2018版高三物理一轮复习5年真题分类 2016年高考真题汇编 专题1 质点的直线运动
- 格式:pdf
- 大小:152.56 KB
- 文档页数:5
2016-2018年物理高考真题试题分类汇编力学计算题1.【2018·全国I卷】一质量为m的烟花弹获得动能E后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动。
爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量,求(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度【答案】(1);(2)【解析】本题主要考查机械能、匀变速直线运动规律、动量守恒定律、能量守恒定律及其相关的知识点,意在考查考生灵活运用相关知识解决实际问题的的能力。
(1)设烟花弹上升的初速度为,由题给条件有①守恒定律有⑤⑥由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。
设爆炸后烟花弹上部分继续上升的高度为,由机械能守恒定律有⑦联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为⑧2.【2018·全国II卷】汽车A在水平冰雪路面上行驶,驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B。
两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m,已知A和B的质量分别为kg 和kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小.求(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小。
【答案】(1)(2)【解析】试题分析:两车碰撞过程动量守恒,碰后两车在摩擦力的作用下做匀减速运动,利用运动学公式可以求得碰后的速度,然后在计算碰前A车的速度。
(1)设B车质量为m B,碰后加速度大小为a B,根据牛顿第二定律有①⑤设碰撞后瞬间A车速度的大小为,两车在碰撞过程中动量守恒,有⑥联立③④⑤⑥式并利用题给数据得故本题答案是:(1)(2)点睛:灵活运用运动学公式及碰撞时动量守恒来解题。
2016-2018高考物理真题分类汇编专题01 直线运动 (2)专题02 相互作用 (8)专题03 牛顿运动定律 (19)专题04 曲线运动 (26)专题05 万有引力定律与航天 (38)专题06 功和能 (51)专题07 动量 (70)专题08 静电场 (82)专题09 稳恒电流 (102)专题10 磁场 (106)专题11 电磁感应 (119)专题12 交流电 (137)专题13 原子结构、原子核和波粒二象性 (147)专题14 选修3-3 (162)专题15 机械振动和机械波 (192)专题16 光学电磁波相对论 (207)专题17 力学实验 (233)专题18 电学实验 (264)专题19 力学计算题 (290)专题20 电学计算题 (317)专题01 直线运动20181.【2018·全国新课标I卷】高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能()A. 与它所经历的时间成正比B. 与它的位移成正比C. 与它的速度成正比D. 与它的动量成正比【答案】 B2.【2018·浙江卷】如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。
某一竖井的深度约为104m,升降机运行的最大速度为8m/s,加速度大小不超过,假定升降机到井口的速度为零,则将矿石从井底提升到井口的最短时间是A. 13sB. 16sC. 21sD. 26s【答案】 C【解析】升降机先做加速运动,后做匀速运动,最后做减速运动,在加速阶段,所需时间,通过的位移为,在减速阶段与加速阶段相同,在匀速阶段所需时间为:,总时间为:,故C正确,A、B、D错误;故选C。
【点睛】升降机先做加速运动,后做匀速运动,最后做减速运动,根据速度位移公式和速度时间公式求得总时间。
3.【2018·全国新课标II卷】(多选)甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。
专题1质点的直线运动1.(2016·高考江苏卷)小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动.取小球的落地点为原点建立坐标系,竖直向上为正方向.下列速度v和位置x的关系图象中,能描述该过程的是()2.(2016·高考全国卷丙)一质点做速度逐渐增大的匀加速直线运动,在时间间隔t内位移为s,动能变为原来的9倍.该质点的加速度为()3.(多选)(2016·高考全国卷乙)甲、乙两车在平直公路上同向行驶,其v-t图象如图所示.已知两车在t=3 s时并排行驶,则()A.在t=1 s时,甲车在乙车后B.在t=0时,甲车在乙车前mC.两车另一次并排行驶的时刻是t=2 sD.甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m4.(多选)(2016·高考全国卷甲)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则()A.甲球用的时间比乙球长B.甲球末速度的大小大于乙球末速度的大小C.甲球加速度的大小小于乙球加速度的大小D.甲球克服阻力做的功大于乙球克服阻力做的功专题2相互作用1.(2016·高考全国卷甲)质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F 缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小2.(2016·高考全国卷丙)如图,两个轻环a和b套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m的小球.在a和b之间的细线上悬挂一小物块.平衡时,a、b间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为()mC.m D.2m3.(多选)(2016·高考江苏卷)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中()A.桌布对鱼缸摩擦力的方向向左B.鱼缸在桌布上的滑动时间和在桌面上的相等C.若猫增大拉力,鱼缸受到的摩擦力将增大D.若猫减小拉力,鱼缸有可能滑出桌面4.(多选)(2016·高考全国卷乙)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C .连接a 和b 的绳的张力也在一定范围内变化D .物块b 与桌面间的摩擦力也在一定范围内变化专题3 牛顿运动定律1.(多选)(2016·高考全国卷乙)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变2.(多选)(2016·高考浙江卷)如图所示为一滑草场.某条滑道由上、下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin 37°=,cos 37°=.则( )A .动摩擦因数μ=67B .载人滑草车最大速度为 2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g 3.(多选)(2016·高考天津卷)我国高铁技术处于世界领先水平.和谐号动车组是由动车和拖车编组而成的,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列动车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组( )A .启动时乘客受到车厢作用力的方向与车运动的方向相反B .做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2C .进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D .与改为4节动车带4节拖车的动车组最大速度之比为1∶2专题4 曲线运动1.(2016·高考江苏卷)有A 、B 两小球,B 的质量为A 的两倍.现将它们以相同速率沿同一方向抛出,不计空气阻力.图中①为A 的运动轨迹,则B 的运动轨迹是( )A .①B .②C .③D .④2.(多选)(2016·高考全国卷丙)如图,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )A .a =2(mgR -W )mRB .a =2mgR -W mRC .N =3mgR -2W RD .N =2(mgR -W )R3.(多选)(2016·高考浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g =10 m/s 2,π=,则赛车( )A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为 m/s 2D .通过小圆弧弯道的时间为 s4.(2016·高考全国卷丙)如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R 4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.5.(2016·高考天津卷)我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图所示,质量m=60 kg的运动员从长直助滑道AB的A处由静止开始以加速度a=m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B的竖直高度差H=48 m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1 530 J,取g=10 m/s2.(1)求运动员在AB段下滑时受到阻力F f的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C点所在圆弧的半径R至少应为多大.6.(2016·高考浙江卷)在真空环境内探测微粒在重力场中能量的简化装置如图所示.P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h.(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系.专题5万有引力与航天1.(2016·高考全国卷丙)关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2.(2016·高考天津卷)我国即将发射“天宫二号”空间实验室,之后发射“神舟十一号”飞船与“天宫二号”对接.假设“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是()A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.(2016·高考全国卷乙)利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯.目前,地球同步卫星的轨道半径约为地球半径的倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为() A.1 h B.4 hC.8 h D.16 h4.(2016·高考北京卷)如图所示,一颗人造卫星原来在椭圆轨道1绕地球E运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是()A.