一次函数精讲 绝对经典
- 格式:ppt
- 大小:171.50 KB
- 文档页数:14
一次函数复习讲义一.基础知识1、一次函数的概念:若两个变量x,y间的关系式可以表示为y=kx+b(k,b为常数,k≠0)的形式,则y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
2、一次函数的图象及其性质:(1)、图象:一次函数的图象是一条直线,所以画图象时只要先确定两点,再过这两点画一条直线就可以画出一次函数的图象。
一次函数的图象与k,b的关系如下图所示:3、函数表达式的确定:常用方法是待定系数法,一次函数y=kx+b 中含有两个待定系数k 、b ,根据待定系数法,只要列出方程组即可.4、一次函数的应用: (1)、一次函数与一元一次方程、二元一次方程组的关系。
一元一次方程的解就是一次函数与x 轴的交点坐标的横坐标的值。
二元一次方程组的解可以把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标就是方程组的解。
(2)、一次函数与不等式的关系:可以借助函数图象解决一元一次不等式的有关问题。
二、一次函数的概念典型例题1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、函数中,当 时,它是一次函数,当它是正比例函数.4、下列函数中,是的一次函数的是( )、 、 、 、三、一次函数的图象与性质1.下列图形中的曲线不表示y 是x 的函数的是( )2、如图,已知直线b x y +=3与2-=ax y 的交点的横坐标为2-,根据图象有下列3个结论:①0>a ;②0>b ;③2->x 是不等式23->+ax b x 的解集.其中正确的个数是( ) A .0 B .1 C .2 D .33、对于函数y =5x+6,y 的值随x 值的减小而___________。
4、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。
第四章一次函数1、函数的观点一般地,设在一个变化过程中有两个变量x 和 y,而且关于 x 每一个确立的值,y 都有独一的值与它对应,那么就说x 是自变量, y 是 x 的函数。
对函数观点的理解:(1)有两个变量(2)一个变量的数值跟着另一个变量的变化而变化(3)自变量每确立一个值,函数有一个而且只有一个值与之对应(或多个x 的值能够对应一个 y 值但不可以一个 x 值对应多个 y 值,如 y=x2和 x2 =y)2、自变量的取值范围自变量的取值一定使含自变量的代数式都存心义。
(1)关系式为整式时,自变量的取值为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实质问题中,自变量的取值还要和实质状况相切合,使之存心义。
如: S r 2中,r表示圆的半径时,r>03、一次函数和正比率函数一次函数 y=kx+b特点:k0x 的次数是 1常数项 b 是随意实数正比率函数: y=kx特点:k0x 的次数是 1常数项 b=0正比率函数是一种特别的一次函数。
4、一次函数图像性质一次函数 y=kx+ b 的图象的画法 .依据几何知识:经过两点能画出一条直线,而且只好画出一条直线,即两点确立一条直线,因此画一次函数的图象时,只需先描出两点,再连成直线即可 .一般情况下:是先选取它与两坐标轴的交点:( 0 , b ),.即横坐标或纵坐标为 0的点 .k 表示直线y=kx+b(k 0) 向上的方向与x 轴正方向夹角的大小,即直线倾斜的程度;b 表示直线 y=kx+b(k 0)与 y 轴交点的纵坐标一次函数 Y=kx+b k 0 的图象,当 b>0 时,图象与 y 轴的交点在 x 轴的上方;当b<0 时,图象与 y 轴的交点在 x 轴的下方;2两直线 y= k 1 x+ b 1 (k 0)的图象与 y= k 2 x+ b 2 (k 0)的地点关系:( 1) 当 k 1 = k 2 时,且 b 1 b 2 时,两直线平行( 2) 当 k 1 = k 2 时,且 b 1 =b 2 时,两直线重合( 3) 当 k 1 k 2 时,两直线订交( 4) 当 k 1 k 2 时,且 b 1 =b 2 时,两直线交于 y 轴上一点( 0,b 1 )或( 0,b 2 )【稳固训练】 一、选择题1 、 下 列 各 图 给 出 了 变 量 x 与 y 之 间 的 函 数 是 :( )yyyyo xoxoxo xABCD2、已知油箱中有油 25 升,每小时耗油 5 升,则剩油量 P(升)与耗油时间 t(小时 ) 之间的函数关系式为 ( ) A . P=25+5tB . P=25-5tC .P=25D . P=5t - 255t3、函数 y =3x + 1 的图象必定经过点 ().A .(3,5)B .(-2,3)C .(2,7)D . (4,10)4、以下函数关系式 : ① yx ;② y2x11;③ yx 2x 1; ④ y1 .此中一次函数的个数是 ( )xA. 1 个B.2 个C.3 个D.4个 5、假如 y=x -2a +1 是正比率函数,则 a 的值是( )(A)1(B)0(C)-1(D)- 2226. 一次函数 y=kx+b 图象如图,正确的是()(A )k>0,b >0 ( B ) k>0,b <0 ( C ) k<0,b>0(D )k<0, b <07.已知一次函数的图象与直线 y=-x+1 平行,且过点( 8,2),那么此一次函数 的分析式为( )A .y=-x-2B . y=-x-6C . y=-x+10D .y=-x-1 8、若直线 yx n不经过第四象限,则( )mA.m >0,n <0B.m <0,n <0C.m <0,n > 0D.m >0,n ≤09、函数 y=kx+b(k < 0, b > 0)的图象可能是以下图形中的( )y y yyo xo xo xox[A.B.C.D.10、若函数 y=2x+3 与 y=3x -2b 的图象交 x 轴于同一点,则 b 的值为 ( )A .