【2013】希望杯竞赛数学试题详解(21-30题)
- 格式:doc
- 大小:1.72 MB
- 文档页数:22
第一届小学“希望杯”数学邀请赛第1试四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个;2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷ ;3.观察1,2,3,6,12,23,44,x,164的规律,可知x = ;4.如图,将一个三角形有阴影的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍;5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是 ;6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是 ,温差最大的景区是 ;7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形;8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有 ,它们的和等于 ;9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲;这时四个组的书一样多;这说明甲组原来有书本;10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组;11.在 a=20032003×2002和 b=20022003×2003中,较大的数是 ,它比较小的数大 ;12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米;13.甲、乙、丙三人中只有1人会开汽车;甲说:“我会开;”乙说:“我不会开;”丙说:“甲不会开;”三人的话只有一句是真话;会开车的是 ;14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书;回校后,小明补给小光28元;小明、小光各带了元,每本书价元;15.长方形被分成了4个小长方形,图4中的数字是它们每个的面积,阴影部分的面积是 ;16.天气预报说:今天的降水概率是30%,明天的降水概率是50%,后天的降水概率是35%;下雨可能性最大的是天;17.如图,水平桌面桌面不反光上放有两个同样大小的足球M、N,每个足球的正上方悬挂有相同的灯泡;A灯泡位置比B灯泡位置低;当灯泡点亮时,受光照部分更多的是球;18.用20厘米长的铜丝弯成边长是整数的长方形,这样的长方形不只一种;其中,面积最小的,长______ 厘米,宽______ 厘米;面积最大的长方形的长______ 厘米,宽______ 厘米;19.在一个正方形水池的四周,环绕着一条宽2米的路如图,这条路的面积是120平方米,那么水池的面积是______ 平方米;20.下边是一个六位数乘以一个一位数的算式,不同的汉字表示不同的数,相同的汉字表示相同的数,其中的六位数是______ ;21.甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇;A、B两地相距______ 千米;22.小琴、小惠、小梅三人报名参加运动会的跳绳,跳高和短跑这三个项目的比赛,每人参加一项,报名的情况有______ 种;23.下图是一个正方体木块;M是AB的中点,N是AD的中点;用一把锋利的锯,过M、N、G三个点将木块锯成两块,使截面是平的,这个截面是______ 边形;24.师生共52人外出春游,到达后,班主任要给每人买一瓶矿泉水,给了班长买矿泉水的钱;班长到商店后,发现商店正在进行促销活动,规定每5 个空瓶可换1瓶矿泉水;班长只要买______ 瓶矿泉水,就可以保证每人一瓶;25.下图是一所小学的科技数,它有4层,正面每层的三个圆形窗户由左向右表示一个三位数,这些三位数是:837、571、206、439,但是不知道这四个数和哪一层的窗户对应,请你观察一下,然后画出表示2008的四个窗户 ;第一届小学“希望杯”数学邀请赛第2试四年级第2试1.计算:3×2÷2-2×6÷3÷2+5-3=________ ;2.观察右面的五个数:19、37、55、a 、91排列的规律,推知a =________ ;3.小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳;用圆A、圆B分别表示小明、小英的爱好,如图1所示,则图中阴影部分表示________;4.玩具店的玩具每卖出一半,就补充20个,到第十次卖出一半后恰好余下20个,则玩具店原有玩具________个;5.计算:6.将边长为a的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图;那么,边长为a的正方形面积是图中阴影部分面积的________ 倍;7.●表示实心圆,○表示空心圆,若干个实心圆与空心圆排成一行如下:○●○●●○●●●○●○●●○●●●○●○●●○●●●……在前200个圆中有 ________个实心圆;8.过节了,爸爸妈妈给小光和小强每人买了一盒弹子数目相同,打开后发现,小光的弹子全是红的,而小强的弹子全是绿的;第一天玩弹子时,小光输了10枚弹子;第二天小光又同小强玩弹子,结果小光赢了10枚弹子;这时,是小光盒里的绿弹子多,还是小强盒里的红弹子多答________ ;9.下图是王超同学为“环境保护专栏”设计的一个报头,用到基本的几何图形:线段、三角形、四边形、圆、圆弧,其中用得最多的一种图形是________ ;10.数一数:图中共有________ 个正方形;11.星期天,妈妈从超市买了4支小梦龙和3支可爱多冰淇淋,用去24元钱;妈妈对小丽说:“上星期天我买了3支小梦龙和5支可爱多冰淇淋用去29元钱,你算一算,小梦龙每支________元,可爱多冰淇淋每支________ 元;”12.一次口算比赛,规定:答对一题得8分,答错一题扣5分;小华答了18道题,得92分,小华在此次比赛中答错了________ 道题;13.下图表示正方体的展开图,将它折叠成正方体,可能的图形是 ;填A、B、C、D之一;14.用直线把图6分成面积相等的两部分,与原稿不同,其中正确的有________个;图615.在计算机中,对于图1、图2中的数据或运算的读法规则是:先读第一分支圆圈中的,再读与它相连的第二分支左边的圆圈中的,最后读与它相连的第二分支右边的圆圈中的,也就是说,对于每一个圆圈中的数据或运算都是按“中→左→右”的顺序;如:图1表示:2+3,图2表示:2+3×2- 1;则图3表示的式子的运算结果是________ ;16.甲、乙、丙、丁四人做游戏,丁对甲、乙、丙说:“无论你们三人每人给出的整数是什么,我有一个结论总成立;”甲、乙、丙三人半信半疑,经三人多次验证,结果都正确;请写出丁可能给的结论,并说明理由;17.如果a、b 、c 是3个整数,则它们满足加法交换律和结合律,即1a+b=b+a ;2a+b+c=a+b+c;现在规定一种运算"",它对于整数a、 b、c 、d 满足:a,bc,d=a×c+b×d,a×c-b×d;例:4,37,5=4×7+3×5,4×7-3×5=43,13请你举例说明,“”运算是否满足交换律、结合律;18.一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差;19.将边长为正整数n的正方形平均分成个小正方形,每个小正方形的顶点称为格点;例如:图10中的黑点是边长为2的正方形的格点;如图11,在边长为12的正方形中有四个完全相同的直角三角形;如果三角形的一条直角边是3,那么这四个三角形各边共经过多少个格点每个格点只计一次第二届小学“希望杯”数学邀请赛第1试四年级第1试一、填空题1.计算:234+432-4×8+330÷5= ;2.如果&=+÷10,那么2&5= ;3.某校四年级有两个班,其中甲班有人,乙班比甲班多3人,则该校四年级共有学生人 ;4.将数16表示成两个自然数的和的形式,则所表示成的两个数的最大乘积是 ;5.在括号内填上两个相邻的整数,使等式=成立;6.在月球表面,白天阳光垂直照射的地方的温度高达127℃,夜晚的温度下降到零下183℃,则月球表面昼夜温差最高与最低温度的差是℃;7.北京到西安的飞机票价是每张960元;张老师想从网上订购一张从北京到西安的飞机票;海蓝票务中心的机票以九五折出售,但每张票要加收30元送票费;云天票务中心的机票不打折,但免费送票;张老师从票务中心购买飞机票更省钱;填“海蓝”或“云天”8.一个数除以3的余数是2,除以5的余数是1,则这个数除以15的余数是 ;9.如果,=2×2,……,=25×25,且+……+=5525,那么++……+= ;10.如图,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米;当甲第一次追上乙时,甲跑了圈;11.三个不同的一位数的和等于10,用这三个一位数组成三位数,其中最大的是 ;12.把一个边长为的正方形分成两个完全相同的长方形,则这两个长方形的周长的和是 ;13.把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有人;14.如图,用火柴棍摆出一系列三角形图案,按这种方式摆下去,当N=5时,共需要火柴棍根;15.如图,∠1=∠2,∠3=∠4,∠5=130度,那么∠A=度;16.已知图中正方体相对的两个面上的数字之和是10,则未标出的三个数的乘积是 ;17.下图中有个平行四边形;18.有四个数,用其中三个数的平均数,再加上另外的一个数,按这样的方法计算,分别得到:28,36,42,46,那么原来四个数的平均数是 ;19.如果将四面颜色不同的小旗子挂在一根绳子上,组成一个信号,那么这四面小旗子可组成种不同的信号;20.一块长方形玻璃,长截去5分米,宽截去3分米,剩下的部分是正方形;已知截去的面积是71平方分米,那么剩下的正方形的面积是平方分米;21.有一个正方形纸板如图甲,用它可以盖住日历上的九个日期,并能看到其中的一个日期,现在将它放在2004年3月的日历上的如图乙,则纸板盖住的另外八个日期中最大的是 ;22.如图,阴影部分是一个长方形,它的四周是四个正方形,如果这四个正方形的周长的和是240厘米,面积的和是1000平方厘米,那么阴影部分的面积是平方厘米;23.商场里有三种价格分别是3元,4元,6元的杯子;妈妈让小明去买杯子,小明付款30元,找回5元;小明买了个4元的杯子;24.某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则该班这四项运动都会的至少有人;第二届小学“希望杯”数学邀请赛第2试四年级第2试一、填空题1. ;2.最新的科学探测表明:火星表面的最高温度约为5℃,最低温度约为零下15℃,则火星表面的温差最高与最低温度的差约为___________℃;3.3+12,6+10,12+8,24+6,48+4,……是按一定规律排列的一串算式,其中第六个算式的计算结果是__________;4.把2、4、6、8、10、12这六个数字依次写在一个立方体的正面、背面、两个侧面以及两个底面上,然后把立方体展开,如图,最左边的正方形上的数字是12,则最右边的正方形上的数字是__________;5.将一张长方形纸对折再对折如图,然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形一定是__________;填“三角形”、“长方形”、“梯形”或“菱形”6.四1班有46人,其中会弹钢琴的有30人,会拉小提琴的有28人,则这个班既会弹钢琴又会拉小提琴的至少有_________人;7.请你任意写出5个真分数_________;8.两个正整数♀、♂满足:♀=♂×♂+2×♂+1;例如:当♂=3时,♀=3×3+2×3+1=16;那么,当♀=36时,♂=_________;9.下列各图中,阴影部分面积与整个图形面积的比值最大的是图_______;10、把一堆糖果分给几位小朋友,若每人2块,将剩余12块;每人3块,将缺少5块,那么小朋友共_________位;11、如果一个数的所有数位上的数字的和是10,那么满足条件的最小的四位数是_________;12、数一数,图中有_________个三角形;13、将一个三角形的三条边同时扩大相同的倍数,如图,得到的新三角形的面积变为原三角形面积的9倍,则新三角形的周长是原三角形的周长的_________倍;14、如图所示,在2×2方格中,画一条直线最多穿过3个方格;在3×3方格中,画一条直线最多穿过5个方可知;那么在5×5方格中,画一条直线,最多穿过_________个方格;15、小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人;那么一起做游戏的小朋友至少有______人;二、解答题16、用表示的小数部分,表示不超过的最大整数;例如:=0.3,0.3=0;=0.5;4.5=4;记,请计算,;,的值;17、甲有桌子若干张,乙有椅子若干把;如果乙用全部椅子换回相同数量的桌子,那么需要补给甲320元;如果乙不补钱,就会少换回5张桌子;已知3张桌子比5把椅子的价钱少48元;求乙原有椅子多少把18、两列相同而行的火车恰好在某站台相遇;如果甲列车长225米,每秒行驶25米,乙列车每秒行驶20米,甲、乙两列车错车时间是9秒;求:1乙列车长多少米2甲列车通过这个站台用多少秒3坐在甲列车上的小明看到乙列车通过用了多少秒19、将若干个边长为1的正六边形即单位六边形拼接起来,得到一个拼接图形;例如:那么,要拼接成周长等于18的拼接图形,需要多少个单位六边形画出对应的一种图形;第三届小学“希望杯”数学邀请赛第1试四年级第1试1.计算:100-99+98-97+96-95+……+4-3+2-1=________;2.如果○+□=6,□=○+○,那么□-○=_______;3.从1开始的奇数:1,3,5,7,……其中第100个奇数是_____;4.一个数除以9,商和余数相同,这个数最小是______;5.从1开始的前2005个整数的和是______数填:“奇”或“偶”;6.由四张数字卡片:0,2,4,6可以组成 _____个不同的三位数;7.某校四年级一班参加兴趣小组的人数统计如图所示,其中,参加_____小组的人数最多;8.如图,以A,B,C,D,E依次表示左手的大拇指,食指,中指,无名指, 小拇指, 若从大拇指开始数数, 按ABCDEDCBABCDEDCBA……的顺序数,数到“112”时,是_____;9.直线AB、CD相交,若∠1、∠2和∠3的关系如图所示;则∠3-∠1=______ ;10.图中的“我爱希望杯”有_______种不同的读法;11.计算机存储容量的基本单位是字节,用B表示,一般用KB、MB、GB作为存储容量的单位,它们之间的关系是1KB=B,1MB=KB,1GB=MB;小明新买了一个MP3播放器,存储容量为256MB,它相当于_____B;12.往一个篮子里放鸡蛋,假定篮子里的鸡蛋数目每分钟增加1倍,这样放下去,10分钟时,篮子放满了;那么,____分钟时恰好放入半篮子鸡蛋;13.下图是一块带有圆形空洞和方形空洞的小木板;下列物体中既能堵住圆形空洞,又能堵住方形空洞的是______;14.过年了,小刚想将自己的光盘整理一下;若每盒5片,则有一盒少了1片;若每盒6片,则恰好少用一个盒子;小刚的光盘一共有______片;15.小龙5次测验每次都得84分,小海前4次测验分别比小龙多出1分、2分、3分、4分,那么小海第五次测验至少应得_____分,才能确保5次测验平均成绩高于小龙至少3分;16.两只食量相同的猴子抢一堆桃子吃,吃完后,一只猴子还差1个桃子吃饱,另一只还差5个吃饱;如果这堆桃子都给一只猴子吃,它仍不会吃饱,那么一只猴子一共需要_____个桃子才能吃饱;17.小明的家在学校东400米处,小红的家在小明家的西200米处,那么小红的家距离学校_____米;18.小华和爸爸分享“红、黑甜品”红豆沙加芝麻糊;方法是:小华先将两勺红豆沙倒进盛载芝麻糊的碗中,搅匀后再取回两勺放入原先盛载红豆沙的碗中,混成后,爸爸问小华:“如果混合前红豆沙与芝麻糊的体积一样,那么混合后红豆沙含芝麻糊的分量与芝麻糊含红豆沙的分量比较,哪一个多”;小华的正确答案是 _____;19.图中ABC是直角三角形,BDEF是正方形,AD= 4厘米,FC= 9厘米,则ABC的面积=_____平方厘米;20.一块长120厘米、宽73厘米的长方形铁皮,最多可以分割成边长为12厘米的正方形_______个;21.一个数除以8后再减3,得到的数比原来的数少66,原来的数是_____;22.在一袋大米包装袋上标着净重,那么这袋大米净重最少是____公斤;23.当哥哥的年龄是弟弟现在的年龄时,哥哥的年龄是弟弟年龄的3倍,当弟弟的年龄是哥哥现在的年龄时,他们两人的年龄和是48,弟弟现在___岁;24.