不论在轨道1还是轨道2运行,卫星在P点的速度都相同B.不论在轨道1还是轨道2运行,卫星在P点的加速度都相同C.卫星在轨道1的任何位置都具有相同加速度D.卫星在轨道2的任何位置都具有相同动量5.(2016·高考四川卷)国务院批复,自2016年起将4月24日设立为“中国航天日”.1970年4月24日我国首次成功发射的人造卫星东方红一号,目前仍然在椭圆轨道上运行,其轨道近地点高度约为440 km,远地点高度约为2 060 km;1984年4月8日成功发射的东方红二号卫星运行在赤道上空35 786 km的地球同步轨道上.设东方红一号在远地点的加速度为a1,东方红二号的加速度为a2,固定在地球赤道上的物体随地球自转的加速度为a3,则a1、a2、a3的大小关系为()A.a2>a1>a3B.a3>a2>a1C.a3>a1>a2D.a1>a2>a36.(多选)(2016·高考江苏卷)如图所示,两质量相等的卫星A、B绕地球做匀速圆周运动,用R、T、E k、S分别表示卫星的轨道半径、周期、动能、与地心连线在单位时间内扫过的面积.下列关系式正确的有()A.T A>T B B.E k A>E k BC.S A=S B3A,T2A)=R3B T2B专题6机械能及其守恒定律1.(2016·高考四川卷)韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J,他克服阻力做功100 J.韩晓鹏在此过程中()A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J2.(2016·高考全国卷甲)小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点,()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度3.(多选)(2016·高考全国卷甲)如图,小球套在光滑的竖直杆上,轻弹簧一端固定于O点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中,( )A .弹力对小球先做正功后做负功B .有两个时刻小球的加速度等于重力加速度C .弹簧长度最短时,弹力对小球做功的功率为零D .小球到达N 点时的动能等于其在M 、N 两点的重力势能差4.(2016·高考全国卷甲)轻质弹簧原长为2l ,将弹簧竖直放置在地面上,在其顶端将一质量为5m 的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l .现将该弹簧水平放置,一端固定在A 点,另一端与物块P 接触但不连接.AB 是长度为5l 的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,如图所示.物块P 与AB 间的动摩擦因数μ=.用外力推动物块P ,将弹簧压缩至长度l ,然后放开,P 开始沿轨道运动.重力加速度大小为g .(1)若P 的质量为m ,求P 到达B 点时速度的大小,以及它离开圆轨道后落回到AB 上的位置与B 点之间的距离;(2)若P 能滑上圆轨道,且仍能沿圆轨道滑下,求P 的质量的取值范围.5.(2016·高考全国卷乙)如图,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态.直轨道与一半径为56R 的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出).随后P 沿轨道被弹回,最高到达F点,AF =4R .已知P 与直轨道间的动摩擦因数μ=14,重力加速度大小为g .(取sin 37°=35,cos 37°=45)(1)求P 第一次运动到B 点时速度的大小;(2)求P 运动到E 点时弹簧的弹性势能;(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距72R 、竖直相距R .求P 运动到D 点时速度的大小和改变后P 的质量.专题7 静电场1.(2016·高考全国卷丙)关于静电场的等势面,下列说法正确的是( )A .两个电势不同的等势面可能相交B .电场线与等势面处处相互垂直C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功2.(2016·高考全国卷乙)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上.若将云母介质移出,则电容器( )A .极板上的电荷量变大,极板间电场强度变大B .极板上的电荷量变小,极板间电场强度变大C .极板上的电荷量变大,极板间电场强度不变D .极板上的电荷量变小,极板间电场强度不变3.(2016·高考浙江卷)如图所示,两个不带电的导体A 和B ,用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C 置于A 附近,贴在A 、B 下部的金属箔都张开,( )A .此时A 带正电,B 带负电B .此时A 电势低,B 电势高C .移去C ,贴在A 、B 下部的金属箔都闭合D .先把A 和B 分开,然后移去C ,贴在A 、B 下部的金属箔都闭合4.(2016·高考江苏卷)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示.容器内表面为等势面,A 、B 为容器内表面上的两点,下列说法正确的是()A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同5.(2016·高考全国卷甲)如图,P是固定的点电荷,虚线是以P为圆心的两个圆.带电粒子Q在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点.若Q 仅受P的电场力作用,其在a、b、c点的加速度大小分别为a a、a b、a c,速度大小分别为v a、v b、v c,则()A.a a>a b>a c,v a>v c>v bB.a a>a b>a c,v b>v c>v aC.a b>a c>a a,v b>v c>v aD.a b>a c>a a,v a>v c>v b6.(2016·高考天津卷)如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地.在两极板间有一个固定在P点的点电荷,以E表示两板间的电场强度,E p表示点电荷在P点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则()A.θ增大,E增大B.θ增大,E p不变C.θ减小,E p增大D.θ减小,E不变7.(多选)(2016·高考全国卷乙)如图,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P的竖直线对称.忽略空气阻力.由此可知()A.Q点的电势比P点高B.油滴在Q点的动能比它在P点的大C.油滴在Q点的电势能比它在P点的大D.油滴在Q点的加速度大小比它在P点的小专题8恒定电流1.(2016·高考全国卷甲)阻值相等的四个电阻、电容器C及电池E(内阻可忽略)连接成如图所示电路.开关S断开且电流稳定时,C所带的电荷量为Q1;闭合开关S,电流再次稳定后,C所带的电荷量为与Q2的比值为()2.(多选)(2016·高考江苏卷)如图所示的电路中,电源电动势为12 V,内阻为2 Ω,四个电阻的阻值已在图中标出.闭合开关S,下列说法正确的有()A.路端电压为10 VB.电源的总功率为10 WC.a、b间电压的大小为5 VD.a、b间用导线连接后,电路的总电流为1 A专题9磁场1.(2016·高考北京卷)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是()A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用2.(2016·高考四川卷)如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶23.(2016·高考全国卷丙)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.一带电粒子的质量为m,电荷量为q(q>0).粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角.已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O的距离为()4.(2016·高考全国卷乙)现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比值约为()A.11B.12C.121D.1445.(2016·高考全国卷甲)一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()6.(2016·高考北京卷)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.7.(2016·高考天津卷)如图所示,空间中存在着水平向右的匀强电场,电场强度大小为E =5 3 N/C,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =T.有一带正电的小球,质量m=1×10-6kg,电荷量q=2×10-6C,正以速度v在图示的竖直面内做匀速直线运动,当经过P点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),取g=10 m/s2,求:(1)小球做匀速直线运动的速度v的大小和方向;(2)从撤掉磁场到小球再次穿过P点所在的这条电场线经历的时间t.8.(2016·高考浙江卷)为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图所示,圆心为O的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B,谷区内没有磁场.质量为m,电荷量为q的正离子,以不变的速率v旋转,其闭合平衡轨道如图中虚线所示.(1)求闭合平衡轨道在峰区内圆弧的半径r,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T;(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B′和B的关系.已知:sin (α±β)=sin αcos β±cos αsin β,cosα=1-2sin2α2专题10电磁感应1.(多选)(2016·高考江苏卷)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发生声音.下列说法正确的有()A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.弦振动过程中,线圈中的电流方向不断变化2.(2016·高考北京卷)如图所示,匀强磁场中有两个导体圆环a、b,磁场方向与圆环所在平面垂直.磁感应强度B随时间均匀增大.两圆环半径之比为2∶1,圆环中产生的感应电动势分别为E a和E b,不考虑两圆环间的相互影响.下列说法正确的是()A.E a∶E b=4∶1,感应电流均沿逆时针方向B.E a∶E b=4∶1,感应电流均沿顺时针方向C.E a∶E b=2∶1,感应电流均沿逆时针方向D.E a∶E b=2∶1,感应电流均沿顺时针方向3.(2016·高考浙江卷)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D.a、b线圈中电功率之比为3∶14.(多选)(2016·高考全国卷甲)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B中.圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()A.若圆盘转动的角速度恒定,则电流大小恒定B.若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C.若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D.若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍5.(多选)(2016·高考四川卷)如图所示,电阻不计、间距为l的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+k v(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F A,电阻R两端的电压为U R,感应电流的功率为P,它们随时间t变化图象可能正确的有()。