- 3B .-3C . 9D .-92 411 一次函数 y=kx+6,y 随 x 的增大而减小,则这个一次函数的图象不经过 ()A. 第一象限B. 第二象限C.第三象限D. 第四象限12 如图 , 直线 y kx b 经过 A(0,2) 和 B(3,0) 两点 , 那么这个一次函数关系式是 ( ) A. y 2x 3 B. y2x 2 C. y 3x 2 D. y x 1313.李老师骑自行车上班,最先以某一速度匀速前进, ?半途因为自行车发生故障,停下修车耽搁了几分钟,为了准时到校,李老师加速了速度,仍保持匀速前进,假如准时到校. 在讲堂上,李老师请学生画出他前进的行程 y?(千 米)与前进时间 t (小时)的函数图象的表示图,同学们画出的图象如图所 示,你以为正确的选项是( )14、一次函数 y=ax+b ,若 a+b=1,则它的图象必经过点()A 、(-1,-1)B、(-1, 1)C、(1, -1)D、 (1, 1)115、已知点( -4,y 1),(2,y 2)都在直线 y=- 2 x+2 上,则 y 1 y 2 大小关系是 ()(A )y 1 >y 2 (B ) y 1 =y 2(C ) y 1 <y 216.如图一次函数 y=kx+b 的图象经过点 A 和点 B .(1)写出点 A 和点 B 的坐标并求出 k 、 b 的值; (2)求出当 x= 3时的函数值.217、已知,函数 y 1 3k x 2k 1 ,试回答:(1) k 为什么值时,图象交 x 轴于点(3,0)?4(2)k 为什么值时, y 随 x 增大而增大?18、如图,是某汽车行驶的行程 S(km)与时间 t(min)的函数关系图.察看图中所供给的信息,解答以下问题:( 1)汽车在前 9 分钟内的均匀速度是(2)汽车在半途停了多长时间?S/km(3)当 16≤t≤30 时,求 S 与 t 的函数关系式.40129 1630t/min19、某自来水企业为了鼓舞市民节俭用水,采纳分段收费标准,若某用户居民每个月应交水费y(元)是用户量x(方)的函数,其图象如下图,依据图象回答以下问题:( 1)分别求出 x≤5 和 x>5 时, y 与 x 的函数关系式;( 2)自来水企业的收费标准是什么?y(元)( 3)若某户居民交水费9 元,该月用水多少方6.6320.如图信息, l 1为走私船, l 2为我公安快艇,航行时行程与时间的函数图象,问:( 1)在刚出发时我公安快艇距走私船多少㎞?(2)计算走私船与公安快艇的速度分别是多少?( 3)写出 l 1 , l 2的分析式 .( 4)问 6 分钟时两艇相距几千米。
考点10.一次函数(精讲)【命题趋势】一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考查也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面,年年考查,总分值为10分左右。
一次函数不仅是中考重要考点,也是反比例函数、二次函数学习的基础,而初中函数部分,更是和整个高中学习体系联系紧密,不管对于中考还是高中基础积累,一次函数学习都尤为重要。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
【知识清单】1:一次函数的相关概念(☆☆)1)正比例函数的概念:一般地,形如y =kx (k 是常数,k ≠0)的函数,叫正比例函数,其中k 叫正比例系数。
2)一次函数的定义:一般地,形如y =kx +b (k ,b 为常数,且k ≠0)的函数叫做x 的一次函数。
特别地,当一次函数y =kx +b 中的b =0时,y =kx ,所以说正比例函数是一种特殊的一次函数。
2:一次函数的图象与性质(☆☆☆)1)一次函数的图象特征与性质函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0,b >0一、二、三y 随x 的增大而增大k >0,b <0一、三、四k >0,b =0一、三y =kx +b (k ≠0)k <0,b >0一、二、四y 随x 的增大而减小k <0,b <0二、三、四k <0,b =0二、四2)k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0)。
①当–bk>0时,即k,b异号时,直线与x轴交于正半轴。
②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴。
3)两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直。
人教版初中数学八年级下册一次函数 精品讲解一次函数 精品讲解考点一 一次函数和正比例函数的定义一般地,如果y =kx +b (k ,b 是常数,k ≠0),那么y 叫做x 的一次函数.特别地,当b =0时,一次函数y =kx +b 就成为y =kx (k 是常数,k ≠0),这时y 叫做x 的正比例函数.考点二 一次函数的图象与性质 1.一次函数的图象(1)一次函数y =kx +b (k ≠0)的图象是经过点(0,b )和⎝⎛⎭⎫-bk ,0的一条直线. (2)正比例函数y =kx (k ≠0)的图象是经过点(0,0)和(1,k )的一条直线. 2.一次函数图象的性质一次函数y =kx +b ,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.考点三 一次函数解析式的确定常用待定系数法求一次函数的解析式,待定系数法的一般步骤是: 1.设出函数解析式;2.根据已知条件求出未知的系数; 3.具体写出这个解析式.