箱子里有红球13个,黄球10个,蓝球15个,从中摸出____个球,才能保证三种颜色的球都至少有4个;第三届小学“希望杯”数学邀请赛第2试四年级第2试1.1+2+……+8+9+10+9+8+……+2+1=_________;2.计算口÷△,结果是:商为10,余数为5;那么△的最小值是____________.3.如果25×口÷3×15+5=2005,那么口_________.4.1,3,5,7,……是从1开始的奇数,其中第2005个奇数是________.5.某工人与老板签订了一份30天的劳务合同:工作一天可得报酬48元,休息一天则要从所得报酬中扣掉12元;该工人合同到期后并没有拿到报酬,则他最多工作了_________天;6.三张数字卡片可以组成______个能被4整除的不同整数;7.某种品牌的电脑降价20%后,每台售价为4592元,则该品牌电脑降价前每台售价______元;8.已知两个自然数的积是35,差是2,则这两个自然数的和是_______;9.图1是3×3的正方形网格,1与2相比,较大的是__________;10.光明小学参加课外活动小组的人数统计如图2所示,则该校参加课外活动小组的共有人;11.下列图形经过折叠不能围成正方体的是________.12.小明、小华和小新三人的家在同一街道,小明家在小华家西300米处,小新家在小明家东400米处,则小华家和小新家相距______米;13.2005年4月lO日是星期日,则2005年6月1日是星期______;14.小明有一包弹球,其中25%是绿色的,10%是黄色的,余下的20%是蓝色的;如果蓝色的弹球是13个,那么这包弹球的个数是______;15.甲、乙两车同时从A、B两地沿相同的方向行驶;甲车如果每小时行驶60千米,则5小时可追上前方的乙车;如果每小时行驶70千米,则3小时可追上前方的乙车;由上可知,乙车每小时行驶_____千米假设乙车的行驶速度保持不变;二、解答题16.将100个小球放入依次排列的36个盒子中;如果任意相邻的5个盒子中的小球总数均为14,且第1个盒中有2个小球;求第36个盒子中小球的个数;17.将图3所示的三角形ABC分成面积相等的四个部分,请给出三种不同的分法;要求:在下面所给的三个图中作答;18.一个活动性较强的细菌每经过10秒就分裂为一个活动性较强的与一个活动性较弱的细菌,而一个活动性较弱的细菌每经过20秒就分裂为两个活动性较弱的细菌;问:一个活动性较强的细菌,经过60秒可繁殖多少个细菌19.王老师每天早上晨练,他第一天跑步1000米,散步1600米,共用25分钟;第二天跑步2000米,散步800米,共用20分钟;假设王老师跑步的速度和散步的速度均保持不变;求:1王老师跑步的速度;2王老师散步800米所用的时间;第四届小学“希望杯”数学邀请赛第1试四年级第1试1.1+2×3÷4+5×6=______.2.2+4+6+……+2006-1+3+5+7+……2005=______.3.9000-9=______×94.观察下列算式:2+4=6=2×3,2+4+6=12=3×42+4+6+8=20=4×5……然后计算:2+4+6+……+100=______;5.小马虎计算1到2006这2006个连续整数的平均数;在求这2006个数的和时,他少算了其中的一个数,但他仍按2006个数计算平均数,结果求出的数比应求得的数小1;小马虎求和时漏掉的数是______ ;6.将各位数字的和是10的不同的三位数按从大到小的顺序排列,第10个数是______;7.一个两位数,加上它的个位数字的9倍,恰好等于100;这个两位数的各位数字的和是______;8.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图中实线所示,从第1行第1列开始,按照编号从小到大的顺序排成一个方阵;小明的编号是28,他排在第3行第4列,则运动员共有______人;9.一城镇共有5000户居民,每户居民的小孩都不超过两个;其中一部分家庭每户有一个小孩,余下家庭的一半每户有两个小孩,则此城镇共有______个小孩;10.一箱番茄连箱共重48千克,其中的番茄和萝卜各卖掉一半后,剩下的番茄和萝卜连箱带筐共重38千克;则一只箱子和一个筐共重______千克;11.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题;这次测验共有______道题;12.为了过冬,小白兔和小黑兔都储藏了一些胡萝卜;已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍;它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍;那么它们剩下的胡萝卜共有______个;13.如图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形;这9个小长方形的周长之和是______厘米;14.如图,直角的顶点在直线l上,则图中所有小于平角的较之和是______度;15.如图,六个相同的长方形围成了大小两个正方形,已知小正方形的面积是36平方厘米,则每个小长方形的面积是______平方厘米;16.下图是小华五次数学测验成绩的统计图;小华五次测验的平均分是______分;17.根据图a和图b,可以判断图c中的天平______端将下沉;填“左”或“右”18.某个早晨,容器中有200个细菌,白天有光照,容器中的细菌将减少65个,夜间无光照,容器中的细菌将增加40个;则在第______个白天,容器中的细菌全部死亡;19.成语“愚公移山”比喻做事有毅力,不怕困难;假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推;愚公和它的子孙每人一生能搬运100吨石头;如果愚公是第1代,那么到了第______代,这座大山可以搬完;已知10个2连乘之积等于102420.甲乙两个港口相距400千米,一艘轮船从甲港顺流而下,20小时可到达乙港;已知顺水船速是逆水船速的2倍;有一次,这艘船在由甲港驶向乙港途中遇到突发事件,反向航行一段距离后,再掉头驶向乙港,结果晚到9个小时;轮船的这次航行比正常情况多行驶______了千米;21.王老师九月下旬的某天早晨出发到外地出差下旬指该月的后10天,前后共5天,第五天晚上回到家,这5天的日期数之和恰好是90日期数指a月b日中的b,如3月19日的日期数是19,王老师是在______回到家的;填几月几日22.某校入学考试,报考的学生中有被录取,被录取者的平均分比录取分数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是______分;23.周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米;已知林荫道周长是480米,他们从同一地点同时背向而行;在他们第10次相遇后,王老师再走______米就回到出发点;24.北京时间比莫斯科时间早5个小时,如当北京时间是9:00时,莫斯科时间是当日的4:00;有一天,小张乘飞机从北京飞往莫斯科,飞机于北京时间15:00起飞,共飞行了8个小时,则飞机到达目的地时,是斯科时间______;按24时计时法填几时几分第四届小学“希望杯”数学邀请赛第2试四年级第2试一、填空题;每小题4分,共60分;1.25×32÷14+36÷21×25=________;2.如果5×2+△×△-4=2006,那么△=________;3.如果数A减去数B的3倍,差是51;数A加上数B的2倍,和是111,那么数A=________,数B=________;4.如图,圆A表示1到50这50个自然数中能被3整除的数,圆B表示这50个数中能被5整除的数,则阴影部分表示的数是________;5.有40个连续的自然数,其中最大的数是最小的数的4倍,那么最大的数与最小的数之和是________;6.牧羊人赶一群羊过10条河,每过一条河时都有一半的羊掉人河中,每次他都捞上3只,最后清查还剩6只;这群羊在过河前共有________只;7.一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子;但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到________个桃子;8.三只小猫去钓鱼,它们共钓上36条鱼,其中黑猫和花猫钓到的鱼的条数是白猫钓到的鱼的条数的5倍,花猫钓到的鱼比另外两只猫钓到的鱼的条数的2倍少9条;黑猫钓上________条鱼;9.从1,3,5,7中任取3个数字组成没有重复数字的三位数,这些三位数中能被3整除的有________个;10.如图,两个同样的铁环连在一起长28厘米,每个铁环长16厘米;8个这样的铁环依此连在一起长________厘米;。
第24届“希望杯”全国数学邀请赛初一 第2试试题2013年4月14日 上午9:00至11:00一、选择题(每小题4分,共40分)1.2011年我国国同内生产总值达47.3万亿元,将这个数据用科学记数法表示是( )A.101073.4⨯元B. 111073.4⨯元C. 121073.4⨯元D. 131073.4⨯元2.某天,黑河凌晨的温度比上午9点的温度低12℃,中午12点的温度比凌晨的温度高20℃,晚上9点的温度比中午12点的温度低19℃,若当天上午9点的温度记为a ℃,则当天晚上9点的温度应记为( )A.℃)32(-aB. ℃)11(-aC. ℃)32(a -D. ℃)11(a -3.若09)1()1(22=+++-x y x y 是关于x 的一元一次方程,则代数式y y x y x +-+)2)(4(的值是( )A.54B.56C.169D.1714.已知a 是整数,则下列代数式中,值不可能是整数的为( ) A.912-a B.223-a C.61062--a a D.322-a 5.如图1,取一张长方形的纸片ABCD(AB=9,AD=5);向右上方翻折AD ,使AD 恰好落在AB 边上的D '处,压平后折痕交CD 于点E ,再将D BCE '沿E D '向左翻折压平后得D E C B ''',C B ''交AE 于点F ,则此时形成的四边形D FE B ''的面积是( )A.20B.16C.12D.8 6.△ABC 的内角分别为∠A ,∠B ,∠C ,若∠1=∠A+∠B ,∠2=∠B+∠C ,∠3=∠C+∠A ,则∠1,∠2,∠3中( )A.至少有一个锐角B.三个都是钝角C.至少有两个钝角D.可以有两个直角7.方程1|12||1|=-++x x 的整数解的个数为( )A.0B.1C.2D.38.If <a> represents the largest prime number not more than a ,then the value of the expression < ( <8> × <3> × <4>)> × <4> × <12> is ( )A.1353B.2013C.2079D.46089.公交车上显示线路号码的每个数字都是由七个同样的液晶组成,若某线路号码是两位数,并且是两个质数之积,但由于液晶条坏了一个,不能发光,显示成“51”路(如图2),则符合要求的质数中最小的一个是( )A.3B.5C.7D.1110.如图3,边长分别为8cm 和6cm 的两个正方形ABCD 与BEFG 并排放在一起,连接EG 并延长交AC 于K ,则△AKE 的面积是( )A.48cm 2B.49cm 2C.50cm 2D.51cm 2F B'D'A D'A D A D B C C B B C E 图1 KG F E D 8EC A F 图3 图4二、填空题(每小题4分,共40分)11.若a 表示x 与y 的和的平方,b 表示x 与y 的平方和,则当a=49,b=25时,xy=________;12.如图4,长方形ABCD 的长DC=8,宽AD=5,E 是AB 的中点,点F 在BC 上,已知△DEF 的面积为16,则点D 到直线EF 的距离为__________________13.若abc 都是质数,其中a 最小,且a+b+c=44,ab+3=c ,则ab+c=__________14.If a+3=b -9=c+6,then the value of 222)()()(a c c b b a -+-+- is ___________15.奇奇开车从北京去少林寺旅游,在高速公路和非高速公路上的行驶速度分别是120千米/时,60千米/时. 若奇奇驶完全用了6小时,其中在高速公路上行驶的路程是在非高速公路上行驶的路程的6倍,则全程长____________千米;16.如图5,在直角△ABC 的两直角边AC 、CB 上分别作正方形ACDE 和CBFG ,AF 交BC 于W ,连接GW ,若AC=14,BC=28,则__________=∆AGW S ;17.用2,0,1,3组成一个自然数,且每个数字至少用一次,其中可被225整除的最小的数是_________________.18.如图6,梯形ABCD 中,AD ∥BC ,BA=AD=DC ,BC=2AD ,若平行于底边的一条直线EF 把梯形分成周长相等的两部分,则___________=EF AE19.已知0≠abc ,若||4||3||2c c b b a a m ⨯⨯=,则__________122=++m m 20.在图7(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图7(1)能变为图7(2),则图7(2)中A 格内的数是__________;(1) (2)三、解答题(每题都要写出推算过程)21.(本题满分10分)两个同样的圆柱形水池A 和B ,深度都是1.2米,1号抽水机18分钟可将A 池注满,2号抽水机24分钟可将A 池的满池水注入B 池,现在,若A 池中储有61池水,B 池没有水,同进打开1号,2号抽水机,当A 池水深0.6米时,同时关闭两个抽水机,求此时B 池的水深;F E B C 图5 图6 图722.(本题满分15分)如图8,E 、F 分别是平行四边形ABCD 的边AB 、BC 的中点,DE 与AF 交于点P ,点Q 在线段DE 上,且AQ ∥PC ,求梯形APCQ 的面积与平行四边形ABCD 的面积的比值;23.(本题满分15分)如图9,边长为1的等边三角形ABC 从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在x =2013处时,三角形停止滚动.(1)落在x =2013处的点是三角形ABC 的哪个顶点?说明理由;(2)在滚动过程中,点A 走过的路程是多少?(3)若在滚动的过程中A 走过的路程是某个圆的周长,求这个圆的半径.B 图8图9。
