15.1.2不等式的解法
- 格式:ppt
- 大小:208.00 KB
- 文档页数:13
不等式的解法高中数学公式
(原创版)
目录
1.不等式的基本概念
2.不等式的解法
3.高中数学公式在不等式解法中的应用
正文
不等式是数学中一个重要的概念,它用来表示两个数或者表达式之间的大小关系。
在高中数学中,我们经常需要解决各种不等式问题,因此熟悉不等式的解法非常重要。
不等式的解法主要包括以下几种:
一、基本不等式
基本不等式是指对于任意的实数 a、b,都有 a + b ≥2ab 成立。
当且仅当 a = b 时,等号成立。
二、线性不等式
线性不等式是指形如 ax + b > 0(或者小于 0)的不等式。
解这类不等式,我们可以通过移项、合并同类项,然后化简得到解集。
三、二次不等式
二次不等式是指形如 ax + bx + c > 0(或者小于 0)的不等式。
解这类不等式,我们可以通过求解二次方程 ax + bx + c = 0 的根,然后根据二次方程的解与不等式的关系来确定解集。
四、绝对值不等式
绝对值不等式是指形如|x| > a(或者小于 a)的不等式。
解这类不等式,我们需要分别讨论 x > 0 和 x < 0 的情况,然后根据绝对值的定
义来确定解集。
在解决不等式问题时,我们还需要运用一些高中数学公式,如平方根、正切、余弦、正弦等函数的性质,以及对数函数、指数函数的性质。
这些公式和性质可以帮助我们更方便地化简不等式,从而更快地得到解集。
总之,熟悉不等式的解法以及高中数学公式在不等式解法中的应用,对于解决高中数学中的不等式问题具有重要意义。
不等式的解法不等式是数学中常见的一种关系式,用于表示两个数或者两个代数式之间的大小关系。
解不等式是指找出满足不等式条件的未知数的取值范围。
在解不等式的过程中,可以运用一些特定的方法和技巧,以求得精确的解。
一、一元一次在解一元一次不等式时,可以运用以下几种常见的方法和技巧:1.1 加减法法则:对于不等式中的两边都加上或者减去同一个数,不等式的符号不改变。
1.2 乘除法法则:对于不等式中的两边都乘以或者除以同一个正数,不等式的符号不改变;若乘以或者除以同一个负数,不等式的符号则反向。
1.3 移项法:将不等式中的项移动到同一边,形成一个相等的等式,然后根据等式求解的方法得到解的范围。
1.4 区间判定法:通过观察不等式中的系数和常数项的正负关系,判断不等式的解的范围。
二、一元二次在解一元二次不等式时,除了可以运用一元一次不等式的解法外,还可以运用以下方法和技巧:2.1 因式分解法:将一元二次不等式进行因式分解,然后根据因式的正负情况判断不等式的解的范围。
2.2 二次函数图像法:将一元二次不等式所对应的二次函数的图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。
2.3 完全平方差和平方根法:将一元二次不等式形式化为完全平方差或平方根的形式,然后根据完全平方差和平方根的性质来求解不等式。
三、绝对值绝对值不等式是指含有绝对值符号的不等式,其解的范围一般分成两个部分。
解绝对值不等式时,可以采用以下方法和技巧:3.1 分情况讨论法:根据绝对值的定义,将不等式分成正数和负数的情况讨论,并解出相应的不等式。
3.2 辅助变量法:引入一个辅助变量,使得绝对值不等式可以转化为一元一次或一元二次不等式,然后使用已知的解法来求解。
3.3 图像法:将绝对值不等式所对应的函数图像进行分析,根据图像的凹凸性和与 x 轴的交点来求解不等式。
四、多元多元不等式是指含有多个未知数的不等式,解多元不等式时可以运用以下方法和技巧:4.1 图像法:将多元不等式所对应的多元函数的图像进行分析,根据图像的几何特征来求解不等式。
不等式与不等式组全章教案第一章:不等式的概念与性质1.1 不等式的定义介绍不等式的基本概念,理解“大于”、“小于”、“大于等于”、“小于等于”等基本不等关系。
通过实例理解不等式的表示方法,如2x > 3。
1.2 不等式的性质探讨不等式的基本性质,如不等式两边加(减)同一个数(式子)不等号方向不变等。
通过例题演示不等式性质的应用,并进行练习。
第二章:不等式的解法2.1 简单不等式的解法介绍解简单不等式的方法,如直接解、移项、合并同类项等。
通过例题讲解解简单不等式的步骤,并进行练习。
2.2 不等式组的解法介绍解不等式组的方法,如图像法、代数法等。
通过例题讲解解不等式组的步骤,并进行练习。
第三章:不等式应用题3.1 线性不等式应用题介绍线性不等式应用题的解法,如线性不等式表示的区域内的问题。
通过例题讲解线性不等式应用题的解法,并进行练习。
3.2 不等式组应用题介绍不等式组应用题的解法,如不等式组表示的区域内的问题。
通过例题讲解不等式组应用题的解法,并进行练习。