考点四 一次函数与方程、方程组及不等式的关系1.y =kx +b 与kx +b =0直线y =kx +b 与x 轴交点的横坐标是方程kx +b =0的解,方程kx +b =0的解是直线y =kx +b 与x 轴交点的横坐标.2.y =kx +b 与不等式kx +b >0从函数值的角度看,不等式kx +b >0的解集为使函数值大于零(即kx +b >0)的x 的取值范围;从图象的角度看,由于一次函数的图象在x 轴上方时,y >0,因此kx +b >0的解集为一次函数在x 轴上方的图象所对应的x 的取值范围.3.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.1.一个正比例函数的图象过点(2,-3),它的表达式为( ).A .y =-32xB .y =23xC .y =32xD .y =-23x2.若一次函数y =kx +b 的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么k 和b 的符号判断正确的是( ).A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0 3.两直线l 1:y =2x -1,l 2:y =x +1的交点坐标为( ). A .(-2,3) B .(2,-3) C .(-2,-3) D .(2,3) 4.某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.(1)分别写出到甲、乙商店购买该种铂金饰品所需费用y (元)和重量x (克)之间的函数关系式;(2)李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?一、一次函数的图象与性质【例1】 点P 1(x 1,y 1)和点P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( ).A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2解析:因为一次函数y =-4x +3中k <0,根据其性质,y 随x 的增大而减小.所以当x 1<x 2时,y 1>y 2.答案:A解有关一次函数y=kx+b 的图象与性质的问题时,应注意以下三点:①一次函数图象分布特征与k ,b 的符号之间的关系;②一次函数图象的增减性与k 的符号之间的关系;③一次函数与两坐标轴的交点及围成的图形的面积等.在同一直角坐标系中,函数y =kx +1和函数y =kx(k 是常数且k ≠0)的图象只可能是( ).二、求一次函数解析式【例2】 娄底至新化高速公路的路基工程分段招标,市路桥公司中标承包了一段路基工程,进入施工场地后,所挖筑路基的长度y (m)与挖筑时间x (天)之间的函数关系如图所示,请根据提供的信息解答下列问题:(1)求在0≤x <2的时间段内,y 与x 的函数关系式; (2)求在x ≥2时间段内,y 与x 的函数关系式;(3)用所求的函数解析式预测完成1 620 m 的路基工程,需要挖筑多少天?解:(1)当0≤x <2时,设y 与x 的函数关系式为y =kx ,∴40=k .∴y 与x 的函数关系式为y =40x (0≤x <2).(2)当x ≥2时,设y 与x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧ 115=3k +b ,255=7k +b ,解之,得⎩⎪⎨⎪⎧k =35,b =10.∴y 与x 的函数关系式为y =35x +10(x ≥2). (3)当y =1 620时,35x +10=1 620,x =46. 答:需要挖筑46天.确定一次函数的函数关系式,可先设出函数关系式,再根据条件确定关系式中未知的数.根据图象,由两个点的坐标可确定一次函数关系式,正比例函数只需一个点的坐标即可.三、一次函数与方程(组)、不等式的关系【例3】 如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是__________.解析:如图所示,二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解就是直线y =ax +b 与直线y =kx的交点,所以点P 的坐标就是方程组的解,即⎩⎪⎨⎪⎧x =-4,y =-2.答案:⎩⎪⎨⎪⎧x =-4,y =-2两个函数图象的交点坐标,即满足其中一个函数的表达式,也满足另一个函数的表达式,求函数图象的交点坐标,就是解这两个函数图象的表达式所组成的方程组的解,讨论图象的交点问题就是讨论方程组解的情况.四、一次函数的应用【例4】 小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O —A —B —C 和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为__________分钟,小聪返回学校的速度为__________千米/分钟;(2)请你求出小明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?解:(1)15 415(2)由图象可知,s 是t 的正比例函数.设所求函数的解析式为s =kt (k ≠0),代入(45,4),得4=45k ,解得k =445.∴s 与t 的函数关系式s =445t (0≤t ≤45).(3)由图象可知,小聪在30≤t ≤45的时段内s 是t 的一次函数,设函数解析式为s =mt +n (m ≠0).代入(30,4),(45,0),得⎩⎪⎨⎪⎧30m +n =4,45m +n =0,解得⎩⎪⎨⎪⎧m =-415,n =12.∴s =-415t +12(30≤t ≤45).令-415t +12=445t ,解得t =1354.当t =1354时,s =445×1354=3.