专题4 曲线运动1.[2016·全国卷Ⅰ] 如图1,一轻弹簧原长为2R ,其一端固定在倾角为37°的固定直轨道AC 的底端A 处,另一端位于直轨道上B 处,弹簧处于自然状态,直轨道与一半径为R 56的光滑圆弧轨道相切于C 点,AC =7R ,A 、B 、C 、D 均在同一竖直平面内.质量为m 的小物块P 自C 点由静止开始下滑,最低到达E 点(未画出),随后P 沿轨道被弹回,最高到达F 点,AF =4R ,已知P 与直轨道间的动摩擦因数μ=,重力加速度大小为g .(取sin 37°14=,cos 37°=)3545(1)求P 第一次运动到B 点时速度的大小.(2)求P 运动到E 点时弹簧的弹性势能.(3)改变物块P 的质量,将P 推至E 点,从静止开始释放.已知P 自圆弧轨道的最高点D 处水平飞出后,恰好通过G 点.G 点在C 点左下方,与C 点水平相距R 、竖直相距R ,求P 72运动到D 点时速度的大小和改变后P 的质量.图1解析: (1)根据题意知,B 、C 之间的距离l 为l =7R -2R ①设P 到达B 点时的速度为v B ,由动能定理得mgl sin θ-μmgl cos θ=mv ②122B 式中θ=37°,联立①②式并由题给条件得v B =2 ③gR (2)设BE =x ,P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有mgx sin θ-μmgx cos θ-E p =0-mv ④122B E 、F 之间的距离l 1为l 1=4R -2R +x ⑤P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有E p -mgl 1sin θ-μmgl 1cos θ=0 ⑥联立③④⑤⑥式并由题给条件得x =R ⑦E p =mgR ⑧125(3)设改变后P 的质量为m 1,D 点与G 点的水平距离x 1和竖直距离y 1分别为x 1=R -R sin θ ⑨7256y 1=R +R +R cos θ ⑩5656式中,已应用了过C 点的圆轨道半径与竖直方向夹角仍为θ的事实.设P 在D 点的速度为v D ,由D 点运动到G 点的时间为t .由平抛物运动公式有y 1=gt 2 ⑪12x 1=v D t ⑫联立⑨⑩⑪⑫式得v D = ⑬355gR 设P 在C 点速度的大小为v C ,在P 由C 运动到D 的过程中机械能守恒,有m 1v =m 1v +m 1g ⑭122C 122D (56R +56R cos θ)P 由E 点运动到C 点的过程中,同理,由动能定理有E p -m 1g (x +5R )sin θ-μm 1g (x +5R )cos θ=m 1v ⑮122C 联立⑦⑧⑬⑭⑮式得m 1=m ⑯132.[2016·天津卷] 如图1所示,空间中存在着水平向右的匀强电场,电场强度大小E =5N/C ,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小3B =0.5 T .有一带正电的小球,质量m =1×10-6 kg ,电荷量q =2×10-6 C ,正以速度v在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象),g 取10 m/s 2.求:(1)小球做匀速直线运动的速度v 的大小和方向;(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t .解析: (1)小球匀速直线运动时受力如图1所示,其所受的三个力在同一平面内,合力为零,有qvB = ①q 2E 2+m 2g 2代入数据解得v =20 m/s ②速度v 的方向与电场E 的方向之间的夹角θ满足tan θ= ③qEmg 代入数据解得tan θ=3θ=60° ④(2)解法一:撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,设其加速度为a ,有a = ⑤q 2E 2+m 2g 2m 设撤掉磁场后小球在初速度方向上的分位移为x ,有x =vt ⑥设小球在重力与电场力的合力方向上分位移为y ,有y =at 2 ⑦12a 与mg 的夹角和v 与E 的夹角相同,均为θ,又tan θ= ⑧yx 联立④⑤⑥⑦⑧式,代入数据解得t =2 s =3.5 s ⑨3解法二:撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运动没有影响,以P 点为坐标原点,竖直向上为正方向,小球在竖直方向上做匀减速运动,其初速度为v y =v sin θ ⑤若使小球再次穿过P 点所在的电场线,仅需小球的竖直方向上分位移为零,则有v y t -gt 2=0 ⑥12联立⑤⑥式,代入数据解得t =2 s =3.5 s33.[2016·江苏卷3分] 有A 、B 两小球,B 的质量为A 的两倍.现将它们以相同速率沿同一方向抛出,不计空气阻力.图中①为A 的运动轨迹,则B 的运动轨迹是( )图1A .①B .②C .③D .④答案:A解析: 抛体运动的加速度始终为g ,与抛体的质量无关.当将它们以相同速率沿同一方向抛出时,运动轨迹应该相同.故选项A 正确.4.[2016·浙江卷] 在真空环境内探测微粒在重力场中能量的简化装置如图19所示.P 是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h 的探测屏AB 竖直放置,离P 点的水平距离为L ,上端A 与P 点的高度差也为h .图19(1)若微粒打在探测屏AB 的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A 、B 两点的微粒的动能相等,求L 与h 的关系.解析: (1)打在中点的微粒h =gt 2 ①3212t = ②3hg (2)打在B 点的微粒v 1=;2h =gt ③L t 11221v 1=L ④g4h 同理,打在A 点的微粒初速度v 2=L ⑤g2h 微粒初速度范围L ≤v ≤L ⑥g 4h g2h (3)由能量关系mv +mgh =mv +2mgh ⑦1221221代入④、⑤式得L =2h ⑧25.[2016·全国卷Ⅲ] 如图所示,一固定容器的内壁是半径为R 的半球面;在半球面水平直径的一端有一质量为m 的质点P .它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W .重力加速度大小为g .设质点P 在最低点时,向心加速度的大小为a ,容器对它的支持力大小为N ,则( )图1A .a =B .a =2(mgR -W )mR2mgR -WmRC .N =D .N =3mgR -2WR 2(mgR -W )R答案:AC 解析: 质点P 下滑到底端的过程,由动能定理得mgR -W =mv 2-0,可得v 2=12,所以a ==,A 正确,B 错误;在最低点,由牛顿第二定律得2(mgR -W )m v 2R 2(mgR -W )mRN -mg =m ,故N =mg +m =mg +·=,C 正确,D 错误.v 2R v 2R m R 2(mgR -W )m 3mgR -2WR 6.[2016·全国卷Ⅲ] 如图1所示,在竖直平面内有由圆弧AB 和圆弧BC 组成的光滑固1412定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为.一小球在A 点正上R2方与A 相距处由静止开始自由下落,经A 点沿圆弧轨道运动.R4(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.图1解析: (1)设小球的质量为m ,小球在A 点的动能为E k A ,由机械能守恒得E k A =mg ①R4设小球在B 点的动能为E k B ,同理有E k B =mg ②5R4由①②式得=5 ③E k BE k A (2)若小球能沿轨道运动到C 点,小球在C 点所受轨道的正压力N 应满足N ≥0 ④设小球在C 点的速度大小为v C ,由牛顿运动定律和向心加速度公式有N +mg = ⑤由④⑤式得,v C 应满足mg ≤m ⑥由机械能守恒有mg =mv ⑦R 4122C 由⑥⑦式可知,小球恰好可以沿轨道运动到C 点.7.[2016·天津卷]我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1所示,质量m =60kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.图1(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?解析: (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v =2ax 2B ①由牛顿第二定律有mg -F f =ma ②Hx 联立①②式,代入数据解得F f =144 N ③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理有mgh +W =mv -mv ④122C 122B 设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m ⑤由运动员能够承受的最大压力为其所受重力的6倍,联立④⑤式,代入数据解得R =12.5 m8.[2016·浙江卷6分] 如图16所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R =90 m 的大圆弧和r =40 m 的小圆弧,直道与弯道相切.大、小圆弧圆心O 、O ′距离L =100 m .赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g 取10 m/s 2,π=3.14),则赛车( )图16A .在绕过小圆弧弯道后加速B .在大圆弧弯道上的速率为45 m/sC .在直道上的加速度大小为5.63 m/s 2D .通过小圆弧弯道的时间为5.58 s 答案:AB 解析:要使赛车绕赛道一圈时间最短,则通过弯道的速度都应最大,由f =2.25mg =m可知,通过小弯道的速度v 1=30 m/s ,通过大弯道的速度v 2=45 m/s ,故绕过小圆弧弯v 2r 道后要加速,选项A 、B 正确;如图所示,由几何关系可得AB 长x ==50L 2-(R -r )2 m ,故在直道上的加速度a == m/s 2≈6.5 m/s 2,选项C 错误;由3452-3022×503sin ==可知,小圆弧对应的圆心角θ=,故通过小圆弧弯道的时间t ==θ2x L 322π3θrv 1= s =2.79 s ,选项D 错误.2πr 3v 12× 3.14×403×30D5 万有引力与天体运动9.[2016·全国卷Ⅰ6分] 利用三颗位置适当的地球同步卫星,可使地球赤道上任意两点之间保持无线电通讯,目前,地球同步卫星的轨道半径约为地球半径的6.6倍.假设地球的自转周期变小,若仍仅用三颗同步卫星来实现上述目的,则地球自转周期的最小值约为( )A .1 h B .4 h C .8 h D .16 h 答案:B 解析:B 当一地球卫星的信号刚好覆盖赤道120°的圆周时,卫星的轨道半径r ==2R ;对同步卫星,分别有=m ·6.6R 和=m 2·2R ,Rcos 60°GMm (6.6R )2(2πT 0)2 GMm (2R )2(2πT )即=,解得T =4 h ,选项B 正确.(T T 0)2 (2R 6.6R )310.[2016·全国卷Ⅲ6分] 关于行星运动的规律,下列说法符合史实的是( )A .开普勒在牛顿定律的基础上,导出了行星运动的规律B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律答案:B解析: 开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B 正确.11.(2016年海南卷7题6分)通过观察冥王星的卫星,可以推算出冥王星的质量。