第四章:不等式的综合应用4.1 线性不等式的图像介绍线性不等式的图像表示方法,如斜率、截距等。
通过例题讲解线性不等式图像的绘制方法,并进行练习。
4.2 不等式组的图像介绍不等式组的图像表示方法,如可行域等。
通过例题讲解不等式组图像的绘制方法,并进行练习。
第五章:不等式的拓展与应用5.1 不等式的拓展知识介绍不等式的拓展知识,如拉格朗日乘数法等。
通过例题讲解不等式拓展知识的应用,并进行练习。
5.2 不等式在实际问题中的应用介绍不等式在实际问题中的应用,如优化问题等。
通过例题讲解不等式在实际问题中的应用方法,并进行练习。
第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式,包括一元不等式和多元不等式。
通过例题演示如何将不等式转换为标准形式,并进行练习。
6.2 不等式标准形式的重要性探讨不等式标准形式在解题和分析中的重要性。
通过例题展示不等式标准形式在解题中的应用,并进行练习。
不等式的解法高中数学公式高中数学中,不等式是基础知识,在函数问题中占比较大,出题面广,难度大,解题比较繁琐。
须把它整理出来,认真研究,学细、学深、学透,为备战高考奠定坚实基础。
不等式是与等式相区别的,意思就是左边与右边不等,等式简单,就“=”一个符号,而不等式有“≠”、“>”、“<”、“≥”“≤”5种,“不等”就是有差距,我们学习不等式的其中一个目的就是掌握这种差距的思维。
比较两个数(函数)的大小,一是作差,二是作商(作除数的不能为零),这个容易理解吧,有了这种思维,不等式问题就好解决了。
以下是高中阶段的不等式公式:一、两个数的不等式公式1. 若a-b>0,则a>b(作差)2. 若a>b,则a±c>b±c3. 若a+b>c,则a>c-b(移项)4. 若a>b,则c>d(不等号同向相加成立,两个大的加起来,肯定比两个小的加起来大)5. 若a>b>0,c>d>0则ac>bd(两个大正数相乘肯定比两个小正数的相乘大)6.若a>b>0,则an>bn(n∈N,n>1)。
二、基本不等式(也叫均值不等式)思想:反应的是算术平均值(a+b)/2和几何平均值的大小关系,这里a,b都是正数。
1.(a+b)/2≥ ab(算术平均值不小于几何平均值,a=b时取等号)2.a2+b2 ≥ 2ab(由1两边平方变化而来,a=b时取等号)3.ab≤(a2+b2)/2≤(a+b)2 /2(由2扩展而来,a=b时取等号)三、绝对值不等式公式(a,b看成向量,“| |”看成向量的模也适用)思想:三角形两边之差小于第三边,两边之和大于第三边。
1.| |a|-|b| |≤|a-b|≤|a|+|b|2.| |a|-|b| |≤|a+b|≤|a|+|b|四、二次函数不等式f(x)=ax2+bx +c(a≠0)思想:函数图像是开口向上(a>0)或开口向下(a<0)的曲线,令函数值为0,解出f(x)的零点,符号看函数值处在纵坐标的正半轴还是负半轴。
高二数学知识点之不等式的解法
高二数学知识点之不等式的解法
用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
以下是小编整理的高二数学知识点之不等式的解法,欢迎参考阅读!
不等式的解法:
(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:
(2)绝对值不等式:若,则;;
注意:
(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:
解含参数的'不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。
1、一元二次不等式的解法
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
四画:画出对应函数的图象.
五解集:根据图象写出不等式的解集.
规律:当二次项系数为正时,小于取中间,大于取两边.
2、高次不等式的解法:穿根法.
分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.
3、分式不等式的解法:先移项通分标准化,则
规律:把分式不等式等价转化为整式不等式求解.
4、无理不等式的解法:转化为有理不等式求解
规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.
5、指数不等式的解法:
规律:根据指数函数的性质转化.
6、对数不等式的解法
规律:根据对数函数的性质转化.
7、含绝对值不等式的解法:
⑶同解变形法,其同解定理有:
规律:关键是去掉绝对值的符号.
8、含有两个(或两个以上)绝对值的不等式的解法:
规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.