答:当小聪与小明迎面相遇时,他们离学校的路程是3千米.用一次函数解决实际问题的一般步骤为:(1)根据题意,设定问题中的变量;(2)建立一次函数关系式模型;(3)确定自变量的取值范围;(4)与方程或不等式(组)结合解决实际问题.1.(2012四川乐山)若实数a ,b ,c 满足a +b +c =0,且a <b <c ,则函数y =ax +c 的图象可能是( ).2.(2011黑龙江哈尔滨)一辆汽车的油箱中现有汽油60升,如果不再加油,那么油箱中的油量y (单位:升)随行驶里程x (单位:千米)的增加而减小,若这辆汽车平均耗油量为0.2升/千米,则y 与x 之间的函数关系用图象表示大致是( ).3.(2011浙江义乌)一次函数y =2x -1的图象经过点(a,3),则a =__________.4.(2011内蒙古呼和浩特)已知关于x 的一次函数y =mx +n 的图象如图所示,则|n -m |-m 2可化简为__________.5.(2012山东菏泽)如图,一次函数y =-23x +2的图象分别与x 轴、y 轴交于点A ,B ,以线段AB 为边在第一象限内作等腰Rt △ABC ,∠BAC =90°,求过B ,C 两点直线的解析式.1.一次函数y =-3x -2的图象不经过( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限2.一次函数y =(a -2)x +a -3的图象与y 轴的交点在x 轴的下方,则a 的取值范围是( ).A .a ≠2B .a <3且a ≠2C .a >2且a ≠3D .a =33.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( ).A .摩托车比汽车晚到1 hB .A ,B 两地的路程为20 kmC .摩托车的速度为45 km/hD .汽车的速度为60 km/h4.一次函数y =kx +b 的图象如图所示,当y <0时,x 的取值范围是( ).A .x <0B .x >0C .x <2D .x >25.把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( ).A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +66.如果点(-2,m )和⎝⎛⎭⎫12,n 都在直线y =43x +4上,则m ,n 的大小关系是:__________. 7.点A (-3,4)在一次函数y =-3x -5的图象上,图象与y 轴的交点为B ,那么△AOB 的面积为________.8.一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示,当0≤x ≤1时,y 关于x 的函数解析式为y =60x ,那么当1≤x ≤2时,y 关于x 的函数解析式为__________.9.如图,直线y =3x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去,点A 5的坐标为________.10.星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y (立方米)与时间x (小时)的函数关系如图所示.(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气?(2)当x ≥0.5时,求储气罐中的储气量y (立方米)与时间x (小时)的函数解析式;(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.参考答案基础自主导学自主测试1.A 2.D 3.D4.解:(1)y 甲=477x ,y 乙=530×3+530(x -3)×80%=424x +318. (2)由y 甲=y 乙,得477x =424x +318,∴x =6. 由y 甲>y 乙,得477x >424x +318,则x >6. 由y 甲<y 乙,得477x <424x +318,则x <6.所以当x =6时,到甲、乙两个商店购买费用相同. 当4≤x <6时,到甲商店购买合算. 当6<x ≤10时,到乙商店购买合算.规律方法探究变式训练 B知能优化训练中考回顾1.A 2.D 3.2 4.n5.解:如图,过点C 作CD ⊥x 轴,垂足为D ,则∠AOB =∠CDA =90°, ∵∠BAC =90°,∴∠BAO +∠ABO =∠BAO +∠CAD =90°. ∴∠ABO =∠CAD .又∵AB =AC ,∴△ABO ≌△CAD . ∴AD =OB =2,CD =AO =3.∵y =-23x +2与x 轴交于点(3,0),与y 轴交于点(0,2),∴C (5,3).设过B ,C 两点直线的解析式是y =kx +b ,则⎩⎪⎨⎪⎧5k +b =3,b =2,∴⎩⎪⎨⎪⎧k =15,b =2.∴过B ,C 两点直线的解析式为y =15x +2.模拟预测1.A 2.B 3.C 4.D 5.D 6.m <n 7.7.5 8.y =100x -40 9.(16,0) 10.解:(1)8 000立方米.(2)当x ≥0.5时,设y =kx +b (k ≠0), 则⎩⎪⎨⎪⎧ 0.5k +b =10 000,10.5k +b =8 000,∴⎩⎪⎨⎪⎧k =-200,b =10 000. ∴y =-200x +10 100(x ≥0.5).(3)当x =2.5时,y =-200×2.5+10 100=9 600, 10 000-9 60020=20>18.∴第18辆车在10:30前能加完气.。
一次函数所有知识点讲解一次函数是初中数学中的重要内容,也是高中数学的基础。
在学习一次函数时,我们需要掌握以下知识点:一、函数的概念函数是一种数学关系,它将一个自变量的值映射到一个因变量的值。