题31 已知+∈R z y x 、、,求函数()222,,xy yzu x y z x y z+=++的最大值. (第九届高二培训题第61题)题32 已知a,b R ∈,且a b 10++=,则()()2223a b -+-的最小值是 .(第十届高二培训题第44题)题33 实数x ,y 满足方程94622--=+y x y x ,则y x 32-的最大值与最小值的和等于_______.(第十届高二第二试第17题)题34 线段AB 的端点坐标是A (-1,2),B (2,-2),直线y=kx+3与线段AB 相交的充要条件是 ( )A 、125≤≤-k B 、251≤≤k C 、125≤≤-k 且k ≠0 D 、125≥-≤k k 或 (第八届高二培训题第2题)题35 过点()1,1P 且与两条坐标轴围成面积为2的三角形的直线的条数是 .(第十届高二第一试第18题) 题36 某工厂安排甲、乙两种产品的生产.已知每生产1吨甲产品需要原材料A 、B 、C 、D 的数量分别为1吨、2吨、2吨、7吨;每生产1吨乙产品需要原材料A 、B 、D 的数量分别为1吨、4吨、1吨.由于原材料的限制,每个生产周期只能供应A 、B 、C 、D 四种原材料分别为80吨、80吨、60吨、70吨.若甲、乙产品每吨的利润分别为2百万元和3百万元.要想获得最大利润,应该在每个生产周期安排生产甲产品 吨,期望的最大利润是 百万元.(第十三届高二第一试第25题)题37 点M ()00,y x 是圆()0222>=+r r y x 内圆心以外的一点,则直线200r y y x x =+与该圆的位置关系是 ( )(A )相切 (B )相交 (C )相离 (D )相切或相交(第七届高二第一试第5题)题38 过圆016222=+-++y x y x 与圆0176622=+--+y x y x 的交点的直线方程是 .(第二届高二第二试第15题)题39 若实数x 、y 适合方程014222=+--+y x y x ,那么代数式2+x y的取值范围是——. (第九届高二第一试第17题)题40 圆()1122=-+y x 上任意一点()y x P ,都使不等式0≥++c y x 成立,则C 的取值范围是( )A 、(]0,∞-B 、[2,)+∞ C 、[21,)-+∞ D 、[12,)-+∞(第七届高二第一试第10题)31.解法1 取待定正数βα、,由均值不等式得()()11xy yz x y y z αβαβ⎛⎫⎛⎫+=+⎪ ⎪⎝⎭⎝⎭222222222222222111111,22x y y z x y z αβαβαβαβ⎛⎫⎡⎤⎛⎫≤+++=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦令,112222ββαα=+=则.21,2,2,244422==∴==βαααα于是()()2222222222z y x z y xyz xy ++=++≤+α ()222,,xy yzu x y z x y z+∴=++ ()222222222,2x y z x y z ++≤=++当1,2,1===z y x 时取等号..22max =∴u 解法2 (),1,,,22222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛++=+++=∈+y z y x y zy x zy x yzxy z y x u R y 可化为,01122=+⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛u y z y x y z y x 配方,得.1212121222-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-u u y z u y x 由上式可得,01212≥-u 即,,,.2222+∈≤≤-R z y x u 由已知,显然有20,0.2u u >∴<≤ max 22u ∴=(当22==y z y x 时,u 取得最大值).解法3 由已知,得(),,,.222+∈+++=R z y x z y x yz x u 且,22222z x z x +≤⎪⎭⎫⎝⎛+ ()()222222222222.22x z yy x z u xz y y x z +⋅+∴≤≤=+++当且仅当z x =且,222y z x =+即 y z x 22==时取等号..22max =∴u 解法4 ,,,x y z R +∈ 22222221122x y z x y y z ∴++=+++ 22122x y ≥⋅22122y z +⋅()2,xy yz =+当且仅当y z x 22==时取等号. ()222,,xy yzu x y z x y z +∴=++ ()2.22xy yz xy yz +≤=+∴当且仅当y z x 22==时,u 取得最大值.22A D BC1A 1D 1B 1C 解法5 222222211122x y y z x y z u xy yz xy yz ⎛⎫⎛⎫+++ ⎪ ⎪++⎝⎭⎝⎭==++ 112222xy yz xy yz +≥+()22,xy yz xy yz+==+,22≤∴u 当且仅当,21222z y x ==即y z x 22==时取等号,.22max =∴u 解法6 (),2,222222y x yx xy y x +≥+≥+ ()222222xy yz xy yzu x y z x z y ++∴=≤++++ ()()()()()22222.2222xy yz x z y x z yx z y++=≤=+++当且仅当∴y z x 22==时,.22max =u 解法7 构造如图长方体1AC ,设对角线11,AC d AC =与交于点1C 的三个面所成的锐角分别为γβα,,,长方体的三条棱分别为.,,z y x 则有.s i n ,s i n ,s i n .2222dzd y d x z y x d ===++=γβα ()1sin sin sin222=++γβα于是2222sin sin sin sin xy yz xy yz x y y z u x y z d d d d dαββγ++===⋅+⋅=+++222222211sin sin sin sin sin sin sin 222.2222αβγβαβγ++++≤+==,sin 2sin sin γβα==∴当且仅当即y z x 22==时,.22max =u 解法8 由,222zy x yz xy u +++=得()()2220uy x z y u x z -+++=(1),0,,,>∈+u R z y x ∴关于y 的一元二次方程(1)的判别式()()042222≥+-+=∆z x u z x ,解得()().2144222222222222=++++≤+++≤z x z x z x z x xz z x u 当且仅当z x =时取得等号. 2max1,2u ∴= max 2.2u ∴=把z x =代入(1)可得x y 2=,.2222m ax ===∴u y z x 时,当且仅当 评析 222,xy yzu x y z+=∴++ 若()222xy yz k x y z +≤++,则u k ≤,这就是说,只要xy yz +与222x y z ++的倍数之间建立了不大于的关系,则u 的最大值就求出了.因而解决问题的关键就在于找出这样的关系.解法1通过引入正参数α、β,并运用,222b a ab +≤解法3运用公式22222b a b a +≤⎪⎭⎫⎝⎛+,解法4、解法5运用ab b a 2≥+,解法6运用()2222222y x yx xy y x +≥+≥+及,圆满解决了这一关键问题.解法2通过将u 的分子、分母同除以2y ,巧妙地通过配平方,得到2110,2u-≥进而得202u <≤,很富新意.解法7通过构造长方体(若三条棱分别为z y x ,,的长方体的对角线长为l ,则有,2222z y x l ++=而222z y x ++恰好是u 的分母,且长方体中有1s in s in s in 222=++γβα)解决问题.解法8则把222xy yz u x y z+=++变为()()2220uy x z y u x z -+++=,看作关于y 的一元二次方程,利用其有正根的条件得到22≤u ,是方程思想的典型运用. 拓展 设,x y R +∈,显然有()22,xy u x y x y =+的最大值为12,即c o s 3π;设,,x y z R +∈,已解出()222,,xy yz u x y z x y z +=++的最大值为22,即cos .4π我们不妨猜想:命题 若()01,2,,2,k a k n >=≥ 则1223122212n n n n a a a a a a f a a a -++⋯+=++⋯+的最大值是.1cos +n π证明 取正参数有,,,,21n λλλ⋯()()()⎪⎪⎭⎫ ⎝⎛+⋯+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=+⋯++----n n n n n n a a a a a a a a a a a a 1113222211113221111λλλλλλ 22222221122112221211111.2n n n n n a a a a λλλλλλ----⎡⎤⎛⎫⎛⎫≤+++⋯+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦令222121222121111n n n λλλλλλ---=+=⋯=+=(1),因求最大值,故还必须有,1,,1,111132222111n n n n a a a a a a ---=⋯==λλλλλλ此即,1221a a =λ.,,1212322--=⋯=n n n a a a a λλ将上式代入(1),得nn n n n a a a a a a a a a a 11223112---=+=⋯=+= (2),令21,r λ=则21132211,,,,.n n n n n a ra a a ra a a ra a ra ---=+=⋯+==观察(2)的形式,考虑作代换(),1.,1112---+⎪⎪⎭⎫ ⎝⎛+==+∈∈+=k k k k a q q ra a a R r C q q q r q qa a k k 11=-∴-()()123,k k a qa k n ---≤≤故数列{}1k k a qa --是公比为1q 的等比数列, ()112111221111.k k k k k a a qa a qa q a qa q q q q----⎡⎤⎛⎫∴-=-=+-=⎢⎥ ⎪⎝⎭⎣⎦于是111k k k k q a q a a ---= (3).再令则,1k k k a qb -=(3)为()11112a b b b q b k k =+=-注意,上式变形为.11211221⎪⎪⎭⎫⎝⎛--=---q b b q q b b k k 这样,又得到一个公比为2q 的等比数列()12211212111,1-⎪⎪⎭⎫ ⎝⎛--=--∴⎭⎬⎫⎩⎨⎧--k k k q q b b q b b q b b ,即22112211,11k kk q q b b a q q --==-- ()()211121,1k kk k k q a b a q q q ---∴==-故有()()2211221,1n n n q a a q q ----=-()()211211q q a q a n n n --=-.而 11,n n n a ra q a q -⎛⎫==+ ⎪⎝⎭故有()()()()22211221211111n nn n q a q a q q q q q q-----⎛⎫=+ ⎪--⎝⎭,整理得()2221n q q -- ()()2211,n q q =-+化简得22 1.cossin 11n m m q q i n n ππ+=∴=+++(),021m Z m n ∈≤≤+. n f 的最大值唯一,∴应能求出m 的一个确定的值,对于这个m 的值,我们有()().1cos 2112121max+=+=⎪⎪⎭⎫ ⎝⎛+==n m q q q q r f n π12231122212n n n n na a a a a a a a f a a a -++⋯++<++⋯+ ()()()()()222222221223111223112n n n n n n a a a a a a a a a a a a a a a a --⎡⎤=++⋯++÷++++⋯++++⎡⎤⎣⎦⎣⎦()()()122311max 12231121,1,2n n n n n n n a a a a a a a a f a a a a a a a a --++⋯++≤=∴<++⋯++从而0.m ≠又 (1)和(2)是n f 取最大值的充要条件,由(1)(2)可推得()()211211kk k q a a q q --=-(3).将cos sin 11m m q i n n ππ=+++代入(3),化简得1sin1,sin1k km n a a m n ππ+=+ 对任意1,,k n k Z ≤≤∈都有0,k a >∴应取1m =.至此,已推知()max cos.1n f n π=+32.解法1 (),a b 是直线10x y ++=上的动点,点()2,3A 到此直线上各点距离的最小值是点A 到该直线的距离231322d ++==,()()222min 2318a b d ⎡⎤∴-+-==⎣⎦.解法2 ()()()()()2222211232232322a b a b a b ⎡⎤-+-=⋅-+-≥-+-⎣⎦()()221116061822a b =++-=-=.当23a b -=-,即1,0a b =-=时取等号.∴所求最小值为18. 解法3 ()()()()()()()222222211a 2b 3a 2b 311a 21b 3122⎡⎤-+-=-+-+≥-⋅+-⋅⎡⎤⎣⎦⎣⎦()()22112361822a b =-+-=-=.当2311a b --=,即1,0a b =-=时取等号.∴所求最小值为18. 解法4 ()()()()()()()222222a 2b 3a 2b 3a 2b 3a b 5⎡⎤-+-=-+-+---=+-⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ ()21a b +-+,()()()()()22222111123515(2222a b a b a b a b a b ∴-+-=+-+-+≥+-=+ ()22116)6182+-=⋅-=.当10,a b -+=即1,0a b =-=时取等号()()22,23a b ∴-+-的最小值为18.解法5 ()()()()2222210,1,23242a b b a a b a a a ++=∴=--∴-+-=-+--=+()24202118.a a +=++∴当1a =-时,()()2223a b -+-有最小值18.解法6 设()()22230,a b t -+-=>又设2cos ,3sin ,a t b t θθ-=-=则a =cos 2,sin 3,t b t θθ+=+由10,a b ++=得cos sin 60,t t θθ++=即2sin()4t πθ+60.22sin()2,262sin()626,44t t t t t t ππθθ+=-≤+≤∴-+≤++≤+ 即2t -6026,t +≤≤+解得()()2218.23t a b ≥∴-+-的最小值为18.解法7 构造向量()221,1,(2,3),cos ,x y a b x y x y x y x y θ==--⋅=⋅⋅≤⋅∴⋅2,x y ≥⋅ 即()()()()()()222222112312135a b a b a b ⎡⎤+⋅-+-≥⋅-+⋅-=+-⎡⎤⎣⎦⎣⎦ ()()()2221636,2318.a b a b =++-=∴-+-≥∴当且仅当1,0a b =-=时, ()()2223a b -+-取得最小值18.评析 因为已知10,a b ++= 所以要求()()2223a b -+-的最小值,关键就是得到()()2223a b -+-与关于a b +的式子之间的大于等于关系.解法2利用()()2222,a b a b +≥+解法3利用柯西不等式()()()22222,ab c d ac bd ++≥+解法4巧妙地利用配方法,都顺利地解决了这一关键问题.解法5则是把1b a =--代入所求式,使之变为关于a 的二次函数,再求其最小值,是函数思想的具体运用.解法6设()()2223a b t -+-=后,运用三角代换,最终转化成解关于t 的不等式,是等价转化思想在解题中的一次妙用.解法7通过构造向量,利用x y x ⋅≤⋅,y即222x y x y ⋅≥⋅ 使问题获解,充分发挥了新教材中向量这一工具在求代数最值中的作用.应当指出,许多最值问题都可以通过构造向量,利用向量的上述性质得到解决.而解法1则是将()()2223a b -+-看作定点()2,3A 与直线10x y ++=上的动点的距离的平方,故能直观地知道点()2,3到直线10x y ++=的距离的平方就是所求的最小值,简洁明了,充分显示了等价转化与数形结合思想的威力.拓展 将此赛题一般化,便得下面的定理 若x,y 满足0Ax By C ++=(A 、B 、C 是实常数,A 、B 不全为零),m ,n 是实常数,则()()22x m y n -+-的最小值是()222Am Bn C A B+++.证明 ()()()()22222x m y n x m y n ⎡⎤-+-=-+-⎢⎥⎣⎦,表示定点(),m n 与直线Ax By ++ 0C =上的动点之间的距离d 的平方.()()2222,Am Bn C d x m y n A B++=∴-+-+ 的最小值是()222Am Bn C A B +++.运用该定理解本赛题:1,2,3,A B C m n =====∴ 所求最小值是222(12131)1811⨯+⨯+=+. 下面的题目供读者练习:1.已知x ,y 满足x 2y 40+-=,求()()22x 3y 2-++的最小值. 2.已知p,q R ∈,且2p 3q 60++=,求()()22p 1q 3++-的最小值. 3.已知m,n R ∈,且3m 2n 120--=,求()()22m 2n 3++-的最小值.答案 241.52.133.131333.解法1 题设方程就是()22(3)24x y -++=,设⎩⎨⎧=+=-θθs i n 22c o s 23y x ,即⎩⎨⎧+-=+=θθs i n 22c o s 23y x ,则232(32cos )3(22sin )x y θθ-=+--+4cos 6sin 12θθ=-+ 213cos()12θψ=++(3tan 2ψ=),13212)32(max +=-∴y x , 13212)32(m in -=-y x .24)32()32(m in m ax =-+-∴y x y x .