专题15 近代物理初步1.[2016·全国卷Ⅰ] [物理——选修35](1)现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是________.A .保持入射光的频率不变,入射光的光强变大,饱和光电流变大B .入射光的频率变高,饱和光电流变大C .入射光的频率变高,光电子的最大初动能变大D .保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生E .遏止电压的大小与入射光的频率有关,与入射光的光强无关答案:ACE 解析:根据光电效应实验得出的结论:保持入射光的频率不变,入射光的光强变大,饱和光电流变大;入射光的频率高,饱和光电流不变,故A 正确,B 错误;根据爱因斯坦光电效应方程得:入射光的频率变高,光电子的最大初动能变大,故C 正确;遏止电压的大小与入射光的频率有关,与入射光的光强无关,保持入射光的光强不变,不断减小入射光的频率,若低于截止频率,则没有光电流产生,故D 错误,E 正确.2.[2016·江苏卷]C .[选修35](2)已知光速为c ,普朗克常数为h ,则频率为ν的光子的动量为________.用该频率的光垂直照射平面镜,光被镜面全部垂直反射回去,则光子在反射前后动量改变量的大小为________.答案: 2h νc h νc解析:因为光速c =λν,则λ=,所以光子的动量p ==,由于动量是矢量,因c νh λh νc 此若以射向平面镜时光子的动量方向为正方向,即p 1=,反射后p 2=-,动量的变h νc h νc 化量Δp =p 2-p 1=--=-2,则光子在反射前后动量改变量的大小为2.h νc h νc h νc h νc 3.[2016·江苏卷]C .[选修35] (3)几种金属的逸出功W 0见下表:金属钨钙钠钾铷W 0/(10-19J)7.26 5.12 3.66 3.60 3.41由一束可见光照射上述金属的表面,请通过计算说明哪些能发生光电效应.已知该可见光的波长的范围为4.0×10-7~7.6×10-6 m ,普朗克常数h =6.63×10-34 J·s.答案:钠、钾、铷能发生光电效应解析:光子的能量E =,当λ=4.0×10-7 m 时,E =5.0×10-19 J.hcλ根据E >W 0判断,钠、钾、铷能发生光电效应.4.[2016·全国卷Ⅱ] [物理——选修35]在下列描述核过程的方程中,属于α衰变的是________,属于β衰变的是________,属于裂变的是________,属于聚变的是________.(填正确答案标号)A. C→N +e 1461470-1B. P→S +e 321532160-1C. U→Th +He 238922349042D. N +He→O +H 147421781E. U +n→Xe +Sr +2n 235921014054943810F. H +H→He +n 31214210答案: C AB E F解析:α衰变是原子核自发地放射出α粒子的核衰变过程,选C ;β衰变是原子核自发地放射出β粒子的核衰变过程,选A 、B ;重核裂变选E ;轻核聚变选F.5.[2016·全国卷Ⅲ] [物理——选修35]一静止的铝原子核Al 俘获一速度为1.0×107 m/s 的质子p 后,变为处于激发态的硅原2713子核Si *,下列说法正确的是________.2814A .核反应方程为p +Al ―→Si *27132814B .核反应过程中系统动量守恒C .核反应过程中系统能量不守恒D .核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E .硅原子核速度的数量级为105 m/s ,方向与质子初速度的方向一致答案:ABE 解析:核反应方程为p +Al→Si *,A 正确;核反应过程中系统动量守恒、能量守恒(只27132814是前后表现形式不同罢了)、质量数守恒、电荷数守恒,但质量亏损,亏损部分以能量的形式释放出去,所以B 正确,C 、D 错误;由动量守恒定律得0+m 1v 1=m 2v 2,即0+1×107=28v 2,解得v 2≈0.036×107 m/s =3.6×105 m/s ,E 正确.6.[2016·北京卷] 处于n =3能级的大量氢原子,向低能级跃迁时,辐射光的频率有( )A .1种B .2种C .3种D .4种答案:C 解析: 处在高能级的氢原子向低能级跃迁时,可以向任意低能级跃迁.选项C 正确,A 、B 、D 不正确.7.[2016·江苏卷]C .[选修35](1)贝可勒尔在120年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用.下列属于放射性衰变的是________.A. C→N +e 1461470-1B. U +n→I +Y +2n 2359210131531033910C. H +H→He +n 21314210D. He +Al→P +n 422713301510答案:A 解析:原子核自发地放出某种粒子而转变为新核的变化叫作原子核的衰变,只有选项A 符合.选项B 是核裂变反应.选项D 是人工核转变反应,选项C 是核聚变反应.8.[2016·海南卷 [物理——选修358分](1)(4分)下列说法正确的是_________。
专题14 光学 电磁波 相对论1.[2016·全国卷Ⅰ] [物理——选修34]如图1,在注满水的游泳池的池底有一点光源A ,它到池边的水平距离为3.0 m .从点光源A 射向池边的光线AB 与竖直方向的夹角恰好等于全反射的临界角,水的折射率为43.图1(i)求池内的水深;(ii)一救生员坐在离池边不远处的高凳上,他的眼睛到池面的高度为2.0 m .当他看到正前下方的点光源A 时,他的眼睛所接受的光线与竖直方向的夹角恰好为45°.求救生员的眼睛到池边的水平距离(结果保留1位有效数字).解析: (i)如图,设到达池边的光线的入射角为i ,依题意,水的折射率n =43,光线的折射角θ=90°,由折射定律有n sin i =sin θ ①由几何关系有 sin i =l l 2+h 2②式中,l =3 m ,h 是池内水的深度,联立①②式并代入题给数据得h =7 m ≈2.6 m ③(ii)设此时救生员的眼睛到池边的距离为x .依题意,救生员的视线与竖直方向的夹角为θ′=45°.由折射定律有n sin i ′=sin θ′ ④式中,i ′是光线在水面的入射角.设池底点光源A 到水面入射点的水平距离为a ,由几何关系有 sin i ′=a a 2+h 2⑤x +l =a +h ′ ⑥式中h ′=2 m ,联立③④⑤⑥式得x =⎝ ⎛⎭⎪⎫3723-1 m ≈0.7 m ⑦ 2.[2016·全国卷Ⅲ] [物理——选修34]如图1所示,玻璃球冠的折射率为3,其底面镀银,底面的半径是球半径的32倍;在过球心O 且垂直于底面的平面(纸面)内,有一与底面垂直的光线射到玻璃球冠上的M 点,该光线的延长线恰好过底面边缘上的A 点.求该光线从球面射出的方向相对于其初始入射方向的偏角.图1解析:设球半径为R ,球冠底面中心为O ′,连接OO ′,则OO ′⊥AB .令∠OAO ′=α,有 cos α=O ′A OA =32RR①即α=30° ②由题意MA ⊥AB 所以∠OAM =60°设图中N点为光线在球冠内底面上的反射点,所考虑的光线的光路图如图所示.设光线在M 点的入射角为i、折射角为r,在N点的入射角为i′,反射角为i″,玻璃折射率为n.由于△OAM为等边三角形,有i=60°④由折射定律有sin i=n sin r⑤代入题给条件n=3得r=30°⑥作底面在N点的法线NE,由于NE∥AM,有i′=30°⑦根据反射定律,有i″=30°⑧连接ON,由几何关系知△MAN≌△MON,故有∠MNO=60°⑨由⑦⑨式得∠ENO=30°⑩于是∠ENO为反射角,ON为反射光线.这一反射光线经球面再次折射后不改变方向.所以,经一次反射后射出玻璃球冠的光线相对于入射光线的偏角β为β=180°-∠ENO=150°⑪3.[2016·天津卷] 图1是a、b两光分别经过同一双缝干涉装置后在屏上形成的干涉图样,则( )图1A.在同种均匀介质中,a光的传播速度比b光的大B.从同种介质射入真空发生全反射时a光临界角大C.照射在同一金属板上发生光电效应时,a光的饱和电流大D.若两光均由氢原子能级跃迁产生,产生a光的能级能量差大答案:D解析:从图中可以看出,a光干涉条纹的间距比b光干涉条纹的间距要小,由于是在同一双缝干涉装置上形成的干涉图样,因此a光的波长小于b光的波长,a光的频率大于b光的频率,a光的折射率大于b光的折射率,所以在同种均匀介质中传播时,a光的速度小于b 光的速度,A错误;从同种介质射入真空发生全反射时,a光的临界角小于b光的临界角,B 错误;发生光电效应的光电流大小与光子的能量和光强有关,故无法判断饱和电流的大小,选项C错误;a光的频率高,光子的能量大,故由氢原子能级跃迁产生这两种光时,产生a 光的能级能量差大,D正确.4.[2016·江苏卷]B.[选修34](2)杨氏干涉实验证明光的确是一种波,一束单色光投射在两条相距很近的狭缝上,两狭缝就成了两个光源,它们发出的光波满足干涉的必要条件,则两列光的________相同.如图1所示,在这两列光波相遇的区域中,实线表示波峰,虚线表示波谷,如果放置光屏,在________(选填“A”“B”或“C”)点会出现暗条纹.图1答案:频率C解析:只有频率相同的两列波才可能发生干涉现象.只有波峰与波谷相遇处才是振动减弱点,也就是出现暗条纹处.4.(2016年上海卷2题2分)一束单色光由空气进入水中,则该光在空气和水中传播时(A)速度相同,波长相同(B)速度不同,波长相同(C)速度相同,频率相同(D)速度不同,频率相同答案:D解析:不同的单色光频率不相同,同一单色光在不同的介质内传播过程中,光的频率不会发生改变;由公式cvn可以判断,水的折射率大于空气的,所以该单色光进入水中后传播速度减小。