一般地,我们用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数的定义域是自变量的取值范围,值域是因变量的取值范围。
二、一次函数的定义一次函数是指函数f(x) = kx + b,其中k和b是常数,且k不等于0。
一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
三、一次函数的图像一次函数的图像是一条直线,可以通过斜率k和截距b来确定。
当k>0时,直线向上倾斜;当k<0时,直线向下倾斜;当k=0时,直线水平。
当b>0时,直线与y轴正向平移;当b<0时,直线与y轴负向平移。
四、一次函数的性质1. 斜率k表示函数的变化率,即函数值的增量与自变量增量的比值。
当k>0时,函数单调递增;当k<0时,函数单调递减;当k=0时,函数为常函数。
2. 截距b表示函数与y轴的交点,当x=0时,函数的值为b。
因此,截距b可以用来确定函数的位置。
3. 一次函数的定义域为全体实数,值域为全体实数。
五、一次函数的应用1. 一次函数可以用来描述直线运动的速度和位置关系。
例如,当一辆车以匀速v行驶时,它的位置与时间的关系可以表示为f(t) = vt + b,其中b为初始位置。
2. 一次函数可以用来描述经济问题中的成本和收益关系。
例如,当一家公司生产x件产品时,它的成本和收益可以表示为f(x) = kx + b,其中k为单位成本或单位收益,b为固定成本或固定收益。
3. 一次函数可以用来描述物理问题中的速度和加速度关系。
例如,当一个物体以初速度v0加速a时,它的速度与时间的关系可以表示为f(t) = v0 + at。
一次函数是数学中的重要内容,它不仅具有理论意义,还有广泛的应用价值。
初三数学一次函数知识精讲一次函数1. 一次函数如果y kx b k b k =+≠(,是常数,)0,那么y 叫做x 的一次函数。
特别的,当b=0时,一次函数y=kx+b 就成为y=kx (k 是常数,k ≠0),这时y 叫做x 的正比例函数,所以正比例函数是一次函数的特例。
2. 待定系数法为了确定一次函数y=kx+b 的解析式,只要确定k 和b 的值即可,而这通常需要两个独立条件而后代入得k 、b 的二元一次方程组,确定正比例函数只需一个条件。
3. 一次函数的图象一次函数的图象是一条直线,由于两点确定一条直线,故只要找到直线的两个点就可画出这条直线,通常取与坐标轴的两个交点。
正比例函数y=kx 一定经过原点,再找一点即可,通常取(1,k )。
正比例函数的图象是一条经过原点的直线。
通常把一次函数y=kx+b 的图象叫做直线y=kx+b 。
4. 一次函数的性质(1)当k>0时,y 随x 的增大而增大; (2)当k<0时,y 随x 的增大而减小。
注意正比例函数也满足此性质。
例1. (1999北京)已知:∆ABC ACB C CD AB o 中,,过点作∠=⊥90,垂足为D ,且AD=m ,BD=n ,AC BC x x n x m 2222211421120::,又关于的方程=--+-=()两实数根的差的平方小于192,求:m 、n 为整数时,一次函数y=mx+n 的解析式。
CA D B解: 在中,∆ABC ACB o ∠=90CD AB DACB ADC AC AD ABAC⊥∴∴=于∆∆~∴=⋅=⋅∴=AC AD AB BC BD AB AC BC ADBD2222,同理∴==m n m n 212,即 关于的方程有两个实数根x x n x m 142112022--+-=() ∴=---⨯-≥∴--+≥=∴--+≥∴≤--+-=+=-=-∆[()]()()()()()214141204816024281602142112081412222222221212122n m n m n m nn n n n x x n x m x x x x n x x m 设关于的的两实数根分别为,则,依题意有()()[8()]()()x x x x x x n m n m n m nn n n n 12212212222222192419214412192484024284012-<+-<--⨯-<∴--+<=∴--+<∴>∴<≤122nn n n m n m y x y x 为整数,当时,当时,所求一次函数解析式为或∴=====∴=+=+1212242142说明:韦达定理的使用是以判别式大于等于零为前提条件的。
一次函数的应用知识点梳理及经典例题讲解知识梳理10 min.1、一次函数的概念若两个变量x 、y 间的关系式可以表示成y=kx+b (k 、b 为常数,k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)特别地,当b=0时,称y 是x 的正比例函数。
2、一次函数的图象①一次函数y=kx+b 的图象是一条经过(0,b )(- b k ,0)的直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线。