解法2 题设方程就是()22(3)24x y -++=,根据柯西不等式,22222[2(3)(3)(2)][2(3)][(3)(2)]13452x y x y -+-+≤+--++=⨯=,即52)1232(2≤--y x ,52123252≤--≤-∴y x ,5212325212+≤-≤-y x , 24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法3 题设方程就是()22(3)24x y -++=,结合23u x y =-, 又配方2222)523()1232(])2()3[(13-++--=++-y x y x y x ,于是2)1232(413--≥⨯y x ,即5212325212+≤-≤-y x .m in m ax )32()32(y x y x -+-∴24)5212()5212(=-++=.解法4 设23u x y =-,则233uy x =-,代入94622--=+y x y x ,整理得2213(430)12810x u x u u -++-+=,R x ∈ , 22(430)413(u u ∴∆=+-⨯⨯-1281)0u +≥,即224920u u -+≤,解之得12521252u -≤≤+. 24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法5 已知等式()22(3)24x y -++=表示一个圆,令t y x =-32,即y x 32-0=-t ,表示一直线,若直线与圆有公共点,则圆心到直线的距离应小于等于圆的半径,即2)2(3|)2(332|22≤-+--⨯-⨯t ,即132|12|≤-t ,解得52125212+≤≤-t ,24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .解法6 已知方程就是()22(3)24x y -++=,构造向量)3,2(-=→a ,)2,3(+-=→y x b . |||||||cos |||||a b a b a b θ→→→→→→⋅=⋅≤⋅ ,222||||||→→→→⋅≤⋅∴b a b a ,即[]()()22222222(3)3(2)2(3)(3)(2)13452x y x y --+≤+-⋅-++=⨯=.即2(2312)52x y --≤,于是,5212-521232+≤-≤y x ,24)5212()5212()32()32(m in m ax =-++=-+-∴y x y x .评析 因为已知方程就是()22(3)24x y -++=,而要求的是一次式y x 32-的最大值与最小值的和,所以解法1运用三角换元,将问题转化为求三角函数的值域,这是解决这类问题的通法,已知方程表示椭圆时,此法仍然适用.解法2运用柯西不等式求解,之所以凑成2)]2()3()3(2[+⨯-+-⨯y x ,是因为这样才会出现y x 32-,并可利用()22(3)24x y -++=.解法3运用的是配方法,请读者思考为什么如此配方:2222)523()1232(])2()3[(13-++--=++-y x y x y x ?解法4运用的是待定参数法及方程思想,也是解决这类问题的通法.解法5运用数形结合思想,将抽象的代数问题转化成直观的几何问题,轻松解决问题.解法6通过已知方程()22(3)24x y -++=联想到向量模的平方,从而通过构造向量,运用222||||||a b a b →→→→⋅≤⋅解决问题,思路清晰,体现了向量在解题中的工具作用.拓展 将此赛题一般化,便得命题1 实数y x ,满足()),0()(222>=-+-r r n y m x ,实数q p ,不全为零,则m ax )(qy px +min ()2()px qy pm qn ++=+.证明 设px qy u +=,即0px qy u +-=①,又已知()222)(r n y m x =-+-②,由题意,直线①与圆②有公共点,故圆心),(n m 到直线①的距离小于等于圆的半径r ,即22||pm qn u r p q +-≤+,即22|()|u pm qn r p q -+≤+,22()r p q u pm qn ∴-+≤-+22,r p q ≤+即qn pm q p r +++-22u ≤≤qn pm q p r +++22,∴m ax )(qy px + qn pm q p r qy px +++-=++22min )()(222qn pm qn pm q p r +=++++.将命题1中的圆改为椭圆,又得命题2 实数y x ,满足),0,(1)()(2222b a b a b n y a m x ≠>=-+-,q p ,不全为零,则m ax )(qy px +min ()2()px qy pm qn ++=+.证明 设θcos a m x =-,θsin b n y =-即θcos a m x +=,θsin b n y +=,qy px +∴(cos )(sin )cos sin p m a q n b pa qb pm qn θθθθ=+++=+++ 2222cos()p a q b θϕ=+-2222[,pm qn p a q b pm qn ++∈-+++]2222qn pm b q a p +++,(其中paqb=ϕtan ). ∴m ax )(qy px +min ()2()px qy pm qn ++=+.34.解法1 线段AB 的方程为212222---=++x y ,即4x+3y-2=0(-1≤x ≤2),由⎩⎨⎧=-++=02343y x kx y ,得k x 347+-=,令-1≤k347+-≤2,解得125≥-≤k k 或,选D.解法2 如图1所示,y=kx+3是过定点M (0,3)的直线系方程,易求得直线MA 、MB 的斜率分别是25,1-==MBMA k k ,当直线MA绕点M 逆时针旋转与线段AB 相交时,其斜率由1增加到+∞;当直线MB 绕点M 顺时针旋转与线段AB 相交时,其斜率由25-减小到-∞,所以125≥-≤k k 或,故选D.解法3 如图2,设直线MA 与MB 分别与x 轴交于点A ’,B ’,易求得直0),B ’(-56,线MA 、MB 的方程分别为y=x+3,y=25-x+3,从而可求得A ’(-3,0),在△MA ’B ’ 中,过M 任作一条直线y=kx+3交边A ’B ’于点N ,则直线也必与线段AB 相交,反之亦然.OM ⊥A ’B ’,|OM|=3,k=tan ∠MNO (N 在OA ’上)或k=tan (π-∠MNO )(N 在OB ’上)两种情形,但都有ON OM k -=,所以k ON 3-=,由5633≤-≤-k ,解得125≥-≤k k 或,故选D.解法4 设直线3y k x =+与线段AB 交于点xy 图1O ABM -332 -2xy 图2O ABM-332 -2A ’B ’Ny=kx+300(,3)N x kx +,点N 内分AB 所成的比为λ,则001212231x kx λλλλ-+⎧=⎪⎪+⎨-⎪+=⎪+⎩,消去0x ,得1025k k λ-=>+,得52k <-或1k >.又当直线3y kx =+过点A 、B 时,k 的值分别为51,2-,所以所求充要条件为125≥-≤k k 或.故选D. 解法5 当k=0时,直线y=kx+3即y=3与线段AB 显然不相交,所以排除含0的A 、B ,又当k=-1时,直线y=kx+3即y=-x+3与线段AB 也不相交,所以又排除含-1的C,故选D.评析 解法1运用的是方程思想,若运用这个思想,先求出直线MA 、MB 与x 轴的交点A ’,B ’的横坐标A x ’,B x ’,并求出直线y=kx+3与x 轴的交点N 的横坐标N x ,再解A x ’≤ N x ≤B x ’,同样可以解决问题.解法2直接通过观察图象,看直线y=kx+3与线段AB 相交时的k 与MB MA k k 、之间的关系而选D ,显得直观明了.解法3运用平面几何知识求N x ,别具一格.解法4运用定比分点知识求解,也是解此类问题的通法之一.解法5运用了特殊值法,显得最为简捷.值得注意的是,如果取k=1,发现直线y=kx+3与线段AB 相交,此时就选A 那就错了,请读者想想这是什么原因.拓展 已知直线:(,)10l f x y x y =--=,显然点A (0,1)、B (1,3)与点C (1,-1)、D (3,1)都在l 的同侧,点A 、C 与点B 、D 都在l 的异侧,∵f (0,1)=-2<0,f (1,3)=-3<0,f (1,-1)=1>0,f (3,1)=1>0∴f (0,1)与f (1,3)同号,f (1,-1)与f (3,1)同号,f (0,1)与f (1,-1)异号,f (1,3)与f (3,1)异号,是否对于任意直线l 的同侧或异侧的任意两点都有此结论呢?经研究,我们有下面的定理1 已知两点M (x 1,y 1)、N(x 2,y 2)及直线:(,)0l f x y Ax By C =++= (1) 若点M 、N 在l 的同侧,则f (x 1,y 1)f (x 2,y 2)>0; (2) 若点M 、N 在l 的异侧,则f (x 1,y 1)f (x 2,y 2)<0.证明 (1)10当B ≠0时,不妨设点M 、N 都在l 的上方,则,,2211BC x B A y B C x B A y -->--> 所以当B>0时,有0,02211>++>++C By Ax C By Ax ,即f (x 1,y 1)>0,f (x 2,y 2)>0;当B<0时,有0,02211<++<++C By Ax C By Ax ,即f (x 1,y 1)<0,f (x 2,y 2)<0,所以当B ≠0时,f (x 1,y 1)f (x 2,y 2)>0;20当A ≠0,B=0时,l 的方程为(,)0f x y Ax c =+=,此时l ⊥x 轴,不妨设设点M 、N 都在l 的右侧,则ACx A C x ->->21,,所以当A>0时,0,021>+>+C Ax C Ax ,即f (x 1,y 1)>0,f (x 2,y 2)>0;当A<0时,0,021<+<+C Ax C Ax ,即f (x 1,y 1)<0,f (x 2,y 2)<0,所以当A ≠0,B=0时,f (x 1,y 1)f (x 2,y 2)>0.综上可知,当点M 、N 在l 的同侧时,f (x 1,y 1)f (x 2,y 2)>0. (2)10当B ≠0时,不妨设点M 、N 分别在l 的上、下方,则1122,A C A Cy x y x B B B B>--<--,故当B>0时,有11220,0Ax By C Ax By C ++>++<, 即f (x 1,y 1)>0, f (x 2,y 2)<0; 当B<0时,有0,02211>++<++C By Ax C By Ax , 即f (x 1,y 1)<0,f (x 2,y 2)>0;所以当B ≠0时,f (x 1,y 1)f (x 2,y 2)<0;20当A ≠0,B=0时,l 的方程为f(x,y)=Ax+c=0,此时l ⊥x 轴,不妨设设点M 、N 分别在l 的左、右侧,则ACx A C x ->-<21,.所以当A>0时,0,021>+<+C Ax C Ax ,即f (x 1,y 1)<0,f (x 2,y 2)>0;当A<0时,0,021<+>+C Ax C Ax ,即f (x 1,y 1)>0,f (x 2,y 2)<0,所以当A ≠0,B=0时,f (x 1,y 1)f (x 2,y 2)<0.综上可知,当点M 、N 在l 的异侧时,f (x 1,y 1)f (x 2,y 2)<0. 根据定理1,不难得到定理2 直线Ax+By+C=0与以点P 1(x 1,y 1)、P 2 (x 2,y 2)为端点的线段相交的充要条件是0))((2211≤++++C By Ax C By Ax .运用定理2,可得本赛题的如下解法:直线y=kx+3即kx-y+3=0,由定理2,可知(-k-2+3)(2k+2+3)≤0,即125≥-≤k k 或为所求的充要条件,故选D.35.解法 1 记过点()1,1P 的动直线为l ,()O Q ,1,0为坐标原点(如图),则当直线l 从OP 的位置绕点P 顺时针转动到直线PQ 的位置时,它和坐标轴在第二象限内围成的三角形的面积从零增加到∞+,故围成的三角形在第二象限时,满足条件的直线l 有且只有一条,同理,围成的三角形在第四象限时,满足条件的直线l 也有且只有一条,并且,满足条件的三角形在第三象限不存在.当围成的三角形在第一象限时,显然l 存在斜率k ,设l 的方程为l k x k y ),0(),1(1<-=-与x 轴、y 轴的正半轴分别交于点A 、B ,则1(1,0),(0,1).A B k k --111(1)(1)22S OA OB k k∴=⋅=-- ()()∴≥⎥⎦⎤⎢⎣⎡-+-+=,21211k k 当1-=k 时,S 的最小值为2,故当围成的三角形在第一象限时,满足题设的直线也只有一条.综上,所求的直线为3条. 下面的解法中,对“围成的三角形在第二、四象限时,满足题设的直线l 都只有一条,且满足题设的三角形在第三象限不存在”不再一一叙述,仅对围成的三角形在第一象限时加以解答.解法 2 设直线l 与x 轴,y 轴的正半轴分别交于点),0,0(),,0(),0,(>>b a b B a A 则直线l 的方程为.1=+b y a x 直线l 过点.111),1,1(=+∴b a P 故设θθ22s i n 1,c o s 1==b a (其中20πθ<<),则θθ22sin 1,cos 1==b a ,故θθθθ2222cos sin 42cos sin 2121===ab S 2122sin 22=≥=θ (当4πθ=时取等号),即2m in =S .故所求的直线共有3条. 解法3 同解法2,得4,2111,111≥∴≥+=∴=+ab abb a b a ,(当且仅当2111==b a ,即 2==b a 时取等号), 114222S ab ∴=≥⨯=,即2m in =S .故所求的直线共有3条.解法 4 设直线l 与x 轴、y 轴的正半轴分别交于点),0(),0,(b B a A ,点)1,1(P 分AB所成的比为λ,则110,11a b λλλλ⎧=⎪⎪+>⎨⎪=⎪+⎩,即)0(111>⎪⎩⎪⎨⎧+=+=a b a λλ.故xO 1 AP1 y B Q211)1(211)11)(1(212121=+≥++=++==⋅=λλλλab OB OA S 1.=λ时,.2m in =S 故所求直线共有3条. 评析 上述解法都是用运动变化的观点与数形结合的思想方法分析答案的可能性.围成的三角形在第二、四象限时,l 只有一条,围成的三角形在第三象限不可能,这些是容易看到的,关键是围成的三角形在第一象限时,满足题设的直线l 有几条.直观地看,可能性有三个:0条,1条,2条.那么到底有多少条?四种解法分别用不同的方法求出了三角形面积的最小值为2,故此时的l 只有一条,从而解决了问题.此题也可直接求解:不论围成的三角形在第几象限, l 的斜率总是存在的.设l 的方程为)1(1-=-x k y .则l与x轴,y轴的交点分别为)1,0(),0,11(k B kA --.故k k kk k k S 4)1(,2)1(211112122=-=-=-⋅-=①.当0>k 时,①就是016,4)1(22=+-=-k k k k ,有两个不等的正数解;当0<k 时,①就是,4)1(2k k -=-1,0)1(2-==+k k .故所求直线为3条.拓展 将此题内容拓广,可得定理 1 动直线l 过定点)0)(,(≠mn n m P ,则直线和坐标轴在点P 所在象限内围成三角形的面积的最小值是.2mn证明 设直线l 与x 轴,y 轴分别交于点OAB b B a A ∆ ),,0(),0,(在点),(n m P 所在象限,0,0>>∴bn am ,直线l 的方程为.1=+bya x 直线l 过点ab mn b n a m b n a m n m P 21,1),,(≥+=∴=+∴,即mn ab 4≥,当且仅当n b m a 2,2==时取等号..221mn ab S OAB ≥=∴∆ 定理2 直线l 过定点)0)(,(≠mn n m P 且和坐标轴围成的三角形的面积为S ,则 ⑴当mn S 20<<时,满足条件的直线l 有且仅有两条. ⑵当mn S 2=时,满足条件的直线l 有且仅有三条. ⑶当mn S 2>时,满足条件的直线l 有且仅有四条.根据定理1的结论及图象不难知道定理2的正确性.证明从略. 题意可知求36.解 设生产甲、乙两种产品的吨数分别为x 、y .则根据函数23z x y =+的最大值,限制条件为80,2480,260,770,0,0.x y x y x x y x y +≤⎧⎪+≤⎪⎪≤⎨⎪+≤⎪≥≥⎪⎩如图,上述不等式组约束区域即图中的阴影部分.区域的顶点坐标为M (0,20),N (10,0),R ⎪⎭⎫⎝⎛13210,13100,O (0,0),直线k y x =+32的斜率x+y =807x+y =70X=302x+3y =k2x+4y =80yxOMRN321-=k .直线8042=+y x 的斜率212-=k .由图可知,y x 32+在点R 处取得最大值,最大值为13830132103131002=⨯+⨯(百万元). 故填13830;13100. 