专题13 交变电流1.[2018·全国卷Ⅲ] 如图所示,M 为半圆形导线框,圆心为O M ;N 是圆心角为直角的扇形导线框,圆心为O N ;两导线框在同一竖直面(纸面)内;两圆弧半径相等;过直线O M O N 的水平面上方有一匀强磁场,磁场方向垂直于纸面.现使线框M 、N 在t =0时从图示位置开始,分别绕垂直于纸面、且过O M 和O N 的轴,以相同的周期T 逆时针匀速转动,则( )图1A .两导线框中均会产生正弦交流电B .两导线框中感应电流的周期都等于TC .在t =T8时,两导线框中产生的感应电动势相等D .两导线框的电阻相等时,两导线框中感应电流的有效值也相等 答案:BC解析: 设导线圈半径为l ,角速度为ω,两导线框切割磁感线的等效长度始终等于圆弧半径,因此在产生感应电动势时其瞬时感应电动势大小始终为E =12B ωl 2,但进磁场和出磁场时电流方向相反,所以线框中应该产生方波交流式电,如图所示,A 错误;由T =2πω可知,两导线框中感应电流的周期相同,均为T ,B 正确;在t =T8时,两导线框均在切割磁感线,故两导线框中产生的感应电动势均为12B ωl 2,C 正确;对于线框M ,有E 2R ·T 2+E 2R ·T 2=U 2有M R·T ,解得U 有M =E ;对于线框N ,有E 2R ·T 4+0+E 2R ·T 4+0=U 2有NR·T ,解得U有N=22E ,故两导线框中感应电流的有效值并不相等,D 错误.2.[2018·全国卷Ⅰ] 一含有理想变压器的电路如图1所示,图中电阻R 1、R 2和R 3的阻值分别为3 Ω、1 Ω 和4 ΩU 为正弦交流电压源,输出电压的有效值恒定.当开关S 断开时,电流表的示数为I ;当S 闭合时,电流表的示数为4I .该变压器原、副线圈匝数比为( )图1A .2B .3C .4D .5 答案:B解析:开关断开时,原、副线圈的电流比I I 2=n 2n 1,通过R 2的电流I 2=In 1n 2,副线圈的输出电压U 2=I 2(R 2+R 3)=5In 1n 2,由U 1U 2=n 1n 2可得原线圈两端的电压U 1=5I ⎝ ⎛⎭⎪⎫n 1n 22,则U =U 1+IR 1=5I ⎝ ⎛⎭⎪⎫n 1n 22+3I ;开关闭合时,原、副线圈的电流比4I I ′2=n 2n 1,通过R 2的电流I ′2=4In 1n 2,副线圈的输出电压U ′2=I ′2R 2=4In 1n 2,由U ′1U ′2=n 1n 2可得原线圈两端的电压U ′1=4I ⎝ ⎛⎭⎪⎫n 1n 22,则U =U ′1+4IR 1=4I ⎝ ⎛⎭⎪⎫n 1n 22+12I ,解得n 1n 2=3,选项B 正确. 3.[2018·全国卷Ⅲ] 如图1所示,理想变压器原、副线圈分别接有额定电压相同的灯泡a 和b.当输入电压U 为灯泡额定电压的10倍时,两灯泡均能正常发光.下列说法正确的是( )图1A .原、副线圈匝数比为9∶1B .原、副线圈匝数比为1∶9C .此时a 和b 的电功率之比为9∶1D .此时a 和b 的电功率之比为1∶9 答案:AD解析: 设灯泡的额定电压为U 0,则输入电压U =10U 0,由于两灯泡均正常发光,故原线圈两端的电压U 1=U -U 0=9U 0,副线圈两端的电压U 2=U 0,所以原、副线圈的匝数比n 1∶n 2=U 1∶U 2=9∶1,A 正确,B 错误;原、副线圈的电流之比I 1∶I 2=n 2∶n 1=1∶9,由电功率P =UI可知,a和b的电功率之比为1∶9,C错误,D正确.4.[2018·天津卷] 如图1所示,理想变压器原线圈接在交流电源上,图中各电表均为理想电表.下列说法正确的是( )图1A.当滑动变阻器的滑动触头P向上滑动时,R1消耗的功率变大B.当滑动变阻器的滑动触头P向上滑动时,电压表V示数变大C.当滑动变阻器的滑动触头P向上滑动时,电流表A1示数变大D.若闭合开关S,则电流表A1示数变大,A2示数变大答案:B解析:滑动变阻器的滑动触头P向上滑动时,滑动变阻器接入电路的阻值变大,总电阻也变大,而副线圈两端的电压没有变化,所以干路中的电流减小,R1消耗的功率变小,A错误;干路中的电流变小,R1两端的电压变小,并联电路的电压变大,即电压表V示数变大,B正确;由于变压器副线圈干路中的电流变小,所以原线圈中的电流变小,即电流表A1的示数变小,C错误;闭合开关S后,并联电路的阻值变小,总电阻也变小,干路中的电流变大,R1两端的电压变大,并联电路的电压变小,通过R2的电流变小,即电流表A2示数变小,因变压器的功率变大,故电流表A1示数变大,D错误.5.[2018·江苏卷] 一自耦变压器如图1所示,环形铁芯上只绕有一个线圈,将其接在a、b 间作为原线圈.通过滑动触头取该线圈的一部分,接在c、d间作为副线圈.在a、b间输入电压为U1的交变电流时,c、d间的输出电压为U2,在将滑动触头从M点顺时针旋转到N点的过程中( )图1A.U2>U1,U2降低B.U2>U1,U2升高C .U 2<U 1,U 2降低D .U 2<U 1,U 2升高 答案:C解析: 根据变压器原、副线圈两端电压和原、副线圈匝数的关系式有U 1U 2=n 1n 2,这里n 2<n 1,所以U 2<U 1.在将滑动触头从M 点顺时针旋转到N 点的过程中,n 2变小,n 1不变,而原线圈两端电压U 1也不变,因此U 2降低,选项C 正确.6.[2018·四川卷] 如图1所示,接在家庭电路上的理想降压变压器给小灯泡L 供电,如果将原、副线圈减少相同匝数,其他条件不变,则( )图1A .小灯泡变亮B .小灯泡变暗C .原、副线圈两端电压的比值不变D .通过原、副线圈电流的比值不变 答案:B解析: 由变压器相关知识得:U 1U 2=n 1n 2,原、副线圈减去相同的匝数n 后:U 1U ′2=n ′1n ′2=n 1-n n 2-n,n 1n 2-n ′1n ′2=-n (n 1-n 2)n 2(n 2-n )<0,则说明变压器原、副线圈的匝数比变大,则可得出C 、D 错误.由于原线圈电压恒定不变,则副线圈电压减小,小灯泡实际功率减小,小灯泡变暗,A 错误,B 正确.。
专题9 电场1.[2016·全国卷Ⅱ] 如图1所示,P 是固定的点电荷,虚线是以P 为圆心的两个圆.带电粒子Q 在P 的电场中运动.运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点.若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则( )图1A .a a >a b >a c ,v a >v c >v bB .a a >a b >a c ,v b >v c >v aC .a b >a c >a a ,v b >v c >v aD .a b >a c >a a ,v a >v c >v b答案:D 解析: 由库仑定律可知,粒子在a 、b 、c 三点受到的电场力的大小关系为F b >F c >F a ,由a =Fm可知,a b >a c >a a ,由运动轨迹可知,粒子Q 的电性与P 相同,受斥力作用,不论粒子从a 到c ,还是从c 到a ,在运动过程中总有排斥力与运动方向的夹角先为钝角后为锐角,即斥力先做负功后做正功,因此v a >v c >v b ,故D 正确.2.[2016·浙江卷] 如图11所示,两个不带电的导体A 和B ,用一对绝缘柱支持使它们彼此接触.把一带正电荷的物体C 置于A 附近,贴在A 、B 下部的金属箔都张开( )图11A .此时A 带正电,B 带负电 B .此时A 电势低,B 电势高C .移去C ,贴在A 、B 下部的金属箔都闭合D .先把A 和B 分开,然后移去C ,贴在A 、B 下部的金属箔都闭合答案:C 解析: 由感应起电可知,近端感应出异种电荷,故A 带负电,B 带正电,选项A 错误;处于静电平衡状态下的导体是等势体,故A 、B 电势相等,选项B 错误;先移去C ,则A 、B 两端的等量异种电荷又重新中和,而先分开A 、B ,后移走C ,则A 、B 两端的等量异种电荷就无法重新中和,故选项C 正确,选项D 错误.3.[2016·浙江卷] 如图所示,把A 、B 两个相同的导电小球分别用长为0.10 m 的绝缘细线悬挂于O A 和O B 两点.用丝绸摩擦过的玻璃棒与A 球接触,棒移开后将悬点O B 移到O A 点固定.两球接触后分开,平衡时距离为0.12 m .已测得每个小球质量是8.0×10-4kg ,带电小球可视为点电荷,重力加速度g 取10 m/s 2,静电力常量k =9.0×109N ·m 2/C 2,则( )A .两球所带电荷量相等B .A 球所受的静电力为1.0×10-2N C .B 球所带的电荷量为46×10-8 C D .A 、B 两球连线中点处的电场强度为0 答案:ACD解析: 由接触起电的电荷量分配特点可知,两相同金属小球接触后带上等量同种电荷,选项A 正确;对A 受力分析如图所示,有F 库mg =AD O A D ,而F 库=k q 2AB2,得F 库=6×10-3N ,q =46×10-8C ,选项B 错误,选项C 正确;等量同种电荷连线的中点电场强度为0,选项D 正确.4.[2016·全国卷Ⅲ] 关于静电场的等势面,下列说法正确的是( ) A .两个电势不同的等势面可能相交 B .电场线与等势面处处相互垂直 C .同一等势面上各点电场强度一定相等D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功答案:B解析:静电场中的电场线不可能相交,等势面也不可能相交,否则的话会出现一个点有两个电场强度和两个电势值的矛盾,A错误;由W AB=qU AB可知,当电荷在等势面上移动时,电荷的电势能不变,如果电场线不与等势面垂直,那么电荷将受到电场力,在电荷运动时必然会做功并引起电势能变化,这就矛盾了,B正确;同一等势面上各点电势相等,但电场强度不一定相等,C错误;对于负电荷,q<0,从电势高的A点移到电势低的B点,U AB>0,由电场力做功的公式W AB=qU AB可知W AB<0,电场力做负功,D错误.5.[2016·江苏卷] 一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图1所示.容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( )图1A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同答案:C解析:电场线的疏密反映电场的强弱,电场线越密,电场越强,据图可知,B点的电场强度比A点大,选项A错误;沿电场线电势降低,小球表面的电势比容器内表面的高,选项B 错误;容器内表面为等势面,而电场线总与等势面垂直,故B点的电场强度方向与该处内表面垂直,选项C正确.A、B两点等势,将检验电荷从A点沿不同路径移到B点,电场力做功均为零,选项D错误.6.[2016·全国卷Ⅰ] 一平行板电容器两极板之间充满云母介质,接在恒压直流电源上,若将云母介质移出,则电容器( )A.极板上的电荷量变大,极板间的电场强度变大B.极板上的电荷量变小,极板间的电场强度变大C.极板上的电荷量变大,极板间的电场强度不变D .极板上的电荷量变小,极板间的电场强度不变 答案:D解析:由平行板电容器电容的决定式C =εS4k πd ,将云母介质移出,电容C 减小,而两极板的电压U 恒定,由Q =CU ,极板上的电荷量Q 变小,又由E =Ud可得板间电场强度与介质无关,大小不变,选项D 正确.7.[2016·全国卷Ⅰ] 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图1所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )图1A .11B .12C .121D .144 答案:D解析:粒子在电场中加速,设离开加速电场的速度为v ,则qU =12mv 2,粒子进入磁场做圆周运动,半径r =mv qB =1B2mUq,因两粒子轨道半径相同,故离子和质子的质量比为144,选项D 正确.8.[2016·全国卷Ⅱ] 阻值相等的四个电阻、电容器C 及电池E (内阻可忽略)连接成如图1所示电路.开关S 断开且电流稳定时,C 所带的电荷量为Q 1;闭合开关S ,电流再次稳定后,C 所带的电荷量为Q 2.Q 1与Q 2的比值为( )图1A. 25B.12C.35D.23 答案:C解析: 由已知条件及电容定义式C =QU 可得:Q 1=U 1C ,Q 2=U 2C ,则Q 1Q 2=U 1U 2. S 断开时等效电路如图甲所示甲U 1=R (R +R )(R +R )+R R +R (R +R )(R +R )+R·E×12=15E ;S 闭合时等效电路如图乙所示,乙U 2=R ·R R +R R +R ·R R +R·E =13E ,则Q 1Q 2=U 1U 2=35,故C 正确.9.[2016·北京卷] 如图1所示,电子由静止开始经加速电场加速后,沿平行于板面的方向射入偏转电场,并从另一侧射出.