②在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当0b >时,直线交y 轴于正半轴,必过一、二、三象限; 当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.典例精讲27 min.例1 .已知函数21y x =-的图象如图所示,请根据图象回答下列问题:(1)当0x =时,y 的值是多少? (2)当0y =时,x 的值是多少? (3)当x 为何值时,0y >?(4)当x 为何值时,0y <?答案:解:(1)当0x =时,1y =-;(2)当0y =时,12x =; (3)当12x >时,0y >;(4)当12x <时,0y <. 例2、如图,直线对应的函数表达式是()答案:A例3、(2008 江苏常州)甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:【 】(1)他们都骑行了20km; (2)乙在途中停留了0.5h; (3)甲、乙两人同时到达目的地; (4)相遇后,甲的速度小于乙的速度. 根据图象信息,以上说法正确的有 A.1个B.2个C.3个D.4个答案:B例4.某产品的生产流水线每小时可生产100件产品.生产前没有产品积压,生产3h 后安排工人装箱,若每小时装产品150件,未装箱的产品数量()y 是时间()t 的函数,那么这个函数大致图象只能是( ) 答案:A例5.如图所示,是某企业职工养老保险个人月缴费y (元)随个人月工资x (元)变化的图象.请你根据图象回答下列问题:(1)张总工程师五月份工资是3 000元,这个月他应缴个人养老保险费 元;A .B .C.D.(2)小王五月份工资为500元,他这个月应缴纳个人养老保险费 元.(3)当月工资在600~2 800元之间,其个人养老保险费y (元)与月工资x (元)之间的函数关系式为 .答案:(1)200 (2)40(3)4405511y x =-例6.已知A B 、两市相距80km .甲乙两人骑自行车沿同一公路各自从A 市、B 市出发,相向而行,如图所示,线段EF CD 、分别表示甲、乙两人离B 市距离s (km) 和所用去时间t (h)之间的函数关系,观察图象回答问题: (1)乙在甲出发后几小时才从B 市出发? (2)相遇时乙走了多少小时? (3)试求出各自的s 与t 的关系式. (4)两人的骑车速度各是多少? (5)两人哪一个先到达目的地?)答案:解:(1)乙在甲出发后1h ,才从B 市发出; (2)7721199-=(h),即相遇时,乙走了719h ;(3)设甲的函数关系式为11S k t b =+甲,将7(080)2409⎛⎫⎪⎝⎭,,代入得111802540.9b k b =⎧⎪⎨+=⎪⎩,解得1172580.k b ⎧=-⎪⎨⎪=⎩,∴甲的函数关系式为72805s t =-+甲. 设乙的函数关系式为22s k t b =+乙.将7(10)2409⎛⎫⎪⎝⎭,、,代入得222202540.9k b k b =+⎧⎪⎨=+⎪⎩,,解得2245245.2k b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴乙的函数关系式为454522s t =-乙; (4)14.4v =甲km/h ,22.5v =乙km/h ; (5)在72805s t =-+甲中,当0s =甲时,720805t =-+. 509t ∴=, 在454522s t =-乙中,当80s =乙时,即45454180229t t =-=,. 504199> , ∴乙先到达目的地.例7、已知两条直线y1=2x-3和y2=5-x . (1)在同一坐标系内做出它们的图像; (2)求出它们的交点A 坐标;(3)求出这两条直线与x 轴围成的三角形ABC 的面积;(4)k 为何值时,直线2k +1=5x +4y 与k =2x +3y 的交点在每四象限.分析 (1)这两个都是一次函数,所以它们的图像是直线,通过列表,取两点,即可画出这两条直线.(2)两条直线的交点坐标是两个解析式组成的方程组的解.(3)求出这两条直线与x 轴的交点坐标B 、C ,结合图形易求出三角形ABC 的面积. (4)先求出交点坐标,根据第四象限内的点的横坐标为正,纵坐标为负,可求出k 的取值范围. 解 (1)(2)⎩⎨⎧-=-=.5,3221x y x y 解得⎪⎪⎩⎪⎪⎨⎧==.37,38y x 所以两条直线的交点坐标A 为⎪⎭⎫⎝⎛37,38.(3)当y1=0时,x =23所以直线y1=2x-3与x 轴的交点坐标为B(23,0),当y2=0时,x =5,所以直线y2=5-x 与x 轴的交点坐标为C(5,0).过点A 作AE ⊥x 轴于点E ,则124937272121=⨯⨯=⨯=∆AE BC S ABC .(4)两个解析式组成的方程组为⎩⎨⎧+=+=+.32,4512y x k y x k解这个关于x 、y 的方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=.72,732k y k x由于交点在第四象限,所以x >0,y <0.即⎪⎪⎩⎪⎪⎨⎧<->+.072,0732k k 解得223<<-k .例8:旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为561-=x y .画出这个函数的图像,并求旅客最多可以免费携带多少千克的行李?分析求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x 轴的交点横坐标的值.即当y =0时,x =30.由此可知这个函数的自变量的取值范围是x ≥30. 解函数561-=x y (x≥30)图像为:当y =0时,x =30.所以旅客最多可以免费携带30千克的行李.例9:今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量x (吨)的函数,当0≤x ≤5时,y =0.72x ,当x >5时,y =0.9x -0.9. (1)画出函数的图像;(2)观察图像,利用函数解析式,回答自来水公司采取的收费标准.分析画函数图像时,应就自变量0≤x ≤5和x >5分别画出图像,当0≤x ≤5时,是正比例函数,当x >5是一次函数,所以这个函数的图像是一条折线.解(1)函数的图像是:(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元例10.如图所示的曲线表示一辆自行车离家的距离与时间的关系,骑车者9点离开家,15点回家,根据这个曲线图,请你回答下列问题:(1)到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度各是多少?