评析 可用若干不等式表示的限制条件下某二元一次函数的最大(小)值的应用题,通常可用线性规划知识求解,其步骤如下:1、设变量(如y x ,),建立目标函数()y x f z ,=(如y x z 32+=).2、根据约束条件列出不等式组.3、画出不等式组表示的平面区域.4、作出直线()0,=y x f ,并将其向上或向下平移确定最优解.5、将最优解代入()y x f z ,=便得所求最值. 37.解法1 圆222ry x =+的圆心是O()0,0,它到直线200ry y x x =+的距离220222020000y x r y x r y x d +=+-⋅+⋅=, 点M ()00,y x 在圆222ry x =+的内部且不在圆心,∴r d r y x >∴<+<,02020.可知直线200r y y x x =+与圆222r y x =+相离.故选C.解法2 令1,200===y x r ,满足题设.此时,直线4=+y x 与圆422=+y x 相离.由正确选择支的唯一性,选C.评析 解析几何中,判断直线与圆的位置关系就看圆心到直线的距离d 与圆的半径r 的大小关系: ⇔>r d 直线与圆相离; ⇔=r d 直线与圆相切;⇔<r d 直线与圆相交.对于二次曲线()0,:=y x f C 与点M ()00,y x 的位置关系,有下面的结论: 点M 在曲线C 上()0,00=⇔y x f ; 点M 在曲线C 内()0,00<⇔y x f ; 点M 在曲线C 外()0,00>⇔y x f .所谓二次曲线内是指曲线把平面分成的两(或三)部分中含有焦点(或圆心)的部分. 以上这些就是解法1的依据.由于是选择题,解法2运用特殊化思想求解,显得更简捷.应当指出,特殊值法(包括适当选取特殊点、特殊角、特殊函数、特殊曲线、特殊位置等)通常应是解选择题时首先考虑的方法,一旦用上,简单快捷,可以大量节省时间.此题来源于课本上的一道习题:“已知圆的方程是222r y x =+,求经过圆上一点M ()00,y x 的切线方程.”答案是200r y y x x =+.拓展 给定圆C :222r y x =+与定点M ()00,y x ,(02020≠+y x ),则直线200:r y y x x l =+就是存在且确定的,它与定圆到底是什么样的位置关系呢?经研究,有下面的结论.结论1 若点,C M ∈则l 与C 切于点M.(这是显然的,证明略)结论2 若点M 在圆外,过点M 引圆C 的两条切线1MT 与2MT ,则200r y y x x =+为过两切点的直线方程,因而l 与C 相交.证明 设()111,y x T 和()222,y x T 是两个切点,由结论1,直线1MT 与2MT 的方程分别是211r y y x x =+与222r y y x x =+.因为它们相交于点M ()00,y x ,于是20101r y y x x =+与20202r y y x x =+同时成立.于是得200r y y x x =+表示直线21T T 的方程.l 与C 显然相交.结论3 若点M 在圆C 内且不是圆心,以M 为中点的圆的弦为AB ,过A 、B 的两条切线相交于点N ,则200r y y x x =+表示过点N 且平行于AB 的直线方程,因而l 与C 相离.证明 令N ()n m ,,由结论2,直线AB 的方程一定是2r ny mx =+.因为M 是AB 的中点,所以200r ny mx =+,这说明点N 在直线200:r y y x x l =+上.下面证明AB ∥l .①当000≠y x 时,由于O 、M 、N 三点共线,可知0≠mn ,过M 、N 引同一坐标轴的垂线,由点的坐标定义及直角三角形的相似关系,易知22001r r y n x m --=≠=,故AB ∥l .②当000=y x 时,由于02020≠+y x ,则有0,00==m x 或0,00==n y .无论哪种情况,两直线都同时垂直于同一坐标轴,并且在该坐标轴上截距不等.故AB ∥l .此时l 与C 显然相离.38.解 解方程组⎪⎩⎪⎨⎧=+--+=+-++0176601622222y x y x y x y x ,得⎩⎨⎧==32y x ,故两圆相切于点(2,3),所以所求直线方程是()()032=-+-y x μλ,其中μλ,为参数.评析 先通过解方程组求出两圆的交点坐标,如果交点有两个:()()2211,,,y x y x ,则所求直线方程为()()()()112112x x y y y y x x --=--.但此题中的两圆只有一个交点()3,2,过点()3,2的所有直线该如何表达呢?有人表述为()23-=-x k y (k 为参数),这就错了,因为方程()23-=-x k y 表示的所有直线中并不包括直线2=x (即过点()3,2且垂直于x 轴,亦即过点()3,2且斜率不存在的那一条).而()()032=-+-y x μλ(μλ,为参数)才能表示过点()3,2的所有直线.当0≠λ且0=μ时,该直线方程就是2=x .一般地,过点()00,y x 的所有直线组成的直线系方程为()()000=-+-y y x x μλ(其中μλ,为参数).拓展 我们先看下面的问题:求过两圆074422=+--+y x y x 与03661222=+--+y x y x 的交点的直线方程.分析:按上面评析中的思路,先解方程组得两交点坐标,再求出过这两点的直线方程为02928=-+y x . 如果将两圆方程相减,也得02928=-+y x ,恰好就是过两圆交点的直线方程.这是否是一种巧合呢?非也.设两圆交于A 、B 两点,则A 、B 的坐标既是方程组⎩⎨⎧=-+=+--+02928074422y x y x y x 的 解,也是方程组⎩⎨⎧=-+=+--+0292803661222y x y x y x 的解,即A 、B 的坐标都适合方程02928=-+y x ,故02928=-+y x 就是直线AB 的方程.那么,当两圆外切时,两圆方程相减所得方程又表示什么样的直线呢?就拿此赛题为例,016222=+-++y x y x 与0176622=+--+y x y x 两边相减,得2=x .由图形,可知直线2=x 恰好是过两圆切点的公切线.这也不是偶然的,道理与两圆相交时一样.当两圆内切时,此结论也成立.于是,我们有下面的 定理 已知两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,则⑴当两圆相切时,过切点的公切线方程是()()0212121=-+-+-F F y E E x D D ; ⑵当两圆相交时,公共弦所在的直线方程是()()0212121=-+-+-F F y E E x D D . 39.解法1 已知方程就是()()42122=-+-y x ,()202---=+x y x y ,所以题意就是求圆()()42122=-+-y x 上的点()y x ,与定点A ()0,2-的连线的斜率的取值范围.如图,,只须求切线AN 的斜率k .易知20.1(AM k -==--tAN k NAx ∴=∠()2222123tan 2.41519AM AMk MAx k ⋅=∠===-- 120,.25y x ⎡⎤∴∈⎢⎥+⎣⎦注:切线AN 的斜率k 的另一种求法:设AN 的方程是(),20+=-x k y 即02=+-k y kx ,则圆心M 到切线AN 的距离等于圆M 的半径,即212212=++-⋅k kk ,解得0=k (舍去),512=k . 解法 2 已知方程就是()()42122=-+-y x ,故设,s i n 22,c o s 21θθ=-=-y x 即,sin 22,cos 21θθ+=+=y x 则.cos 23sin 222θθ++=+x y 令k =++θθcos 23sin 22,得,23c o s 2s i n 2-=-k k θθ即()()223244sin 32,sin .44k k k k θϕθϕ-++=-+=+ ()232sin 1,1,44k k θϕ-+≤∴≤+ 解得,5120≤≤k 即.512,02⎥⎦⎤⎢⎣⎡∈+x y 解法3 设k x y=+2,则,2k kx y +=代入014222=+--+y x y x 并整理,得x1-2OA NMy()().018424412222=+-+--++k k x k kx k 由()22442k k ∆=--()()22414810,k k k -+-+≥得1205k ≤≤.由,014222=+--+y x y x 即()()42122=-+-y x 可知,212≤-≤-x 即.31≤≤-x 经验证,当5120≤≤k 时,(1)0,(f f -≥≥且对称轴()[]224421,3.21k k x k --=-∈-+故.512,02⎥⎦⎤⎢⎣⎡∈+x y 评析 解法1将2+x y 看作()20---x y ,进而看作圆()()42122=-+-y x 上的动点()y x ,与定点()0,2-的连线的斜率,将问题转化为求此斜率的范围;解法2 通过换元,将问题转化为求三角函数的值域;解法3 通过整体换元并消去y 后,利用二次方程在某区间内有解的条件求出所求范围.都体现了化归转换的思想.由于椭圆()012222>>=+b a by a x 有性质22b a y x +≤+(请读者自证),故本赛题又有如下解法:设t x y =+2,则02=+-t y tx .已知方程就是()()12122=-+-y x ,则()()1424222=-+-y t t tx ,由上面的性质,得4422+≤+--t y t tx ,即44322+≤-t t ,解得120,5t ≤≤∴.512,02⎥⎦⎤⎢⎣⎡∈+x y 拓展 让我们进一步思考下面的问题:1、若将题中的条件方程改为()(),1429122=-+-y x 则答案是什么?2、若将题中的条件方程改为()(),42122=---y x 则答案是什么?与本赛题同样的思考方法,不难得到上面两题的答案分别是[).,,0R +∞若将原题中的2+x y 改为y x 2+或632+x y ,结果又怎样?事实上,用同样的方法还可以求()0≠++ac bax dcx 的取值范围.解法1 ()∴=-+,1122y x 可设.sin 1,cos θθ=-=y x 于是0≥++c y x 化为01sin cos ≥+++c θθ,即,14sin 2--≥⎪⎭⎫ ⎝⎛+c πθ1sin .42c πθ--⎛⎫∴+≥⎪⎝⎭ 1sin 14πθ⎛⎫-≤+≤ ⎪⎝⎭ .∴由题意得121-≤--c ,解得12-≥c ,故选C.解法2 图1、图2、图3依次表示0≥++c y x ,()1122=-+y x ,及1-c y -c-c l2 0y xM 1 2 0y xM 1 x+y+c ≥0图 1 图 2 图3()⎩⎨⎧=-+≥++11022y x c y x 的图象.在图3中,直线0:=++c y x l 过Ⅱ、Ⅲ、Ⅳ象限,切圆M 于N ,这时圆M 上所有的点(N 点除外)都在l 的上方,因而圆M 上N 点以外的点的坐标()y x ,都使0>++c y x 成立,而N 点坐标使0=++c y x 成立,结合题意,易求得此时的12,21-=-=-c c ,故当21-≤-c ,即12-≥c 时,圆M 都在l 的上方(含相切),因而圆M 上的点的坐标()y x ,可使不等式0≥++c y x 成立,故选C.解法3 21,23=-=y x 满足()1122=-+y x ,此时,若0=c ,则0≥++c y x 不成立,故排除含0的A 、D ;若1=c ,则0≥++c y x 成立,又排除不含1的B ,故选C.评析 从代数角度看,0≥++c y x ,即()y x c +-≥恒成立,有()[]m ax y x c +-≥,因此问题的关键就是如何求()[]m ax y x +-.由于()y x ,满足()1122=-+y x ,故解法1运用三角代换将问题转化成求三角函数的最大值问题,通过三角函数的有界性使问题获解.从几何角度看,原问题的实质就是c 在什么范围内时,才能保证圆()1122=-+y x 在直线0=++c y x 的上方(相离或相切).解法2便是运用数形结合思想,直观地解决问题的.由于是选择题,解法3运用特殊值排除干扰支,从而选出正确答案,这种抓住题目本质特征,避开常规思路的创新解法更值得提倡.拓展 按照上面所说的思想方法,请读者思考并解决下列问题:⒈ 圆()1122=-+y x 上任意一点()y x P ,都使不等式0178222≥+++-+c y x y x 成立,求c 的取值范围.(答案:22627c ≥-)⒉ 圆()1122=-+y x 上任意一点()y x P ,都使不等式2222120x y x y c +-++->成立,求c 的取值范围.(答案:552c <-)--c 0x N。
第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷=2.计算:11.5 3.1657.0512+++=3. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。
(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有个。
6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。
7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。
8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 2013201320132013201312345++++除以5,余数是。
(注:2013a表示2013个a相乘)10.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是1527,那么去掉的数是。
11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。
希望杯数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于81,那么这个数是多少?A. 9B. -9C. 81D. 9 或 -93. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米4. 一个等差数列的首项是2,公差是3,第5项是多少?A. 10B. 11C. 14D. 175. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8二、填空题(每题4分,共20分)6. 一个数的平方根是4,那么这个数是________。
7. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是________立方厘米。
8. 如果一个数的绝对值是5,那么这个数可以是________或________。
9. 一个等比数列的首项是2,公比是2,第4项是________。
10. 一个圆的面积是π,那么它的半径是________。
三、简答题(每题10分,共30分)11. 解释什么是素数,并给出前5个素数。
12. 描述如何使用勾股定理来解决直角三角形的问题。
13. 给出一个例子,说明如何使用代数方法解决实际问题。
四、解答题(每题15分,共30分)14. 一个农场主有一块长方形土地,长是宽的两倍。
如果这块土地的周长是100米,求这块土地的面积。
15. 一个班级有40名学生,其中30名学生喜欢数学,20名学生喜欢英语。
假设没有学生同时喜欢数学和英语,求喜欢数学但不喜欢英语的学生人数。
五、证明题(每题20分,共20分)16. 证明:在一个直角三角形中,斜边的中点到三个顶点的距离相等。
结束语希望杯数学竞赛试题旨在考察学生的数学基础知识、逻辑推理能力以及解决实际问题的能力。
通过这样的练习,学生不仅能够提高自己的数学水平,还能够培养解决问题的兴趣和信心。
历届希望杯试题及答案一、选择题1. 下列哪个选项是正确的?A. 地球是宇宙的中心B. 太阳是宇宙的中心C. 宇宙没有中心D. 地球是太阳系的中心答案:C2. 以下哪个数学公式表示圆的面积?A. A = πr²B. A = 2πrC. A = 4πr²D. A = πr答案:A二、填空题1. 请填写下列方程的解:2x + 3 = 11答案:x = 42. 请计算以下表达式的值:(3 + 2) × 4 - 6答案:14三、解答题1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。
答案:斜边长度= √(3² + 4²) = √(9 + 16) = √25 = 5cm2. 一个数的3倍加上5等于20,求这个数。
答案:设这个数为x,则有3x + 5 = 20,解得x = (20 - 5) / 3 = 5。
四、判断题1. 所有偶数都是2的倍数。
答案:正确2. 地球自转一周的时间是24小时。
答案:正确五、简答题1. 请简述牛顿第三定律。
答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的力是相互的,大小相等,方向相反。
