线x=1-y2含有限制条件,即x≥0,故曲线并非表示整个单位圆,仅仅是单位圆在y轴右侧(含与y轴的交点)的部分.在同一平面直角坐标系中,画出y=x+b与曲线x=1-y2(就是x2+y2=1,x≥0)的图象,如图所示.相切时,b=-2,其他位置符合条件时需-1<b≤1.故选B.答案B解后反思求解直线与曲线公共点的问题,首先要借助图形进行思考;其次要注意作图的完整准确,使得图形能够反映问题的全部;最后在求解中还要细心缜密,保证计算无误.1.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是()A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心答案C解析方法一圆心(0,0)到直线kx-y+1=0的距离d=11+k2≤1<2=r,∴直线与圆相交,且圆心(0,0)不在该直线上.方法二 直线kx -y +1=0恒过定点(0,1),而该点在圆内,故直线与圆相交,且圆心不在该直线上.2.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A.相切 B.相交 C.相离 D.不确定 答案 B解析 ∵点M (a ,b )在圆x 2+y 2=1外,∴a 2+b 2>1. ∴圆心(0,0)到直线ax +by =1的距离d =1a 2+b2<1=r ,则直线与圆的位置关系是相交. 3.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( ) A.2x -y +5=0或2x -y -5=0 B.2x +y +5=0或2x +y -5=0 C.2x -y +5=0或2x -y -5=0 D.2x +y +5=0或2x +y -5=0 答案 D解析 依题意可设所求切线方程为2x +y +c =0,则圆心(0,0)到直线2x +y +c =0的距离为|c |22+12=5,解得c =±5.故所求切线的直线方程为2x +y +5=0或2x +y -5=0. 4.设A 、B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( ) A.1 B. 2 C. 3 D.2 答案 D解析 直线y =x 过圆x 2+y 2=1的圆心C (0,0), 则|AB |=2.5.过原点的直线与圆x 2+y 2-2x -4y +4=0相交所得弦的长为2,则该直线的方程为________. 答案 2x -y =0解析 设所求直线方程为y =kx ,即kx -y =0.由于直线kx -y =0被圆截得的弦长等于2,圆的半径是1,因此圆心到直线的距离等于12-⎝⎛⎭⎫222=0,即圆心(1,2)位于直线kx -y =0上.于是有k -2=0,即k =2,因此所求直线方程是2x -y =0.1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去y ,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l =k 2+1·(x 1+x 2)2-4x 1x 2=k 2+1|x 1-x 2|.3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上时,切线只有一条;当点在圆外时,切线有两条.一、选择题1.直线l :y -1=k (x -1)和圆x 2+y 2-2y =0的位置关系是( ) A.相离 B.相切或相交 C.相交 D.相切 答案 C解析 l 过定点A (1,1),∵12+12-2×1=0,∴点A 在圆上,∵直线x =1过点A 且为圆的切线,又l 斜率存在, ∴l 与圆一定相交,故选C.2.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( ) A.x +y -2=0 B.x -y +2=0 C.x +y -3=0 D.x -y +3=0答案 D解析 圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.已知圆C 与直线x -y =0及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2答案 B解析 由条件,知x -y =0与x -y -4=0都与圆相切,且平行,所以圆C 的圆心C 在直线x -y -2=0上.由⎩⎪⎨⎪⎧x -y -2=0,x +y =0,得圆心C (1,-1).又因为两平行线间距离d =42=22,所以所求圆的半径长r =2,故圆C 的方程为(x -1)2+(y +1)2=2.4.过点P (-3,-1)的直线l 与圆x 2+y 2=1相切,则直线l 的倾斜角是( ) A.0° B.45° C.0°或45° D.0°或60° 答案 D解析 设过点P 的直线方程为y =k (x +3)-1,则由直线与圆相切知|3k -1|1+k 2=1,解得k =0或k =3,故直线l 的倾斜角为0°或60°.5.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为m ,最小弦长为n ,则m -n 等于( )A.10-27B.5-7C.10-3 3D.5-322答案 A解析 圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小. 弦心距d =(2+1)2+(-3-0)2=32, 所以最小弦长为2r 2-d 2=225-18=27, 所以m -n =10-27.6.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=0的距离为2的点共有( ) A.1个 B.2个 C.3个 D.4个 答案 C解析 圆心为(-1,-2),半径r =22,而圆心到直线的距离d =|-1-2+1|2=2,故圆上有3个点满足题意.7.直线y =kx +3与圆(x -3)2+(y -2)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( ) A.