(6)他在何时至何时停止前进并休息午餐?(7)他在停止前进后返回,骑了多少千米?(8)返回时的平均速度是多少?(9)11:30和13:30时,分别离家多远?(10)何时离家22km?答案:解:(1)到达离家最远地方的时间是12点到13点,离家30km . (2)10点半开始第一次休息,休息了半小时. (3)第一次休息时离家17km . (4)11:00到12:00,他骑了13km .(5)9:00~10:00的平均速度是10km/h ;10:00~10:30的平均速度是14km/h. (6)从12点到13点间停止前进,并休息午餐较为符合实际情形. (7)返回骑了30km .(8)返回30km 共用了2h ,故返回时的平均速度是15km/h . (9)设直线DE 所在直线的解析式为:s kt b =+.将(1117)(1230)D E ,、,的坐标代入,得11171230.k b k b +=⎧⎨+=⎩,解得13126.k b =⎧⎨=-⎩,所以13126s t =-. 当11.5t =时,23.5s =,故11:30时,离家23.5km .(在用样的方法求出 13:30,离家22.5km 之后,你是否能想出更简便的方法?) (10)由(9)的解答可知,直线DE 的解析式为13126s t =-,将22S =代入得11.3t =,即11点18分时离家22km ,在FG 上同样应有一点离家22km ,下面可以这样考虑:13点至15点的速度为15km/h ,从F 点到22km 处走了8km ,故需815h (即32min ),故在13点32分时间同样离家22km .例11..假定甲、乙两人一次赛跑中,路程s (m)与时间t (s)的关系如图所示,那么可以知道: (1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ; (3)乙在这次赛跑中的速度为 .答案:(1)100(2)甲(3)8m/s例12.某空军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油过程中,设运输飞机的油箱余油量为1Q 吨,加油飞机的加油油箱余油量2Q 吨,加油时间为t 分钟,12Q Q 、与t 之间的函数图象如图所示,结合图象回答下列问题: (1)加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2)全加油过程中,求运输飞机的余油量1Q (t)与时间t (min)的函数关系式.(3)运输飞机加完油后,以原速继续飞行,需10h 到达目的地,油料是否够用? 说明理由.y (m)答案:解:(1)由图象知,加油飞机的加油油箱中装载了30t 油.全部加给运输飞机需10min .(2)设1Q kt b =+,把(040),和(1069),代入,406910.b k b =⎧⎨=+⎩,解得 2.940.k b =⎧⎨=⎩,1 2.940(010)Q t t ∴=+≤≤;(3)由图象可知运输飞机的耗油量为0.1t/min . ∴10h 耗油量为:10600.160t 69t =<××.故油料够用.例13:.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2h 时血液中含药量最高,达6ug/ml (1ug 310-=mg ),接着逐渐衰减,10h 时的血液中含药量为每毫升3ug ,每毫升血液中含药量y (ug)随时间t (h)的变化如图.当成人按规定剂量服药后:(1)分别求出2x ≤和2x ≥时,y 与x 之间的函数关系式;(2)如果每毫升血液中含药量为4ug 或4ug 以上时在治疗疾病时是有效的,那么这个有效时间多长?答案:解:当2x ≤时,设1y k x =,由题意,得162k =, 133.k y x ∴=∴=,当2x ≥时,设2y k x b =+由题意得2262310.k b k b =+⎧⎨=+⎩,解得23827.4k b ⎧=-⎪⎪⎨⎪=⎪⎩,32784y x ∴=-+;(2)当2x ≤时,4y ≥,即4343x x ≥,≥; 当2x ≥时,4y ≥,即327224843x x -+≥,≤. ∴有效治疗时间为:224633-=.即这个有效治疗时间为6h .例14:.两个物体A B 、所受的压强分别为A B P P ,(都为常数)它们所受压力F 与受力面积S 的函数关系图象分别是射线A B l l ,如图所示,则( )A.A B P P < B.A B P P = C.A B P P >D.A B P P ≤答案:A例15.如图是某固体物质在受热熔解过程中物质温度T (℃)与时间(s)的关系图,其中A 阶段物质为固态,B 阶段为固液共存,C 阶段为液态.(1)物质温度上升温度最快的是 阶段,最慢的是 阶段; (2)物质的温度是60℃,那么时间t 的变化范围是 .答案:(1)C B (2)2050t ≤≤例16.某图书出租店,有一种图书的租金y (元)与出租天数x (天)之间的关系如图所示,则两天后,每过一天,累计租金增加 元.t)答案:0.5例17甲、乙两辆汽车同时从相距280km 的A B 、两地相向而行,s (km)表示汽车与A 地的距离,t (min)表示汽车行驶的时间,如图所示,12l l 、分别表示两辆汽车的s 与t 的关系.(1)1l 表示哪辆汽车到A 地的距离与行驶时间的关系; (2)汽车乙的速度是多少?(3)1h 后,甲、乙两辆汽车相距多少千米? (4)行驶多长时间,甲、乙两辆汽车相遇?答案:解:(1)1l 表示汽车乙到A 地的距离与时间之间的关系; (2)汽车乙的速度是80km/h ;(3)1h 后,甲、乙两辆汽车相距140km ;(4)280(6080)2+=÷,即行驶2h ,甲、乙两辆汽车相遇.例18:.水库的库容通常是用水位的高低来预测的.