2. 解释什么是光的折射现象。
答案:光的折射现象是指光从一种介质进入另一种介质时,光线的传播方向发生改变的现象。
这通常是因为不同介质对光的传播速度不同导致的。
六、计算题1. 一个长方体的长、宽、高分别为10cm、8cm和6cm,计算其体积。
答案:体积 = 长× 宽× 高= 10cm × 8cm × 6cm = 480cm³2. 一个圆的半径为7cm,求其周长和面积。
答案:周长= 2πr = 2 × π × 7cm ≈ 43.98cm面积= πr² = π × 7² ≈ 153.94cm²七、综合题1. 一个物体从静止开始以2m/s²的加速度做匀加速直线运动,求物体在第3秒末的速度和位移。
希望杯第十一届(2000年)初中一年级第二试试题初一 第2试一、选择题 (每小题6分,共60分) 以下每题的四个结论中,仅有一个是正确的,请将表是正确答案的英文字母添在每题后面的圆括号内。
1.12000-的相反数是( )(A )2000(B )12000(C )2000-(D )1 2.有如下四个命题:① 有理数的相反数是正数② 两个同类项的数字系数是相同的③ 两个有理数的和的绝对值大于这两个有理数绝对值的和 ④ 两个负有理数的比值是正数 其中真命题有( )(A )4个(B )3个(C )2个(D )1个 3.如图1,平行直线 AB 、CD 与相交直线EF 、GH 相交,途中的同旁内角共有( )(A ) 4对(B )8对(C )12对(D )16对4.If [a] indicates the greatest integer less than a,then ( )(A) 1[]a a a -<≤ (B) 1[]a a a -<< (C) []1a a a ≤≤+ (D) 1[]a a a -≤<5.已知三个锐角的度数之和大于180,则一定有一个锐角大于( )(A )81(B )76(C )68 (D )606.如果有理数a,b,c,d 满足a+b>c+d ,则( )(A )11a b c d -++>+(B )2222a b c d +>+(C )3333a b c d +>+(D )4444a b c d +>+7.有三个正整数a,b,c ,其中a 与b 互质且b 与c 也互质。
给出下面四个判断:①2()a c +不能被b 整除②22a c +不能被b 整除③2()a b +不能被c 整除④22a b +不能被c 整除其中,不正确的判断有( )(A )4个(B )3个(C )2个(D )1个8.已知a 是不为0的整数。
并且关于x 的方程322354ax a a a =--+有整数根。
1第十一届小学“希望杯”全国数学邀请赛六年级第Ⅰ试试题2013年3月17日上午8:30至10:00以下每题6分,共120分.计算:30%÷)(7131521+×=。
解析:原式=495211075103=××.计算:)871000143100121101++=。
解析:原式=(101+1001+10001)+(878684++)=1110581.建筑公司建一条隧道,按原速度建成31时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天。
解析:工程型分数应用题。
使用新设备后,工作效率为原来的(1+20%)×80%=2524,设工作时间为单位“1”,原速度建成隧道31,用时31;修建剩余隧道的32用时3625252432=÷,所以原时间为180362531185=+÷)((天)。
本题用方程来解答,设原工作时间为x 天31÷x 1+(1—31)÷[x1×(1+20%)×80%]=185.图1是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是。
1—53%—32%=15%,蛋白60×53%=31.8(克)蛋白最接近。
.如图2,边长为12cm 的正方形与直径为16cm 的圆部分重叠(圆心是正方形的一个顶点),用S 1,S 2分别表示两块空白部分的面积,则S 1—S 2=cm 2(圆周率π取3)。
解析:差不变面积问题。
S 1—S 2=(S 1+S 阴)—(S 2+S 阴)=S 圆—S 正=3×(16÷2)2—122=192—144=48cm 2a (若a>b ).定义新运算“⊕”:a ⊕b=1(若a=b )b (若a<b )图1图2S 2S第2页例如3.5⊕2=3.5,,1⊕1.2=1.2,7⊕7=7,则=0.8 540.1 31-37.11。
题21 若0,>y x ,且12=+y x ,则⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y y x x u 411的最小值是 . (第一届高二第一试第20题)题22 已知+∈R b a ,,且1=+b a ,则1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 . (第八届高二培训填空题第6题)题23 设R y x ∈,,且221x y +≤,则xy y x ++的最大值是 ,最小值是 .(第六届高二培训解答题第2题、第八届高二第一试第23题)题24 若223x xy 3y 20-+=,则228x 23y +的最大值是 .(第十三届高二培训题第68题)题25 函数xxx y sin 1cos sin ++=的最大值是____.(第九届高二培训题第43题)题26 函数1212y sin x cos x =+的值域是 .(第十一届高二培训题第46题)题27 设+∈N n ,则|2001||1950||1949|-+⋯+-+-n n n 的最小值是 .(第九届高二培训题第53题)题28 611112310s =++++ ,则s 的整数部分是 ( )A 、1997 B、1998 C 、1999 D 、2000(第八届高二第二试第10题) 题 29 求函数4803224+++-=x x x y 的最小值和取最小值时x 的值(第十三届高二培训题第81题)题30 函数223223x x x x y -+++-=的最大值是 ,最小值是 .(第十四届高二第二试第16题)21.解法1 比较:当1,0,=+>b a b a 时,42511≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b b a a ,当且仅当21==b a 时取等号.可见,82542521212121411=⋅≥⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x y y x x ,当且仅当41,21==y x 时取等号.825m in =∴u . 解法2 xyxy xy x y y x xy y y x x u 411414411++≥+++=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=. 令12,=+=y x xy t 且xy y x y x 222,0,0≥+∴>>,即81≤xy ,即81≤t .可证函数()t t t f 411++=在⎥⎦⎤⎝⎛81,0上单调递减,81=∴t 时,()82581min =⎪⎭⎫ ⎝⎛=f t f .即当41,21==y x 时,min 258u =. 解法3 令⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∈==2,0,tan 2,tan πϕθϕθy x ,则tan tan 1,θϕ+=21112sin 2sin 22.sin 2sin 222sin 2sin 22u x y x y θϕθϕθϕ⎛⎫+⎛⎫⎛⎫=++=≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (当且仅当ϕθ=时取等号).又222tan 2tan sin 2sin 21tan 1tan θϕθϕθϕ+=+++ ()22222221tan tan tan tan 1tan tan tan tan θϕϕθθϕθϕ++=+++()()22222tan tan tan tan 1tan tan 2tan tan tan tan θϕϕθθϕθϕθϕ++=++-+()2tan tan 11tan tan 22ϕθϕθ-++=.由1tan tan =+ϕθ,易得41tan tan ≤ϕθ(当且仅当ϕθ=时取等号).于是()22191tan tan 1.416θϕ⎛⎫-≥-= ⎪⎝⎭ 12284sin 2sin 295116θϕ+⋅∴+≤=+(ϕθ=时取等号).故∴=⎪⎭⎫⎝⎛≥⎪⎭⎫ ⎝⎛+≥.82558822sin 2sin 222ϕθu 当21arctan ==ϕθ,即212==y x 时,825m in =u . 评析 解法1的依据就是课本上一道习题的结论.本赛题就是这道课本习题的变题.利用现成的一些重要结论可以简化解题过程,尤其是解选择题、填空题时更可直接利用.由于a 、+∈R b 时,2≥+baa b ,当且仅当b a =时取等号,所以解法2将u 展开成xy xy x y y x 414+++后,只能对x y y x +4使用上述公式(因为12=+y x ,所以必须使212==y x 时取等号).若也对xy xy 41+使用上述公式就错了,因为由212==y x ,得41,21==y x ,此时xy xy xy ,241,81==与xy 41并不相等.这是同一式子中几处同时使用基本不等式时必须注意的,是一个常见的易错点.x 与()0,0>>x k xk不可能相等时,通常运用函数的单调性求x k x +的最小值(易证函数()0,0>>+=k x xkx y 在(0,]k 上单调减,在[,)k +∞上单调增). 解法3运用三角代换法,虽然较繁,但仍可起到开阔视野,活跃思维的作用. 拓展 命题“若0,>b a 且1=+b a ,则42511≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b b a a ”可作如下推广: 推广1 若0,,>c b a 且1=++c b a 则271000111≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+c c b b a a . 证明 1111b c c a a b ca b a b c a b c a b c a b c a b c a b b c c a⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++=+++++++ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 331133abc abc abc abc ≥+++⋅⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=33131abc abc abc abc ,当且仅当31===c b a 时取等号.31,271313333≤∴=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++≤abc c b a abc .又()x x x f 1+=在⎥⎦⎤ ⎝⎛271,0及⎥⎦⎤ ⎝⎛31,0上都是减函数,,2710003113132712713133=⎪⎪⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+≥⎪⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+∴abc abc abc abc 当且仅当271=abc 时取等号.271000111≥⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+∴c c b b a a (当且仅当31===c b a 时取等号). 推广2 若0(1,2,,)i a i n >= ,11=∑=ni i a ,则2111nni i i n a a n =⎛⎫⎛⎫++≥ ⎪ ⎪⎝⎭⎝⎭∏. 推广3 若0(1,2,,)i a i n >= ,k a ni i =∑=1,则2211nni i i n k a a nk =⎛⎫⎛⎫++≥ ⎪ ⎪⎝⎭⎝⎭∏.推广2、3的证明,叙述较繁,此处从略. 22.解法1 11,,1,,224a b a b R a b ab ab ++∈+=∴≤=∴≤ 且. 111111*********a b a b a b ab ab ab ab +⎛⎫⎛⎫∴++=+++=++=+≥+= ⎪⎪⎝⎭⎝⎭.当且仅当21==b a 时取等号.min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦. 解法2 3311111111113a b a b b a b a a b a b a b a b++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++++≥⋅ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =9,当且仅当1==b a a b ,即21==b a 时取等号. min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦.解法3 1111112252a b a b b a b a a b a b a b a b ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++=++=++≥ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭9225=⨯+,当且仅当1==b a a b ,即21==b a 时取等号. min11119a b ⎡⎤⎛⎫⎛⎫∴++= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦. 评析 求条件最值离不开利用条件.如何利用条件1=+b a ?解法1把1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭展开后将b a +用1代,解法2与3将a 1与b1中的1用b a +代,其目的都是为了能利用均值不等式或基本不等式求最值. 拓展 此题可作如下推广:推广1 若+∈R n b a ,,,且n b a =+,则1111a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是22n n +⎛⎫ ⎪⎝⎭.证明ab b a n R n b a 2,,,≥+=∴∈+,于是241nab ≥, 2211114(1)211111a b n n n a b ab ab n n +++++⎛⎫⎛⎫⎛⎫++=+=+≥+= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当2nb a ==时取等号,1111a b ⎛⎫⎛⎫∴++ ⎪⎪⎝⎭⎝⎭的最小值是22n n +⎛⎫ ⎪⎝⎭.推广2 若+∈R a a a n ,,,21 ,且121=+++n a a a ,则12111111n a a a ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的最小值是n n )1(+. 证明 +∈R a a a n ,,,21 ,121=+++n a a a ,1121112111)1(11a a a a a n a a a a a a n nn ++≥++++=+∴ .同理112121222(1)(1)111,,1n n n n nn n n a a a a n a a a a a a a a +++++≥+≥ .故 112121212(1)()()111111(1)n nn n n n nn n a a a a a a n a a a a a a ++⎛⎫⎛⎫⎛⎫+++≥=+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当 121n a a a n ====时取等号. 12111111na a a ⎛⎫⎛⎫⎛⎫∴+++⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的最小值是nn )1(+. 推广3 若),,2,1(,,n i R a m k i =∈+,且∑==n i im a 1,则111nk i i a =⎛⎫+ ⎪⎝⎭∏的最小值是 1nk k n m ⎛⎫+ ⎪⎝⎭.