⎣⎡⎦⎤-34,0 B.⎝⎛⎦⎤-∞,-34∪[0,+∞) C.⎣⎡⎦⎤-33,33 D.⎣⎡⎦⎤-23,0 答案 A解析 设圆心为C ,弦MN 的中点为A ,当|MN |=23时,|AC |=|MC |2-|MA |2=4-3=1.∴当|MN |≥23时,圆心C 到直线y =kx +3的距离d ≤1. ∴|3k -2+3|k 2+(-1)2≤1,∴(3k +1)2≤k 2+1. 由二次函数的图象可得 -34≤k ≤0. 二、填空题8.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4相交于A ,B 两点,且弦AB 的长为23,则a =________. 答案 0解析 圆心到直线的距离d =|a -2+3|a 2+1=22-(3)2=1,解得a =0. 9.圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________. 答案 (x -2)2+(y -1)2=4解析 设圆C 的圆心为(a ,b )(b >0),由题意得a =2b >0,且a 2=(3)2+b 2,解得a =2,b =1.所以所求圆的标准方程为(x -2)2+(y -1)2=4.10.在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. 答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-(355)2=2555.11.若直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围是_______. 答案 [1,2)解析 如图所示,y =1-x 2是一个以原点为圆心,长度1为半径的半圆,y =x +b 是一个斜率为1的直线,要使直线与半圆有两个交点,连接A (-1,0)和B (0,1),直线l 必在AB 以上的半圆内平移,直到直线与半圆相切,则可求出两个临界位置直线l 的b 值,当直线l 与AB 重合时,b =1;当直线l 与半圆相切时,b = 2.所以b 的取值范围是[1,2). 三、解答题12.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的l 的方程.(1)证明 因为l 的方程为(x +y -4)+m (2x +y -7)=0(m ∈R ),所以⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0,解得⎩⎪⎨⎪⎧x =3,y =1, 即l 恒过定点A (3,1).第11页 共11页 因为圆心为C (1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 与圆C 恒交于两点.(2)解 由题意可知弦长最小时,l ⊥AC .因为k AC =-12,所以l 的斜率为2. 又l 过点A (3,1),所以l 的方程为2x -y -5=0.13.已知直线l 过点P (1,1)并与直线l 1:x -y +3=0和l 2:2x +y -6=0分别交于点A ,B ,若线段AB 被点P 平分,求:(1)直线l 的方程;(2)以原点O 为圆心且被l 截得的弦长为855的圆的方程. 解 (1)依题意可设A (m ,n ),B (2-m,2-n ), 则⎩⎪⎨⎪⎧ m -n +3=0,2(2-m )+(2-n )-6=0,即⎩⎪⎨⎪⎧m -n =-3,2m +n =0, 解得A (-1,2).又l 过点P (1,1),易得直线AB 的方程为x +2y -3=0, 即直线l 的方程为x +2y -3=0.(2)设圆的半径长为r ,则r 2=d 2+⎝⎛⎭⎫4552,其中d 为弦心距,d =35,可得r 2=5,故所求圆的方程为x 2+y 2=5.。
§4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系
【课时目标】 1.能根据给定直线和圆的方程,判断直线和圆的位置关系.2.能根据直线与圆的位置关系解决有关问题.
2
2
2
一、选择题
1.直线3x +4y +12=0与⊙C :(x -1)2+(y -1)2=9的位置关系是( )
A .相交并且过圆心
B .相交不过圆心
C .相切
D .相离
2.已知圆x 2+y 2+Dx +Ey +F =0与y 轴切于原点,那么( ) A .D =0,E =0,F ≠0 B .D =0,E ≠0,F =0 C .D ≠0,E =0,F =0 D .D ≠0,E ≠0,F =0
3.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得弦长等于( )
A . 6
B .52
2
C .1
D .5
4.圆x 2+y 2+2x +4y -3=0上到直线l :x +y +1=0的距离为2的点有( ) A .1个 B .2个 C .3个 D .4个 5.已知直线ax +by +c =0(abc ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |,|b |,|c |的三角形是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不存在
6.与圆x 2+y 2-4x +2=0相切,在x ,y 轴上的截距相等的直线共有( ) A .1条 B .2条 C .3条 D .4条
二、填空题
7.已知P ={(x ,y )|x +y =2},Q ={(x ,y )|x 2+y 2=2},那么P ∩Q 为________. 8.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为______________. 9.P (3,0)为圆C :x 2+y 2-8x -2y +12=0内一点,过P 点的最短弦所在的直线方程是______________.