下表是某市一水库在某段水位范围内的库容与水位高低的相关水文资料,请根据表格提供的信息回答问题.(1)将上表中的各对数据作为坐标()x y ,,在给出的坐标系中用点表示出来:(2)用线段将(1)中所画的点从左到右顺次 连接.若用此图象来模拟库容y 与水位高低x 的函数 关系.根据图象的变化趋势,猜想y 与x 间的函数关系,求出函数关系式并加以验证;(3)由于邻近市区连降暴雨,河水暴涨,抗洪形势十分严峻,上级要求该水库为其承担部分分洪任 务约800万立方米.若该水库当前水位为65米,且最 高水位不能超过79米.请根据上述信息预测:该水库 能否承担这项任务?并说明理由.(第25题)答案:(1)描点如图所示. (2)连线如图所示.猜想:y 与x 具有一次函数关系. 设其函数解析式为(0)y kx b k =+≠.把(103000)(203600),、,代入得:300010360020.k b k b =+⎧⎨=+⎩,解得:602400.k b =⎧⎨=⎩,602400y x ∴=+将(304200),、(40,4800)分别代入上式, 得:420060302400=⨯+,480060402400.=⨯+所以(304200),、(40,4800)均在 602400y x =+的图象上.(3)能承担.当79x =时,179602400y =⨯+. 当65x =时,265602400y =⨯+.1260(7965)6014840y y -=-=⨯=.840800> . ∴该水库能接受这项任务.例19:.种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式; (1) 怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润. 答案:解:(1)所求函数关系式为12002000(22)y x x =+-即80044000y x =-+(2)由于草莓必须在10天内售完 则有22104xx +-≤ 解之,得16x ≥在函数80044000y x =-+中,8000-<y ∴随x 的增大而减小∴当16x =时,y 有最大值31200(元)22166-=,1644÷=,616÷=答:用4天时间运往省城批发,6天时间在本地零售.(回答销量也可)才使获利 润最大,最大利润为31200元.例20.已知一次函数y ax b =+(a 、b 是常数),x 与y 的部分对应值如下表:那么方程0ax b +=的解是 ;不等式0ax b +>的解集是 .答案:1x =;1x <.。
初三数学一次函数人教版【同步教育信息】一. 本周教学内容:一次函数二. 重点、难点:1. 一次函数的概念:(1)理解一次函数概念的关键是对其定义的理解。
由定义可知:y x y kx bk b k 是的一次函数它的解析式是其中,、是常数,且⇔=+≠⎧⎨⎩()()120要证明y 是x 的一次函数,就需要证明:它的解析式可写成y =kx +b 的形式,而且k 、b 一定是常数,且k ≠0,这两个内容缺一不可。
(2)对正比例函数定义的理解还须加上b =0的条件。
(3)一次函数与正比例函数的关系如下:一次函数y =kx +b (k ≠0),当b =0时,y =kx 是正比例函数。
当b ≠0时,y =kx +b 不是正比例函数。
因此,如果y 是x 的正比例函数,则y 一定是x 的一次函数,反之则不一定成立。
2. 一次函数的图象:一次函数y =kx +b (k ≠0)的图象都是一条与坐标轴斜交的直线。
因此,只需求出直线y =kx +b 上的两点,就可得到它。
一般,作正比例函数y =kx 的图象常取点(0,0)和(1,k );作一次函数=+()的图象常取(,)和,两点,这两y kx b b b bk ≠-⎛⎝ ⎫⎭⎪000 点是直线与坐标轴的交点。
3. 参数k 、b 的意义和对一次函数y =kx +b 的图象和性质的影响。
()直线由左向右是上升的,函数随的增大而增大。
10k y kx b y x >⇔=+ k y kx b y x <⇔=+0直线由左向右是下降的,函数随的增大而减小。
因此,k 的符号与直线的方向、函数的增减性是相互决定的。
(2)b 是一次函数y =kx +b 中当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),说明b 是直线y =kx +b 在y 轴上的截距。
因此,b 的符号和直线与y 轴交点位置是相互对应的。
(3)k 、b 的符号对直线位置的影响:讨论k 、b 符号与直线y =kx +b 在坐标系中的位置要注意用k 、b 的意义去解决,不必死记对应的结论。
一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. ● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑴ 一次函数()0k kx b k =+≠k ,b 符号 0k > 0k <0b > 0b < 0b = 0b > 0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质 y 随x 的增大而增大y 随x 的增大而减小⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限. 当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号. ● 知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.类型一:点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;举一反三:【变式1】若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。