已知电子质量为m ,电荷量为e ,加速电场电压为U 0,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,板间距为d .(1)忽略电子所受重力,求电子射入偏转电场时的初速度v 0和从电场射出时沿垂直板面方向的偏转距离Δy ;(2)分析物理量的数量级,是解决物理问题的常用方法.在解决(1)问时忽略了电子所受重力,请利用下列数据分析说明其原因.已知U =2.0×102V ,d =4.0×10-2m ,m =9.1×10-31kg ,e =1.6×10-19 C ,g =10 m/s 2.(3)极板间既有静电场也有重力场.电势反映了静电场各点的能的性质,请写出电势φ的定义式.类比电势的定义方法,在重力场中建立“重力势”φG 的概念,并简要说明电势和“重力势”的共同特点.图1解析: (1)根据功和能的关系,有eU 0=12mv 2电子射入偏转电场的初速度v 0=2eU 0m在偏转电场中,电子的运动时间Δt =L v 0=L m2eU 0偏转距离Δy =12a (Δt )2=UL 24U 0d.(2)考虑电子所受重力和电场力的数量级,有 重力G =mg ~10-29N 电场力F =eU d~10-15N由于F ≫G ,因此不需要考虑电子所受重力.(3)电场中某点电势φ定义为电荷在该点的电势能E p 与其电荷量q 的比值, 即φ=E pq由于重力做功与路径无关,可以类比静电场电势的定义,将重力场中物体在某点的重力势能E G 与其质量m 的比值,叫作“重力势”,即φG =E Gm.电势φ和重力势φG 都是反映场的能的性质的物理量,仅由场自身的因素决定.10.[2016·天津卷] 如图1所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一个固定在P 点的点电荷,以E 表示两板间的电场强度,E p 表示点电荷在P 点的电势能,θ表示静电计指针的偏角.若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则( )图1A .θ增大,E 增大B .θ增大,E p 不变C .θ减小,E p 增大D .θ减小,E 不变 答案:D解析: 保持下极板不动,上极板向下移动一小段距离后,由C =εr S4πkd可知电容器的电容变大,由于Q 不变,由C =Q U 可知U 减小,故静电计的指针偏角变小;电场强度E =U d =Q Cd =4πkQεr S不变;由于下极板不动,电场强度E 不变,所以P 点的电势没有发生改变,故点电荷在P 点的电势能不变,A 、B 、C 错误,D 正确.11.[2016·四川卷] 中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器.加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用.如图1所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极.质子从K 点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变.设质子进入漂移管B 时速度为8×106m/s ,进入漂移管E 时速度为1×107m/s ,电源频率为1×107Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的12.质子的荷质比取1×108C/kg.求:(1)漂移管B 的长度; (2)相邻漂移管间的加速电压.图1解析: (1)设质子进入漂移管B 的速度为v B ,电源频率、周期分别为f 、T ,漂移管B 的长度为L ,则T =1f L =v B ·T2联立①②式并代入数据得L =0.4 m(2)设质子进入漂移管E 的速度为v E ,相邻漂移管间的加速电压为U ,电场对质子所做的功为W .质子从漂移管B 运动到E 电场做功W ′,质子的电荷量为q 、质量为m ,则W =qU ④ W ′=3W ⑤W ′=12mv 2E -12mv 2B ⑥联立④⑤⑥式并代入数据得U =6×104 V ⑦12.[2016·全国卷Ⅰ] 如图1所示,一带负电荷的油滴在匀强电场中运动,其轨迹在竖直面(纸面)内,且相对于过轨迹最低点P 的竖直线对称.忽略空气阻力.由此可知( )图1A .Q 点的电势比P 点高B .油滴在Q 点的动能比它在P 点的大C .油滴在Q 点的电势能比它在P 点的大D .油滴在Q 点的加速度大小比它在P 点的小 答案:AB解析:油滴做类斜抛运动,加速度恒定,选项D 错误;合力竖直向上,且电场力Eq 竖直向上,Eq >mg ,电场方向竖直向下,P 点电势最低,负电荷在P 点电势能最大,选项A 正确,选项C 错误;若粒子从Q 点运动到P 点,则合力做负功,动能减小,P 点的动能最小,选项B 正确.。
专题11 磁场1.[2016·北京卷] 中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是( )图1A.地理南、北极与地磁场的南、北极不重合B.地球内部也存在磁场,地磁南极在地理北极附近C.地球表面任意位置的地磁场方向都与地面平行D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用答案:C 解析:根据“则能指南,然常微偏东,不全南也”知,选项A正确.由图可知地磁场的南极在地理北极附近,选项B正确.由图可知在两极附近地磁场与地面不平行,选项C不正确.由图可知赤道附近的地磁场与地面平行,射向地面的带电宇宙粒子运动方向与磁场方向垂直,会受到磁场力的作用,选项D正确.2.[2016·天津卷] 电磁缓速器是应用于车辆上以提高运行安全性的辅助制动装置,其工作原理是利用电磁阻尼作用减缓车辆的速度.电磁阻尼作用可以借助如下模型讨论:如图1所示,将形状相同的两根平行且足够长的铝条固定在光滑斜面上,斜面与水平方向夹角为θ.一质量为m的条形磁铁滑入两铝条间,恰好匀速穿过,穿过时磁铁两端面与两铝条的间距始终保持恒定,其引起电磁感应的效果与磁铁不动、铝条相对磁铁运动相同.磁铁端面是边长为d的正方形,由于磁铁距离铝条很近,磁铁端面正对两铝条区域的磁场均可视为匀强磁场,磁感应强度为B,铝条的高度大于d,电阻率为ρ.为研究问题方便,铝条中只考虑与磁铁正对部分的电阻和磁场,其他部分电阻和磁场可忽略不计,假设磁铁进入铝条间以后,减少的机械能完全转化为铝条的内能,重力加速度为g.(1)求铝条中与磁铁正对部分的电流I ;(2)若两铝条的宽度均为b ,推导磁铁匀速穿过铝条间时速度v 的表达式;(3)在其他条件不变的情况下,仅将两铝条更换为宽度b ′>b 的铝条,磁铁仍以速度v 进入铝条间,试简要分析说明磁铁在铝条间运动时的加速度和速度如何变化.解析: (1)磁铁在铝条间运动时,两根铝条受到的安培力大小相等,均为F 安,有F 安=IdB ①磁铁受到沿斜面向上的作用力为F ,其大小F =2F 安 ②磁铁匀速运动时受力平衡,则有F -mg sin θ=0 ③联立①②③式可得I = ④mg sin θ2Bd (2)磁铁穿过铝条时,在铝条中产生的感应电动势为E ,有E =Bdv ⑤铝条与磁铁正对部分的电阻为R ,由电阻定律有R =ρ ⑥d db 由欧姆定律有I = ⑦E R 联立④⑤⑥⑦式可得v = ⑧ρmg sin θ2B 2d 2b (3)磁铁以速度v 进入铝条间,恰好做匀速运动时,磁铁受到沿斜面向上的作用力F ,联立①②⑤⑥⑦式可得F = ⑨2B 2d 2bv ρ当铝条的宽度b ′>b 时,磁铁以速度v 进入铝条间时,磁铁受到的作用力变为F ′,有F ′= ⑩2B 2d 2b ′v ρ可见F ′>F =mg sin θ,磁铁所受到的合力方向沿斜面向上,获得与运动方向相反的加速度,磁铁将减速下滑,此时加速度最大.之后,随着运动速度减小,F ′也随着减小,磁铁所受的合力也减小,由于磁铁加速度与所受到的合力成正比,磁铁的加速度逐渐减小.综上所述,磁铁做加速度逐渐减小的减速运动,直到F ′=mg sin θ时,磁铁重新达到平衡状态,将再次以较小的速度匀速下滑.3.[2016·全国卷Ⅱ] 一圆筒处于磁感应强度大小为B 的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN 的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN 成30°角.当筒转过90°时,该粒子恰好从小孔N 飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为( )图1A. B.ω3B ω2BC. D.ωB 2ωB答案:A 解析: 作出粒子的运动轨迹如图所示,其中O ′为粒子运动轨迹的圆心,由几何关系可知∠MO ′N ′=30°.由粒子在磁场中做匀速圆周运动的规律可知qvB =m ,T =,得T =,即比荷=v 2r 2πr v 2πm Bq q m ,由题意知t 粒子=t 筒,即·T =·T 筒,则T =3T 筒,又T 筒=,故2πBT 30°360°90°360°2πω=,选项A 正确.q m ω3B4.[2016·全国卷Ⅲ] 平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图1所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外.一带电粒子的质量为m ,电荷量为q (q >0).粒子沿纸面以大小为v 的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角.已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场.不计重力.粒子离开磁场的出射点到两平面交线O 的距离为( )图1A. B.mv2qB 3mv qBC. D.2mv qB 4mv qB答案:D 解析: 设射入磁场的入射点为A ,延长入射速度v 所在直线交ON 于一点C ,则轨迹圆与AC 相切;由于轨迹圆只与ON 有一个交点,所以轨迹圆与ON 相切,所以轨迹圆的圆心必在∠ACD 的角平分线上,作出轨迹圆如图所示,其中O ′为圆心,B 为出射点.由几何关系可知∠O ′CD =30°,Rt△O ′DC 中,CD =O ′D ·cot 30°=R ;由对称性知,3AC =CD =R ;等腰△ACO 中,OA =2AC ·cos 30°=3R ;等边△O ′AB 中,AB =R ,所以3OB =OA +AB =4R .由qvB =m 得R =,所以OB =,D 正确.v 2R mv qB 4mvqB 5.[2016·北京卷] 如图1所示,质量为m 、电荷量为q 的带电粒子,以初速度v 沿垂直磁场方向射入磁感应强度为B 的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R 和周期T ;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E 的大小.图1解析: (1)洛伦兹力提供向心力,有f =qvB =m v 2R带电粒子做匀速圆周运动的半径R =mv qB匀速圆周运动的周期T ==.2πR v 2πm qB (2)粒子受电场力F =qE ,洛伦兹力f =qvB .粒子做匀速直线运动,则qE =qvB场强E 的大小E =vB .6.[2016·四川卷] 如图1所示,正六边形abcdef 区域内有垂直于纸面的匀强磁场.一带正电的粒子从f 点沿fd 方向射入磁场区域,当速度大小为v b 时,从b 点离开磁场,在磁场中运动的时间为t b ,当速度大小为v c 时,从c 点离开磁场,在磁场中运动的时间为t c ,不计粒子重力.