三、解答题
10.求过点P(-1,5)的圆(x-1)2+(y-2)2=4的切线方程.
11.直线l经过点P(5,5),且和圆C:x2+y2=25相交,截得的弦长为45,求l的方程.
能力提升
12.已知点M(a,b)(ab≠0)是圆x2+y2=r2内一点,直线g是以M为中点的弦所在直线,直线l的方程为ax+by+r2=0,则()
A.l∥g且与圆相离B.l⊥g且与圆相切
C.l∥g且与圆相交D.l⊥g且与圆相离
13.已知直线x+2y-3=0与圆x2+y2+x-2cy+c=0的两个交点为A、B,O为坐标原点,且OA⊥OB,求实数c的值.
1.判断直线和圆的位置关系的两种方法中,几何法要结合圆的几何性质进行判断,一般计算较简单.而代数法则是通过解方程组进行消元,计算量大,不如几何法简捷.
2.一般地,在解决圆和直线相交时,应首先考虑圆心到直线的距离,弦长的一半,圆的半径构成的直角三角形.还可以联立方程组,消去x或y,组成一个一元二次方程,利用方程根与系数的关系表达出弦长l=k2+1·(x1+x2)2-4x1x2=k2+1|x1-x2|.
3.研究圆的切线问题时要注意切线的斜率是否存在.过一点求圆的切线方程时,要考虑该点是否在圆上.当点在圆上,切线只有一条;当点在圆外时,切线有两条.
§4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系
答案
知识梳理
2 1 0 < = > > = < 作业设计
1.D [圆心到直线距离d >r .]
2.C [与y 轴切于原点,则圆心⎝⎛⎭
⎫-D
2,0,得E =0,圆过原点得F =0,故选C .] 3.A [分别求出半径r 及弦心距d (圆心到直线距离)再由弦长为2r 2-d 2,求得.]
4.C [通过画图可知有三个点到直线x +y +1=0距离为2.]
5.B [由题意|c |a 2+b
2=1⇒|c |=a 2+b 2⇒c 2=a 2+b 2
,故为直角三角形.] 6.C [需画图探索,注意直线经过原点的情形.设y =kx 或x a +y
a
=1,由d =r 求得k =±1,a =4.]
7.{(1,1)}
解析 解方程组⎩
⎪⎨⎪⎧
x 2+y 2=2,
x +y =2,
得x =y =1. 8.x -3y +2=0
解析 先由半径与切线的垂直关系求得切线斜率为3
3
,则过(1,3)切线方程为x -3y +2=0.
9.x +y -3=0
解析 过P 点最短的弦,应为与PC 垂直的弦,先求斜率为-1,则可得直线方程为 x +y -3=0.
10.解 ①当斜率k 存在时, 设切线方程为y -5=k (x +1), 即kx -y +k +5=0.
由圆心到切线的距离等于半径得|k -2+k +5|
k 2+1
=2,
解得k =-5
12
,∴切线方程为5x +12y -55=0.
②当斜率k 不存在时,切线方程为x =-1,此时与圆正好相切. 综上,所求圆的切线方程为x =-1或5x +12y -55=0.
11.解 圆心到l 的距离d =
r 2-⎝⎛⎭
⎫4522
=5,显然l 存在斜率.
设l :y -5=k (x -5),即kx -y +5-5k =0,d =|5-5k |
k 2+1
.
∴|5-5k |k 2+1=5,∴k =1
2或2.
∴l 的方程为x -2y +5=0或2x -y -5=0.
12.A [∵M 在圆内,∴a 2
+b 2
<r 2
.∴(0,0)到l 的距离d =r 2
a 2+b
2>r 即直线l 与圆相离,又直线g 的
方程为y -b =-a
b
(x -a ),即ax +by -a 2-b 2=0,∴l ∥g .]
13.解 设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2). 由OA ⊥OB ,知k OA ·k OB =-1, 即y 1x 1·y 2
x 2
=-1,∴x 1x 2+y 1y 2=0 ①
由⎩
⎪⎨⎪⎧
x +2y -3=0x 2+y 2+x -2cy +c =0, 得5y 2-(2c +14)y +c +12=0,
则y 1+y 2=15(2c +14),y 1y 2=1
5
(c +12) ②
又x 1x 2=(3-2y 1)(3-2y 2)=9-6(y 1+y 2)+4y 1y 2,代入①得9-6(y 1+y 2)+5y 1y 2=0③ 由②、③得,c =3.。