证明 由均值不等式得111nnnni ii i nn a m a ==⎛⎫⎪⎛⎫ ⎪≥= ⎪ ⎪⎝⎭ ⎪⎝⎭∏∑, 111212111111()(1,2,,)p p n n p p kppk n nkC p p p C n n n n k k kk i i i n i i i i i i i n C C C p n a a a a a m --≤<<<≤==⎛⎫⎛⎫≥=≥= ⎪ ⎪⎝⎭⎝⎭∑∏∏ , 从而1212112121111111111111n n nn nkk k k k k k ki i i i n i i i n i i i i i i i i i a a a a a a a a --==≤<≤≤<<<≤=⎛⎫+=+++++≥ ⎪⎝⎭∏∑∑∑∏ 2112111n nnkk kkk n n n n n n k k k k k n n n n n C C C C mm m m m --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,当且仅当),,2,1(n i n ma i ==时取等号.故111n ki i a =⎛⎫+ ⎪⎝⎭∏的最小值是1nk k n m ⎛⎫+ ⎪⎝⎭.推广4 若),,2,1(,,n i R a m k i =∈+,且)0(1n m m a ni i ≤<=∑=,则11nk i k i i a a =⎛⎫+ ⎪⎝⎭∏的最小值为nk k k k m n nm ⎛⎫+ ⎪⎝⎭.推广4的证明与推广3类似,留给读者.运用这些推广,读者可做练习: 1、 已知+∈R b a ,,且1=+b a ,求:(1)221111a b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值;(2)1111nna b ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭的最小值;(3)221111a b ⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭的最小值. 2、已知+∈R c b a ,,,且1=++c b a ,求111111a b c ⎛⎫⎛⎫⎛⎫+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭的最小值. 3、已知+∈R a a a n ,,,21 ,且121=+++n a a a ,求22212111111n a a a ⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的最小值. 4、求ββαα2222sin cos cos 1sin 1+的最小值.(提示:22222sin cos cos cos sin 1ααβαβ++=,原式22222111sin cos cos cos sin ααβαβ=++.) 5、已知+∈R a a a a 4321,,,,且14321=+++a a a a ,求3214214314321111a a a a a a a a a a a a +++++++++++的最小值. 答案:1、(1)18 (2)n 32⋅ (3)9 2、64 3、2)1(+n n 4、9 5、316 23.解法1 122≤+y x ,1,1≤≤-∴y x ,10,10x y ∴+≥+≥. 由2)(2)(222≤+≤+y x y x ,有22≤+≤-y x ,22322212)(2)1()1()1)(1(22222+=++≤++++=+++≤++∴y x y x y x y x .记1)1)(1(-++=++=y x xy y x u ,立得1-≥u 和221+≤u .故当1-=x 或1-=y 时,1min -=u ,当22==y x 时,221m ax +=u . 解法2 由题意,设)2,0[,10,sin ,cos πθθθ∈≤≤==r r y r x . 则2211cos sin cos sin 2sin sin 22422x y xy r r r r r πθθθθθθ⎛⎫++=++=++≤+ ⎪⎝⎭,当且仅当1=r 且4πθ=,即22==y x 时取等号.max 1()22x y xy ∴++=+.又 ]1)cos [(sin 2)cos (sin cos sin )cos (sin 222-+++=++=++θθθθθθθθr r r r xy y x .令]2,2[,c o s s i n -∈=+t t θθ,则]1)1[(21)1(22222r rt t r rt xy y x --+=-+=++.易知当01=+rt 时,1)(,0])1[(m in 2m in 2-=-=+r rt .此时,1,1-==t r ,即1x =-或1-=y 时,1)(m in -=++xy y x .关于xy y x ++的最大值,还有下列解法.解法3 22222222212,1,()2()2,22x y xy x y x y x y x y xy +≤++≤∴+≤+≤≤≤ , 2122)(22222+≤+++≤++∴y x y x xy y x ,当且仅当22==y x 时取等号.212)(m ax +=++∴xy y x .解法4 22221111111122()1122222222x y x y x y ++⋅+⋅≤+=++≤+⨯= ,2≤+∴y x .又212,21222+≤++∴≤+≤xy y x y x xy ,当且仅当22==y x 时取等号.故212)(m ax +=++xy y x . 评析 解法2由122≤+y x 考虑到三角换元,这是很自然的事.解法3运用基本不等式)(2)(222y x y x +≤+及222y x xy +≤,再由122≤+y x ,分别求出y x +与xy 的最大值(注意:必须是x 与y 取相同值时y x +与xy同时取得最大值),从而得到xy y x ++的最大值.解法4与解法3路子不同,实质一样.但解法3、4都只能解决题中的最大值问题,如何求最小值是本题的难点.解法1中将xy y x ++变形为1)1)(1(-++y x ,并由已知得出01,01≥+≥+y x ,是突破这一难点的关键.第九届高二第一试第15题:“实数y x ,适合条件2122≤+≤y x ,则函数22232x xy y ++的值域是 .”其形式与实质都与本题一样.以三角代换法求解最为简捷.(答案为]7,21[)拓展 由题引伸,可以得到:定理1 设xy y x z y x λλ++=≤+≥,1,022,则(1)当22≥λ时,22212λλλ+≤≤--z ; (2)当202λ≤≤时,2222λλ+≤≤+-z . 证明 设b a y b a x -=+=,,则2122≤+b a .又设θθsin ,cos r b r a ==, 220≤≤r ,则2222222()2cos (cos sin )z x y xy a a b r r r λλθλθθ=++=+-=+-λλλθλ22221)21(cos 2r r r --+=.1cos 1,θ-≤≤∴ 1、当121≤λr ,即1222r λ≥≥时, (1))220(221212≤≤--≥--≥r r z λλλλ,当且仅当λλθ2121cos -=-=r 时取等号. (2)2222112122222z r r r r r λλλλλλ⎛⎫≤+--=+≤+ ⎪⎝⎭,当且仅当22,1cos ==r θ时取等号.2、当112r λ≥,即12022r λ≤≤≤时 (1)当22,1cos ==r θ时,22m ax +=λz . (2)当1cos -=θ时,λ22r r z +-≥.又函数222,0,2y x x λλ⎡⎤=-+∈⎢⎥⎣⎦,当20,2x ⎡⎤∈⎢⎥⎣⎦时是减函数,故2222λλ+-≥+-r r .综上所述,当22≥λ时,22212λλλ+≤≤--z ;当202λ≤≤时, 2222λλ+≤≤+-z .进一步引伸,可得定理2 0,≥n m ,若nxy y x m z y x ++=≤+)(,122,则(1)当22≥m n 时,22222n m z n m n +≤≤--; (2)当202n m ≤≤时,2222nm z n m +≤≤+-. 简证 n z m x y xy m ⎛⎫=++ ⎪⎝⎭.令nt x y xy m=++,再由定理1即可得证. 再引伸,还可得到定理3 设12,,,n x x x R +∈ ,且12()m m mn x x x S m N ++++≤∈ ,则有11212.nm m m n n n S x x x x x x nS n -++++≤+证明 1212,,,,()mmmn n x x x R x x x S m N ++∈+++≤∈ 及平均值不等式1121212,m m m mnn nn x x x x x x x x x n n ⎛⎫++++++≥≥ ⎪⎝⎭111212,,n nm mm m m n n n S S S x x x n n S x x x n n n -⎛⎫⎛⎫∴+++≤⋅=≤= ⎪ ⎪⎝⎭⎝⎭11212.nm m m n n n S x x x x x x nS n-∴++++≤+24.解法1 引入参数t,22222222y 1y t 1xy tx t x x y t 2t 22t⎛⎫=⋅≤+=+ ⎪⎝⎭ ,又22xy 3x 3y 20=+- ,222222t 1x y 3x 3y 20,22t∴+≥+-2222t 13x 3y 2022t ⎛⎫⎛⎫∴-+-≤ ⎪ ⎪⎝⎭⎝⎭.考虑到待求最值的二元式是228x 23y +,故令22t 38212332t -=-,解得2t 4=或22t 23=-(舍去),故只需令t 2=,即可得()22132x 3y 208⎛⎫-+-≤ ⎪⎝⎭.因此,228x 23y 160+≤,当且仅当y 2x 2=,即y 4x =时取等号.()22max8x 23y 160∴+=. 解法2 已知条件式即2213520x y y 6363⎛⎫-+= ⎪⎝⎭.令120x y cos ,633520y sin ,63⎧-=α⎪⎪⎨⎪=α⎪⎩即202x cos sin ,32112y sin .21⎧=α+α⎪⎪⎨⎪=α⎪⎩代入待求式,并化简,得()22223211288x 23y sin 22121+=+α-ϕ223211281602121≤+=.故当且仅当y 4x =时,228x 23y +有最大值160.解法3 令2228x 23y t +=.从而有8x t cos,23y t sin,⎧=α⎪⎨=α⎪⎩即t tx cos ,y sin .823=α=α代入已知等式,得222223t t 3t cos sin cos sin 20823184α-αα+α=, ()222202036820368t 160.3139347cos 29347cos sin 2sin 823736⨯⨯∴==≤=+α+ϕ-α-α+α即228x 23y 160+≤.解法4 ()22116x y xy 4x y 48+=⋅≤ ,而22xy 3x 3y 20,=+-222216x y 3x 3y 20,8+∴+-≤即228x 23y 160+≤.解法5 设x m n,y m n,=+=-代入条件得225m 7n 20.+=令20m 2cos ,n sin 7=α=α,则()()22228x 23y 8m n 23m n +=++-2231m 30mn 31n =-+()225620162cos 60sin 2sin 744376cos 2777=α-α+α=+α+ϕ⎡⎤⎣⎦()17443761607≤+=. 解法6 设228x 23y s,+=则()()2222s 3x xy 3y208x23y ,-+=+即()()223s 160x sxy 3s 460y 0--+-=①.由题设x,y 不同时为0,故不妨设y 0≠,则将①式两边同除以2y ,得()()2x x 3s 160s 3s 4600.y y ⎛⎫⎛⎫--+-= ⎪ ⎪⎝⎭⎝⎭当3s 1600-≠时,由()()2s 43s 1603s 4600,∆---≥=解得368s 1607≤≤;当3s 1600-=时,x 45y 8=-.综上,368s 1607≤≤.故()22max 8x 23y 160+=. 解法7 ()()()22222228x 23y 83x x y3y 16x8x y y 8204x y 160+=-+--+=⋅--≤.故当4x y =时,()22max8x23y 160+=.评析 破解此题的关键是消去条件式中的xy 项.命题组给出的解法1,通过引入参数t,将xy 变形为ytx t ⋅,再运用基本不等式,从而得到2222t 13x 3y 2022t ⎛⎫⎛⎫-+-≤ ⎪ ⎪⎝⎭⎝⎭.而要求的是228x 23y +的最大值,故令22t 38212332t-=-,从而使问题获解,极其巧妙.此法还具有普遍性,是解决此类问题的通法.解法2将223x xy 3y 20-+=变为2213520x y y 6363⎛⎫-+= ⎪⎝⎭,从而为三角代换创造了条件,进而运用三角函数的有界性求得最值.此法也具一般性,且对于求式中含xy 项时同样适用.解法5通过对称换元消去了已知式中的乘积项.当式中2x 项与2y 项系数相等时这也是一种通法.解法4的技巧性特强.要知道,若2219x y xy (3x y)36+=⋅≤,由22xy 3x 3y 20=+-,得22229x y 3x 3y 206++-≤,即229x 17y 120+≤,则仍然不能解决问题.解法6运用整体思想及方程思想,由二次方程有实根的条件使问题获解,这也是一种常用的方法.解法7巧用配方法,使得问题的解决极其简洁.可能有人要说这是不是碰巧了,换个题目此法就不灵了,其实不然,请看下面的问题:例1 若x,y 22R,2xy y 7∈+-=且x , 则22x y +的最小值是________.(第十届高二培训题第66题)解2222227x 2x y y 2(xy )(21)x 2x y(21)y⎡⎤=+-=+---++⎣⎦2222212(x y )(21)x y 2(x y )21⎛⎫=+---≤+ ⎪-⎝⎭,即227x y 22+≥,当且仅当1x y 21=-时取等号,故所求最小值为 2.72再看一例:例2 实数x,y 适合221x y 2≤+≤,则函数222x 3xy 2y ++的值域是 .(第九届高二第一试第15题)解 (1)()()2222221x y 22x 3xy 2y3x2xy y ≤+=++-++()()()2222222122x 3xy 2y 3x y 22x 3xy 2y .2x 3xy 2y .2=++-+≤++∴++≥(2)()()()()22222222273732x 3xy 2y x y x 2xy y x y x y 2222++=+--+=+--7207.2≤⨯-=故所求值域为1,72⎡⎤⎢⎥⎣⎦. 到底如何配方,读者可从上面的例子中体会.配方法是高考明确要求学生掌握的一种数学方法,在解决一些竞赛问题时也有较广泛的应用.我们必须切实掌握好.请用配方法解决下列问题:1.实数x,y 满足22x 3xy y 2-+=,则22x y +的值域是 .(答:4[,5+∞))(第六届高二第二试第17题)2.若x,y R ∈,且221x y 22≤+≤,则22x 2xy 4y -+的取值范围是 .(答:1,34⎡⎤⎢⎥⎣⎦) 3.已知x,y 满足22x xy y 1++=,求22x xy y -+的取值范围.(答:1,33⎡⎤⎢⎥⎣⎦)4.已知22x xy 2y 1-+=,求表达式22x 2y +的最大值与最小值.(答:822822,77+-) 25.解法1 由x x x y sin 1cos sin ++=,得y x x y =+-cos sin )1(,即⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+--=+-==+⋅+-1)1(1cos 1)1(1sin )sin(1)1(222y y y y x y ααα,1)1()sin(2+-=+∴y y x α.1)sin(≤+αx ,11)1(2≤+-∴y y ,解得1≤y .故1max =y .解法2 令2tan x t =,则22222221121121211t t t t t t y t t t t -++-++==++++,化为0)1()22()1(2=-+-++y t y t y ,R x ∈ ,0≥∆∴t ,即0)1(4)22(22≥---y y ,解得1≤y .故1max =y .解法3 由1cos ≤x ,得1sin cos sin +≤+x x x (1cos =x 时取等号),0sin 1≠+x ,0sin 1>+∴x ,1sin 1cos sin ≤++∴xxx ,故1max =y .解法4 xx x x x y sin 11cos 1sin 11cos sin 1+-+=+-++= .1cos 1≤≤-x ,1sin 1x -<≤,01cos 2≤-≤-∴x ,21sin 0≤+<x .∴当cos 1x =时,max 1y =.解法5 由xxx y sin 1cos sin ++=,得y x x y =+-cos sin )1(,[][])cos (sin 1)1(cos sin )1(222222x x y x x y y ++-≤+-=∴,2221)1(+-≤∴y y ,解得1≤y .1m ax =∴y .