则( )图1A .v b ∶v c =1∶2,t b ∶t c =2∶1B .v b ∶v c =2∶1,t b ∶t c =1∶2C .v b ∶v c =2∶1,t b ∶t c =2∶1D .v b ∶v c =1∶2,t b ∶t c =1∶2答案:A 解析: 由题可得带正电粒子在匀强磁场中受洛伦兹力作用做匀速圆周运动,且洛伦兹力提供做圆周运动的向心力,作出粒子两次运动的轨迹如图所示由qvB =m =mr 可以得出v b ∶v c =r b ∶r c =1∶2, 又由t =T 可以得出时间之比等v 2r 4π2T 2θ2π于偏转角之比.由图看出偏转角之比为2∶1,则t b ∶t c =2∶1,选项A 正确.7.[2016·全国卷Ⅰ] 现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图1所示,其中加速电压恒定.质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场.若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍.此离子和质子的质量比约为( )图1A .11B .12C .121D .144答案:D解析:粒子在电场中加速,设离开加速电场的速度为v ,则qU =mv 2,粒子进入磁场做圆12周运动,半径r ==,因两粒子轨道半径相同,故离子和质子的质量比为144,选mv qB 1B2mUq 项D 正确.8.[2016·江苏卷] 回旋加速器的工作原理如图1甲所示,置于真空中的D 形金属盒半径为R ,两盒间狭缝的间距为d ,磁感应强度为B 的匀强磁场与盒面垂直,被加速粒子的质量为m ,电荷量为+q ,加在狭缝间的交变电压如图乙所示,电压值的大小为U 0.周期T =.一束该种粒子在t =0~时间内从A 处均匀地飘入狭缝,其初速度视为零.现考虑粒2πm qB T2子在狭缝中的运动时间,假设能够出射的粒子每次经过狭缝均做加速运动,不考虑粒子间的相互作用.求:(1)出射粒子的动能E m ;(2)粒子从飘入狭缝至动能达到E m 所需的总时间t 0;(3)要使飘入狭缝的粒子中有超过99%能射出,d应满足的条件.图1解析: (1)粒子运动半径为R 时qvB =m v 2R且E m =mv 212解得E m =q 2B 2R 22m(2)粒子被加速n 次达到动能E m ,则E m =nqU 0粒子在狭缝间做匀加速运动,设n 次经过狭缝的总时间为Δt加速度a =qU 0md匀加速直线运动nd =a ·Δt 212由t 0=(n -1)·+Δt ,解得t 0=-T 2πBR 2+2BRd 2U 0πm qB(3)只有在 0~时间内飘入的粒子才能每次均被加速(T 2-Δt )则所占的比例为η=T 2-ΔtT 2由η>99%,解得d <πmU 0100qB 2R9.[2016·四川卷] 如图1所示,图面内有竖直线DD ′,过DD ′且垂直于图面的平面将空间分成Ⅰ、Ⅱ两区域.区域Ⅰ有方向竖直向上的匀强电场和方向垂直于图面的匀强磁场B (图中未画出);区域Ⅱ有固定在水平面上高h =2l 、倾角α=的光滑绝缘斜面,斜面顶π4端与直线DD ′距离s =4l ,区域Ⅱ可加竖直方向的大小不同的匀强电场(图中未画出);C 点在DD ′上,距地面高H =3l .零时刻,质量为m 、带电荷量为q 的小球P 在K 点具有大小v 0=、方向与水平面夹角θ=的速度,在区域Ⅰ内做半径r =的匀速圆周运动,经gl π33lπC 点水平进入区域Ⅱ.某时刻,不带电的绝缘小球A 由斜面顶端静止释放,在某处与刚运动到斜面的小球P 相遇.小球视为质点,不计空气阻力及小球P 所带电荷量对空间电磁场的影响.l 已知,g 为重力加速度.(1)求匀强磁场的磁感应强度B 的大小;(2)若小球A 、P 在斜面底端相遇,求释放小球A 的时刻t A ;(3)若小球A 、P 在时刻t =β(β为常数)相遇于斜面某处,求此情况下区域Ⅱ的匀强电lg 场的场强E ,并讨论场强E 的极大值和极小值及相应的方向.图1解析: (1)由题知,小球P 在区域Ⅰ内做匀速圆周运动,有m =qv 0B 代入数据解得B =.m π3lq gl (2)小球P 在区域Ⅰ做匀速圆周运动转过的圆心角为θ,运动到C 点的时刻为t C ,到达斜面底端时刻为t 1,有t C =θrv 0s -h cot α=v 0(t 1-t C )小球A 释放后沿斜面运动加速度为a A ,与小球P 在时刻t 1相遇于斜面底端,有mg sin α=ma A=a A (t 1-t A )2hsin α12联立以上方程解得t A =(3-2).2lg (3)设所求电场方向向下,在t ′A 时刻释放小球A ,小球P 在区域Ⅱ运动加速度为a P ,有s =v 0(t -t C )+a A (t -t ′A )cos α12mg +qE =ma PH -h +a A (t -t ′A )2sin α=a P (t -t C )21212联立相关方程解得E =(11-β2)mgq (β-1)2对小球P 的所有运动情形讨论可得3≤β≤5由此可得场强极小值为E min =0;场强极大值为E max =,方向竖直向上.7mg8q 10.[2016·浙江卷] 为了进一步提高回旋加速器的能量,科学家建造了“扇形聚焦回旋加速器”.在扇形聚焦过程中,离子能以不变的速率在闭合平衡轨道上周期性旋转.扇形聚焦磁场分布的简化图如图111所示,圆心为O 的圆形区域等分成六个扇形区域,其中三个为峰区,三个为谷区,峰区和谷区相间分布.峰区内存在方向垂直纸面向里的匀强磁场,磁感应强度为B ,谷区内没有磁场.质量为m ,电荷量为q 的正离子,以不变的速率v 旋转,其闭合平衡轨道如图中虚线所示.(1)求闭合平衡轨道在峰区内圆弧的半径r ,并判断离子旋转的方向是顺时针还是逆时针;(2)求轨道在一个峰区内圆弧的圆心角θ,及离子绕闭合平衡轨道旋转的周期T ;(3)在谷区也施加垂直纸面向里的匀强磁场,磁感应强度为B ′,新的闭合平衡轨道在一个峰区内的圆心角θ变为90°,求B ′和B 的关系.已知:sin(α±β)=sin αcosβ±cos αsin β,cos α=1-2α2解析: (1)峰区内圆弧半径r = ①mvqB 旋转方向为逆时针方向 ②(2)由对称性,峰区内圆弧的圆心角θ= ③2π3每个圆弧的长度l == ④2πr 32πmv3qB 每段直线长度L =2r cos =r = ⑤π633mv qB 周期T = ⑥3(l +L )v 代入得T = ⑦(2π+33)m qB(3)谷区内的圆心角θ′=120°-90°=30° ⑧谷区内的轨道圆弧半径r ′= ⑨mvqB ′由几何关系r sin =r ′sin ⑩θ2θ′2由三角关系sin =sin 15°=30°26-24代入得B ′= B 3-12。
专题3 牛顿运动定律1.(15江苏卷)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图所示,以竖直向上为a 的正方向,则人对地板的压力A .t=2s 时最大B .t=2s 时最小C .t=8.5s 时最大D .t=8.5s 时最小 答案:AD解析:0~4s ,加速度向上,人超重,设地板对人支持力为F N ,则ma mg F N =-,当s t 2=时,加速度最大,支持力就最大,根据牛顿第三定律,人对地板压力也最大;7~10s ,加速度向下,人失重,设地板对人支持力为F N ,则ma F mg N =-,ma mg F N -=当s t 5.8=时,加速度最大,支持力就最小,根据牛顿第三定律,人对地板压力也最小 .2.(15福建卷)如图,在竖直平面内,滑到ABC 关于B 点对称,且A 、B 、C 三点在同一水平线上 .若小滑块第一次由A 滑到C ,所用的时间为t 1,第二次由C 滑到A ,所用时间为t 2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则( )A .B .C .D .无法比较、的大小答案:A解析:在AB 段,根据牛顿第二定律,速度越大,滑块受支持力越小,摩擦力就越小,在BC段,根据牛顿第二定律,速度越大,滑块受支持力越大,摩擦力就越大,由题意知从A运动到C相比从C到A,在AB段速度较大,在BC段速度较小,所以从A到C运动过程受摩擦力较小,用时短,所以A正确 .3.(15海南卷)假设摩托艇受到的阻力的大小正比于它的速率 .如果摩托艇发动机的输出功率变为原来的2倍,则摩托艇的最大速率变为原来的()A.4倍B. 2倍C.倍D. 倍答案:D解析:设,当阻力等于牵引力时,速度最大,输出功率变化前,有,变化后有,联立解得,D 正确;4.(15海南卷)如图,升降机内有一固定斜面,斜面上放一物体,开始时升降机做匀速运动,物块相对斜面匀速下滑,当升降机加速上升时A.物块与斜面间的摩擦力减小B.物块与斜面间的正压力增大C.物块相对于斜面减速下滑D.物块相对于斜面匀速下滑答案:BD解析:当升降机加速上升时,物体有竖直向上的加速度,则物块与斜面间的正压力增大,根据滑动摩擦力公式可知接触面间的正压力增大,物体与斜面间的摩擦力增大,故A错误B正确;设斜面的倾角为,物体的质量为m,当匀速运动时有,即,假设物体以加速度a向上运动时,有,,因为,所以,故物体仍做匀速下滑运动,C错误D正确;5.(15四川卷)如图所示,粗糙、绝缘的直轨道OB固定在水平桌面上,B端与桌面边缘对齐,A是轨道上一点,过A点并垂直于轨道的竖直面右侧有大小E=1.5×106N/C,方向水平向右的匀强电场 .带负电的小物体P 电荷量是2.0×10-6C ,质量m =0.25kg ,与轨道间动摩擦因数μ=0.4,P 从O 点由静止开始向右运动,经过0.55s 到达A 点,到达B 点时速度是5m/s ,到达空间D 点时速度与竖直方向的夹角为α,且tan α=1.2 .P 在整个运动过程中始终受到水平向右的某外力F 作用,F 大小与P 的速率v 的关系如表所示 .P 视为质点,电荷量保持不变,忽略空气阻力,取g =10 m/s 2,求:(1)小物体P 从开始运动至速率为2m/s 所用的时间; (2)小物体P 从A 运动至D 的过程,电场力做的功 .解析:(1)物体P 在水平桌面上运动时,竖直方向上只受重力mg 和支持力N 作用,因此其滑动摩擦力大小为:f =μmg =1N根据表格数据可知,物体P 在速率v =0~2m/s 时,所受水平外力F 1=2N >f ,因此,在进入电场区域之前,物体P 做匀加速直线运动,设加速度为a 1,不妨设经时间t 1速度为v 1=2m/s ,还未进入电场区域 .根据匀变速直线运动规律有:v 1=a 1t 1 ① 根据牛顿第二定律有:F 1-f =ma 1② 由①②式联立解得:t 1==0.5s <0.55s ,所以假设成立 即小物体P 从开始运动至速率为2m/s 所用的时间为t 1=0.5s(2)当物体P 在速率v =2~5m/s 时,所受水平外力F 2=6N ,设先以加速度a 2再加速t 2=0.05s 至A 点,速度为v 2,根据牛顿第二定律有:F 2-f =ma 2③根据匀变速直线运动规律有:v 2=v 1+a 2t 2 ④ 由③④式联立解得:v 2=3m/s⑤ 物体P 从A 点运动至B 点的过程中,由题意可知,所受水平外力仍然为F 2=6N 不变,设位移为x 1,加速度为a 3,根据牛顿第二定律有:F 2-f -qE =ma 3 ⑥根据匀变速直线运动规律有:2a 3x 1=- ⑦由⑤⑥⑦式联立解得:x 1=1m ⑧ 根据表格数据可知,当物体P 到达B 点时,水平外力为F 3=qE =3N ,因此,离开桌面在水平fF mv 112B v 22v方向上做匀速直线运动,在竖直方向上只受重力,做自由落体运动,设运动至D 点时,其水平向右运动位移为x 2,时间为t 3,则在水平方向上有:x 2=v B t 3 ⑨ 根据几何关系有:cot α= ⑩ 由⑨⑩式联立解得:x 2=m ⑪ 所以电场力做的功为:W =-qE (x 1+x 2)⑫ 由⑧⑪⑫式联立解得:W =-9.25J6.(15安徽卷)图示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M 、N 、P 、Q 是轨迹上的四点,在散射过程中可以认为重金属原子核静止不动 .