9、含参数的不等式的解法
10、恒成立问题
.。
不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
不等式的解法不等式是数学中常见的一种表示数值关系的方法。
解不等式就是找出使不等式成立的数值范围。
在解不等式时,可以通过几种常见的方法来确定解集。
一、图像法图像法适用于简单的一元一次不等式。
通过将不等式转化为直线的形式,并在数轴上画出对应的线段,可以直观地找到满足不等式的数值范围。
例如,对于不等式x + 3 > 2,我们可以将其转化为x > -1的形式。
在数轴上,我们可以画出一个开口向右的箭头,箭头的起点为-1,表示解集为大于-1的所有实数。
二、代入法代入法是一种常见的解不等式的方法,特别适用于含有绝对值的不等式。
通过将可能的解代入到不等式中,验证是否满足不等式的关系,可以逐步缩小解集。
例如,对于不等式|2x - 3| < 5,我们可以先将其拆分成两个不等式:2x - 3 < 5和2x - 3 > -5。
然后分别解这两个不等式,可以得到解集为-1 < x < 4。
三、性质法性质法是解不等式的一种常用方法,通过利用不等式的性质和常用不等式的性质,可以快速求解不等式。
例如,对于不等式x^2 - 4x > 3,我们可以将其转化为x^2 - 4x - 3 > 0的形式。
通过因式分解或配方法,可以求得该不等式的根为x > 3或x < 1。
然后,结合二次函数的凹凸性质,可以得到解集为x < 1或x > 3。
四、区间法区间法是一种用于求解一元二次不等式的常用方法。
通过将一元二次不等式转化为标准形式,然后结合图像法和区间划分的方法,可以求解出不等式的解集。
例如,对于不等式x^2 - 5x + 6 > 0,可以将其转化为(x - 2)(x - 3) > 0的形式。
通过将x^2 - 5x + 6 = 0的根-1, 2, 3绘制在数轴上,并观察函数的正负性,可以得到解集为-1 < x < 2或x > 3。
综上所述,解不等式的方法有很多种,包括图像法、代入法、性质法和区间法等。
不等式的解法及知识点
不等式解法有哪些?对此想了解不等式的朋友可以来看看,下⾯由店铺⼩编为你准备了“不等式的解法及知识点”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!
不等式的解法及知识点
不等式的解法
不等式的解法:1、找出未知数的项、常数项,该化简的化简。
2、未知数的项放不等号左边,常数项移到右边。
3、不等号两边进⾏加减乘除运算。
4、不等号两边同除未知数的系数,注意符号的改变。
不等式知识点
拓展阅读:不等式的基本性质
1.如果x>y,那么y<X;如果Yy;(对称性)
2.如果x>y,y>z;那么x>z;(传递性)
3.如果x>y,⽽z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同⼀个整式,不等号⽅向不变;
4.如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同⼀个⼤于0的整式,不等号⽅向不变;
5.如果x>y,z<0,那么xz<YZ, p 即不等式两边同时乘以(或除以)同⼀个⼩于0的整式,不等号⽅向改变;
6.如果x>y,m>n,那么x+m>y+n;
7.如果x>y>0,m>n>0,那么xm>yn;
8.如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<Y的N次幂(N为负数)。
不等式的解法一、简单的一元高次不等式的解法: 1.一元二次不等式的一般解法:1)形如:(x -a ) · (x -b )>0 等价于⎩⎨⎧〉-〉-00b x a x 或⎩⎨⎧〈-〈-00b x a x 。
2)形如:(x -a ) · (x -b )<0 等价于⎩⎨⎧〈-〉-0b x a x 或 ⎩⎨⎧〉-〈-0b x a x 。
2.简单的一元高次不等式的穿针引线法:一元高次不等式f(x)>0(或<0)用穿针引线法(或数轴标根法、根轴法、区间法)求解。
用此法解一元高次不等式,先将不等式化为一端为零,一端为一次因式(或二次因式不可分解因式)之积,然后求出零点,并在数轴上依次标出,再用光滑曲线从右至左,自上而下依次通过这些零点。
则大于零(小于零)的不等式的解集对应着曲线在数轴上方(下方)部分的实数x 的取值集合。
【注意事项】分解因式后,各因式中x 的系数一定要化为正数;画线时,遇奇数次重根一次穿过,遇偶数次重根穿而不过;考查各重根是否在解集内,再决定其去留。
【典型例题】解不等式:1) x 2-2x-3>0; 2) (x+2)·(x+1)2·(x-1)3·(x-2)≤0. 【解析】1)不等式x 2-2x-3>0 可化为(x-3)(x+1)>0 它等价于⎩⎨⎧〉+〉-0103x x 或 ⎩⎨⎧〈+〈-0103x x 即 x >3 或x <-1。
还可以用穿针引线法解答:令x 2-2x-3=0 ,即 (x-3)(x+1)=0. 则零点分别为 -1,3.将零点依次标在数轴上,并画出光滑的曲线,如图所示: + + -1 3因为不等式大于零,所以取X 轴上方的阴影部分。
则不等式的解集为: x >3 或x <-1。
2)用穿针引线法解答:令 (x+2)·(x+1)2·(x-1)3·(x-2)=0 ,则零点分别为:-2,-1,1,2,将零点依次标在数轴上,并画出光滑的曲线,如图所示:X-2 -1 1 2故原不等式的解集为{x|x ≤-2或1≤x ≤2或x=-1} 。