图中所标出的α粒子在各点处的加速度方向正确的是 A .M B .N C .P D .Q 答案:C解析:同种电荷相排斥,库仑力沿两者连线指向受力物体,由牛顿第二定律知,加速度也沿两者连线指向受力物体 .7.(15重庆卷)若货物随升降机运动的图像如题5图所示(竖直向上为正),则货物受到升降机的支持力与时间关系的图像可能是答案:B解析:由v t -图知:过程①为向下匀加速直线运动(加速度向下,失重,F mg <);过程②为向下匀速直线(平衡,F mg =);过程③为向下匀减速直线运动(加速度向上,超重,F mg >);过程④为向上匀加速直线运动(加速度向上,超重,F mg >);过程⑤为向上匀速直线运动(平衡,F mg =);过程⑥为向上匀减速直线运动(加速度向下,失重,F mg <);综合各个过程可知B 选项正确 .8.(15新课标2卷)在一东西向的水平直铁轨上,停放着一列已用挂钩链接好的车厢 .当23v gt 1225v t -Ft机车在东边拉着这列车厢一大小为a 的加速度向东行驶时,链接某两相邻车厢的挂钩P 和Q 间的拉力大小为F ;当机车在西边拉着这列车厢一大小为a 的加速度向东行驶时,链接某两相邻车厢的挂钩P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为A. 8B.10C.15D.18 答案:BC解析:由设这列车厢的节数为n ,P 、Q 挂钩东边有m 节车厢,每节车厢的质量为m ,由牛顿第二定律可知:m k n Fkm F )(32-=,解得:n k 52=,k 是正整数,n 只能是5的倍数,故B 、C 正确,A 、D 错误9.(15新课标2卷)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害 .某地有一倾角为θ=37°(sin37°=53)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示 .假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为83,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2s 末,B 的上表面突然变为光滑,μ2保持不变 .已知A 开始运动时,A 离B 下边缘的距离l =27m ,C 足够长,设最大静摩擦力等于滑动摩擦力 .取重力加速度大小g=10m/s 2.求: (1)在0~2s 时间内A 和B 加速度的大小 (2)A 在B 上总的运动时间解析:(1) 在0-2s 内,A 和B 受力如图所示由滑动摩擦力公式和力的平衡条件得:111N f μ=……………⑴θcos 1mg N =………...⑵ 222N f μ=……………⑶θcos 12mg N N +=……⑷以沿着斜面向下为正方向,设A 和B 的加速度分别为,由牛顿第二定律可得:11sin ma f mg =-θ……⑸ 212sin ma f f mg =+-θ………⑹联立以上各式可得a 1=3m/s 2…………⑺a 2 =1m/s 2………………..⑻(2)在t 1=2s ,设A 和B 的加速度分别为,则v 1=a 1t 1=6m/s ………………⑼ v 2=a 2t 1=2m/s ………………⑽t >t 1时,设A 和B 的加速度分别为1a ',2a '此时AB 之间摩擦力为零,同理可得: 21/6s m a ='………⑾ 22/2s m a -=' ………⑿ 即B 做匀减速,设经时间,B 的速度减为零,则:0222='+t a v ……………………⒀ 联立⑽⑿⒀可得t 2=1s …………..⒁ 在t 1+t 2时间内,A 相对于B 运动的距离为m m t a t v t a t a t v t a s 2712)2121()2121(2222221222121211<='++-'++=…⒂ 此后B 静止不动,A 继续在B 上滑动,设再经时间后t 3,A 离开B ,则有231321121)(t a t t a v s L '+'+=- 可得,t 3=1s (另一解不合题意,舍去,)则A在B上的运动时间为t总.t总=t1+t2+t3=4s(利用下面的速度图象求解,正确的,参照上述答案信参考给分)。
专题1 质点的直线运动
1.[2016·浙江卷] 如图13所示为一种常见的身高体重测量仪.测量仪顶部向下发射波速为v 的超声波,超声波经反射后返回,被测量仪接收,测量仪记录发射和接收的时间间隔.质量为M 0的测重台置于压力传感器上,传感器输出电压与作用在其上的压力成正比.当测重台没有站人时,测量仪记录的时间间隔为t 0,输出电压为U 0,某同学站上测重台,测量仪记录的时间间隔为t ,输出电压为U ,则该同学的身高和质量分别为( )
图13
A .v (t 0-t ),U
M 0
U 0B.v (t 0-t ),U
12M 0
U 0C .v (t 0-t ),(U -U 0)
M 0
U 0D.v (t 0-t ),(U -U 0)
12M 0
U 0答案:D
解析: 当没有站人时,测量仪的空间高度为h 0=,U 0=kM 0,站人时,测量仪中可传播
vt 02超声波的有效空间高度h =,U =kM ,故人的高度为H =h 0-h =,人的质量为
vt 2v (t 0-t )2m =M -M 0=(U -U 0),选项D 正确.
M 0
U 02.[2016·全国卷Ⅱ] 两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中由静止下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )
A .甲球用的时间比乙球长
B .甲球末速度的大小大于乙球末速度的大小
C .甲球加速度的大小小于乙球加速度的大小
D .甲球克服阻力做的功大于乙球克服阻力做的功
答案:BD
解析: 设f =kR ,则由牛顿第二定律得F 合=mg -f =ma ,而m =πR 3·ρ,
43故a =g -,由m 甲>m 乙、ρ甲=ρ乙可知a 甲>a 乙,故C 错误;因甲、乙位移相
k
43πR 2·ρ同,由v 2=2ax 可知,v 甲>v 乙,B 正确;由x =at 2可知,t 甲<t 乙,A 错误;由功的定义12可知,W 克服=f ·x ,又f 甲>f 乙,则W 甲克服>W 乙克服,D 正确.
3.[2016·全国卷Ⅲ] 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,动能变为原来的9倍.该质点的加速度为( )
A. B.s t 23s
2t 2
C. D.4s t 28s
t 2
答案:A
解析: 由E k =mv 2可知速度变为原来的3倍.设加速度为a ,初速度为v ,则末速度为3v .由
12速度公式v t =v 0+at 得3v =v +at ,解得at =2v ;由位移公式s =v 0t +at 2得
12s =vt +·at ·t =vt +·2v ·t =2vt ,进一步求得v =;所以a ==·=,A 1212s 2t 2v t 2t s 2t s
t 2正确.
4.[2016·四川卷] 避险车道是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组
成,如图
竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m 的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s 时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m 时,车头距制动坡床顶端38 m ,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g =10 m/s 2.求:
(1)货物在车厢内滑动时加速度的大小和方向;
(2)制动坡床的长度.
图1
解析: (1)设货物的质量为m ,货物在车厢内滑动过程中,货物与车厢间的动摩擦因数μ=0.4,受摩擦力大小为f ,加速度大小为,则
f +m
g sin θ=m
f =μm
g cos θ
联立以上二式并代入数据得=5 m/s 2
的方向沿制动坡床向下.
(2)设货车的质量为M ,车尾位于制动坡床底端时的车速为v =23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s 0=38 m 的过程中,用时为t ,货物相对制动坡床的运动距离为s 2.货车受到制动坡床的阻力大小为F ,F 是货车和货物总重的k 倍,k =0.44,货车长度l 0=12 m ,制动坡床的长度为l ,则
Mg sin θ+F -f =Ma 2
F =k (m +M )g
s 1=vt -t 2
12s 2=vt -a 2t 2
12s =s 1-s 2
l =l 0+s 0+s 2
联立并代入数据得
l =98 m.
5.[2016·全国卷Ⅰ] 甲、乙两车在平直公路上同向行驶,其v t 图像如图1所示.已知两车在t =3 s 时并排行驶,则( )
图1
A .在t =1 s 时,甲车在乙车后
B .在t =0时,甲车在乙车前7.5 m
C .两车另一次并排行驶的时刻是t =2 s
D .甲、乙车两次并排行驶的位置之间沿公路方向的距离为40 m
答案: BD
解析: 在t =3 s 时,两车并排,由图可得在1~3 s 两车发生的位移大小相等,说明在t =1 s 时,两车并排,由图像可得前1 s 乙车位移大于甲车位移,且位移差
Δx =x 2-x 1=×1 m =7.5 m ,在t =0时,甲车在乙车前7.5 m ,选项A 、C 错误,选
5+102项B 正确;在1~3 s 两车的平均速度v ==20 m/s ,各自的位移x =t =40 v 1+v 22v 1+v 22m ,选项D 正确.
6.[2016·天津卷]
(2)某同学利用图示装置研究小车的匀变速直线运动.
①实验中,必要的措施是________.
图1
A .细线必须与长木板平行
B .先接通电源再释放小车
C .小车的质量远大于钩码的质量
D .平衡小车与长木板间的摩擦力
②他实验时将打点计时器接到频率为50 Hz 的交流电源上,得到一条纸带,打出的部分计数点如图1所示(每相邻两个计数点间还有4个点,图中未画出).s 1=3.59 cm ,s 2=4.41 cm ,s 3=5.19 cm ,s 4=5.97 cm ,s 5=6.78 cm ,s 6=7.64 cm ,则小车的加速度a =________m/s 2(要求充分利用测量的数据),打点计时器在打B 点时小车的速度v B =________m/s.(结果均保留两位有效数字)
图1
答案: ①AB ②0.80 0.40
解析: ①实验时细线必须与长木板平行,否则小车不做匀变速运动,A 正确;实验开始时要先接通电源,待打点稳定后再释放小车,B 正确;此实验中只需保证小车做匀加速运动,不用考虑小车与钩码的质量关系及平衡摩擦力的问题 ,C 、D 错误.
②两点的时间间隔为0.1 s ,由逐差法可以得出a ==0.80
s 6+s 5+s 4-s 3-s 2-s 1
9T 2m/s 2,打点计时器在打B 点时小车的速度v B ==0.40 m/s.
s 1+s 2
2T 7.[2016·江苏卷] 小球从一定高度处由静止下落,与地面碰撞后回到原高度再次下落,重复上述运动,取小球的落地点为原点建立坐标系,竖直向上为正方向,下列速度v 和位置x 的关系图像中,能描述该过程的是( )
图1
答案:A
解析: 由于取小球的落地点为原点建立坐标系,竖直向上为正方向,位置总是大于零且最远只能到刚下落处,不会无限增加,选项C 、D 错误;小球与地面碰撞后做竖直上抛运动,
此时位移的数值就代表小球的位置x ,加速度a =-g ,根据运动学公式v 2-v =2ax 得2
0v 2=v -2gx ,这里v 0为做竖直上抛运动的初速度,是定值,故v x 图像是抛物线,故选2
0项B 错误,选项A 正确.。