解法6 1sin 1cos 1sin 1cos sin +-+=++=x x x x x y .令1sin 1cos +-=x x u ,它表示动点)cos ,(sin x x 与定点)1,1(-的连线的斜率,即u 表示单位圆上的点与点)1,1(-的连线的斜率,由图易知0max =u ,1m ax =∴y .解法7 显然,1sin -≠x .由xx x y sin 1cos sin ++=得0cos sin )1(=-+-y x x y ①,又1cos sin 22=+x x ②.由①、②可知点)cos ,(sin x x 是uov 坐标系中的直线0)1(=-+-y v u y 与圆122=+v u 的公共点,圆心)0,0(到直线①的距离不大于圆的半径1,即2(1)001(1)1y y d y -⋅+-=≤-+,解之得1≤y ,1m ax =∴y .评析 类似本题分子、分母中含有x sin 、x cos 的一次式的函数的最值问题,总可以通过去分母、移项变为c x b x a =+cos sin 的形式,进而变为c x b a =++)sin(22ϕ(其中ab=ϕtan )的形式,再由1)sin(≤+ϕx 求得最值,解法1正是这样做的,也是解决这类问题的通法. 万能公式可将角x 的各种三角函数表示成2x的正切,这在实质上起到了消元的作用.故解法2令2tan x t =后,便将原函数转化成t 的二次分式函数,进而运用判别式法解决了问题.解法3直接利用分子x x cos sin +不大于分母1sin +x ,从而分式之值不大于1,简捷之至.解法4则是将已知函数变为xx y sin 11cos 1+-+=后,分别求出分子、分母的范围,进而确定y 的范围.解法5将已知函数式变为y x x y =+-cos sin )1(,考虑到左边x x y cos 1sin )1(⋅+-的形式,联想到柯西不等式,巧妙地利用1cos sin 22=+x x 而建立了关于y 的不等式,进而求出最大值,可说是匠心独具.解法7将已知函数式变为0cos sin )1(=-+-y x x y 后,将)cos ,(sin x x 看作坐标系uov 中直线0)1(=-+-y v u y 上的点,而点)cos ,(sin x x 又在单位圆122=+v u 上,故直线与圆应有公共点,从而圆心到直线的距离不大于圆的半径,由此求出了y 的最大值.综合运用了方程思想,转化思想,数形结合思想,充分揭示了数学不同内容之间的内在联系.解法6则是把已知函数式变形为1sin 1cos 1+-+=x x y 后,将1sin 1cos +-x x 看作单位圆上的点)cos ,(sin x x 与定点)1,1(-的连线的斜率,故将求y 的最大值问题转化为求此斜率的最大值问题,本题中此斜率的最大值可由图象直观地得到,若不能直观地看出,则可设斜率为k ,写出过点)1,1(-且斜率为k 的直线方程.由圆心到直线的距离不大于圆的半径便可求出k 的最大值.解法6也是求函数)0(sin cos ≠++=ac d x c b x a y 或)0(cos sin ≠++=ac dx c bx a y 的最值的通法.例 求函数9cos 34sin 2+--=x x y 的最值解 2sin 42sin 23cos 93cos 3x x y x x --==-⋅-+-.令3cos 2sin --=x x u ,则u 是单位圆122=+y x 上的点(cos ,sin )x x 与点)2,3(的连线的斜率.设此斜率为k ,则连线的方程为)3(2-=-x k y ,即032=-+-k y kx ①.由单位圆圆心)0,0(到直线①的距离应当不大于单位圆半径1,即11322≤+-k k ,解得433433+≤≤-k ,即k 的最小值与最大值分别为433-,433+,从而y 的最大值与最小值分别为43332-⋅-、43332+⋅-,即633-,633+-.26.解法1 由均值定理,知()()332332334444111111sin 3sin ,cos 3cos .444444x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++≥⋅++≥⋅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相加,得()()121244223131sin cos sin cos 12sin cos 16161616x x x x x x +≥+-=--= 2311sin 232832x -+≥.当4x π=时以上不等式同时取等号.故min 132y =. 又[]121222max sin ,cos 1,1,sin cos sin cos 1.1x x y x x x x y ∈-∴=+≤+=∴=.故所求值域为1,132⎡⎤⎢⎥⎣⎦. 解法2 由柯西不等式,知()()()2121212126644111sin cos 11sin cos sin cos (sin cos 222x x x x x x x x +=++≥+=+- 22222131sin cos )1sin 22432x x x ⎛⎫-=-≥ ⎪⎝⎭.又由[]sin ,cos 1,1x x ∈-,知121222sin cos sin cos 1x x x x +≤+=.故所求值域为1,132⎡⎤⎢⎥⎣⎦. 解法3 121212121111111sin x cos x sin x cos x 64646464646464⎛⎫⎛+=+++++++++ ⎪ ⎝⎭⎝ ()5512122266511110115156sin 6cos 6sin cos 64646464646432232x x x x ⎫⎛⎫⎛⎫++-≥+-=⋅+-⎪ ⎪ ⎪⎭⎝⎭⎝⎭651323232=-=,又()61212221sin cos sin cos 1,,1.32x x x x y ⎡⎤+≤+=∴∈⎢⎥⎣⎦解法4 22sin x cos x 1+= ,且22sin 0,cos 0,x x ≥≥∴可设21sin 2x t =+, 663322211111111cos ,,222222444x t t y t t t t t t ⎡⎛⎫⎛⎫⎛⎫⎛⎫⎛=--≤≤∴=++-=++++-=+ ⎪ ⎪ ⎪ ⎪ ⎢⎝⎭⎝⎭⎝⎭⎝⎭⎝⎣)3222134tt t ⎛⎫⎤++ ⎪⎦⎝⎭,由所设2104t ≤≤,故当20t =时,3min 112432y ⎛⎫== ⎪⎝⎭;当214t =时, max 1.y =∴所求值域为1,132⎡⎤⎢⎥⎣⎦.评析 因为[]s i n,c o s 1,1x x ∈-,所以[]22sin ,cos 0,1x x ∈ ,由指数函数单调性,易知121222sin cos sin cos 1x x x x +≤+=,故求得了y 的最大值1.如何求y 的最小值是本题的难点,破解的关键在于如何将1212sin cos x x +降次,最好直接与22sin cos x x +建立联系.解法1运用均值定理,解法2运用柯西不等式,都达到了目的,解法3与解法1为同一解法,但显得格外简捷,运用均值定理一步到位地解决了问题.解法4通过对称换元将三角函数的值域问题转化为整式函数的值域问题加以解决,起到了化难为易的作用.解法3显得特别优美,但运用均值定理,必须注意配凑技巧的运用.为什么将12sin x +12cos x 配凑成1212111111111110sin cos 6464646464646464646464x x ⎛⎫⎛⎫+++++++++++- ⎪ ⎪⎝⎭⎝⎭呢?这里有两个问题:一是为什么各凑成6项的和?二是为什么都加5个164?原因就在于只有凑成6项的和,运用均值定理时才会出现六次根号内()1212sin cos x x 与5个数的积,从而才会出现22sin cos 1x x +=(常数).至于为什么各加5个164,是因为运用均值定理时要使两处的“≥”中都取等号,必须221sin cos 2x x ==,而只有12121sin cos 64x x ==时才会有2sin x 21cos 2x ==. 拓展 仿照解法3,我们可以证明下面的 定理 函数()22sincos nn y x x n N +=+∈的值域是12,1n-⎡⎤⎣⎦.证明 222112111sin cos sin 222n n nn n n n n y x x x -⎛⎫⎪⎪=+=+++⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭个222(1)(1)1121112211cos sin cos 222222nn n n n n n n n n n n n n n n x n x n x ---⎛⎫ ⎪- ⎪+++⋅⋅⋅+-≥⋅⋅+⋅⋅ ⎪ ⎪ ⎪⎝⎭ 个()12211min 222222222sin cos 2,222222n n n n n n nn n n n n n x x y -------=⋅+-=-==∴=. 又()2222sincos sin cos 1nnn x x x x +≤+=,即m a x 1y =.故函数()22sin cos n n y x x n N +=+∈的值域为12,1n-⎡⎤⎣⎦.据此定理,我们易知函数100100sincos y x x =+的值域为492,1-⎡⎤⎣⎦.27.解 可从绝对值的几何意义上去想,以|4||3||2||1|-+-+-+-n n n n 为例,如图:1 2 3 4所给的式子的几何意义是数轴上坐标为n 的点N 与坐标为1、2、3、4的4个点的距离的和.显然,当N 在线段AB 之外时,和大于N 在线段AB 上时的和;当N 在线段AB 上时,N 接近AB 的中点,和就逐渐变小,N 重合于AB 的中点时,和达到最小.因为+∈N n ,所以当n 取2或3时,|4||3||2||1|-+-+-+-n n n n 最小.对于和式S=|2001||1950||1949|-+⋯+-+-n n n ,设数轴上的点A 、B 分别表示1949、2001,则线段AB 的中点的坐标是,1975220011949=+|19751949||19751950|S ∴=-+-最小|19752001|(26251)(1226)+⋯+-=+++++++ (261)2627022+⋅=⨯=.评析 本题运用了数形结合的思想方法,根据两数差的绝对值的几何意义,很直观地解决了问题. 拓展 运用同样的思想方法,可以得到下面的 定理1 对于函数)(||)(211n ni ia a a ax x f <⋯<<-=∑=,若n 是奇数,则当21+=n a x 时,)(x f 取得最小值∑∑-=+=-21123n t tnn j jaa ;若n 是偶数,则当],[122+∈n n a a x 时,)(x f 取得最小值∑∑=+=-2112n t tnn j jaa .例1 求函数|10||7||3||4|-+-+-++=x x x x y 的最小值.解 4=n 为偶数,-4<3<7<10,∴当]7,3[∈x 时,y 取得最小值(7+10)-(-4+3)=18. 例2 求函数|10||5||3||6||7|y x x x x x =++++-+-+-的最小值.解 5=n 为奇数,-10<-5<3<6<7,∴当3=x 时,y 取得最小值(6+7)-(-10-5)=28.B A例3 已知,,x y R ∈且{1,3},y ∉求函数|16123||74||2||3||7|),(22+-++-+-+-++++=y y x y y x x x x y x f 的最小值.解 2(,)|(7)||(3)||2||(47)|f x y x x x x y y =--+--+-+--+2|(31216)|x y y +--+-,2247(2)33,y y y -+=-+≥ 161232-+-y y =}3,1{.44)2(32∉-≤---y y , 2222312167.(247)(731216)41632y y y y y y y y ∴-+-≠-∴+-+---+-=-+ 1616)2(42≥+-=y .故当且仅当x =-3且y =2时,),(y x f 取得最小值16.若定理1中的“12,,,n a a a ⋯”中有一组或几组相同的值,则定理仍然成立.但当n 为偶数且122+=n n a a 时,定理中的“122,n n x a a +⎡⎤∈⎢⎥⎣⎦”应该改为“2n a x =”.例4 求函数|3|2|2|2|1|-+-++=x x x y 的最小值.解 已知函数就是|3||3||2||2||1|-+-+-+-++=x x x x x y ,n =5为奇数,12233-<=<=,y x 时,当2=∴取得最小值(33)(12)5+--+=.例5 求函数|5|4|3|3|1||2||10|-+-++++++=x x x x x y 的最小值. 解 n =10为偶数,10213335555-<-<-<==<===.故当3x =时,y 取得最小值(354)(102133)30+⨯----++=.更一般地,还有下面的 定理2 设函数1()||(,,1,2,,,)niiiii f x a x b a b R i n x R ==-∈=∈∑ ,则(1) 当01>∑=ni ia时,)(x f 有最小值min{12(),(),,()n f b f b f b },但无最大值.(2) 当01=∑=ni ia时,)(x f 有最大值max{12(),(),,()n f b f b f b },最小值min{12(),(),,()n f b f b f b }.(3) 当01<∑=ni ia时,)(x f 有最大值max{)(),(),(21n b f b f b f ⋯},但无最小值.证明 不失一般性,设n b b b ≤⋯≤≤21,则-)(111b x b a x a n i ni ii i≤+∑∑==,)(x f = )1,,2,1,)(()(11111-⋯=≤≤---++==+==∑∑∑∑n i b x bb a b a x aai ini j jj ij j j ni j jij j,)(11nni ni ii ib x b a x a ≥-∑∑==,由此可见,函数)(x f 的图象是左右两侧两射线和中间的(n-1)条线段依次连结而成的“折线形”.(1)若01>∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()(,1,1b f b )和点(,()n n b f b )向上无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最小值mi n{12(),(),,()n f b f b f b },但无最大值.(2)若01=∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()(,1,1b f b )和点(,()n n b f b )向左右沿平行于x 轴方向无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最大值max{)(),(),(21n b f b f b f ⋯},最小值min{)(),(),(21n b f b f b f ⋯}.(3)若01<∑=ni ia,则函数)(x f 的图象中的左右两射线分别由点()1,1,()b f b 和点(),,()n n b f b 向下无限延伸,中间是(n-1)条线段依次连结的折线,因此)(x f 有最大值{}12max (),(),,()n f b f b f b ,但无最小值.根据定理1,不难知道本赛题所求最小值为(1976+1977+…+2001)-(1949+1950+…+1974)=702(当n=1975时取得).想一想下面的问题:假设有一座大楼,从第1949层到第2001层,每层指定1人集中到该楼第k 层(20011949≤≤k )的会议室开会,为使参会人员上、下楼梯所走的路程总和最小,求k 及最短路程(假定每相邻两层楼之间的楼梯长均为1).这一问题与本赛题实质是否是同一问题? 下面的问题供读者练习:1、 求)(|1|2|1|2||)(R x x x x x f ∈-++-=的最小值.2、 求()|26||33||816|f x x x x =-+---的最大值.3、 求()|1||2||3||4||1998||1999|()f x x x x x x x x R =---+---+--+-∈ 的最小值.答案:1、-3 2、5 3、99928.解 若}{n a 是等差数列, n a >0,则da a a a a a a a n n n n n n n n 11111-----=--=+(d N n n ,,2+∈≥是公差).由此,得666111222211123223321101010s =++++=++++<+++++ ⎪⎪⎭⎫ ⎝⎛-+++++++=-+++++110101231121211101022326666 ()()()()66612213210101121101999⎡⎤=+-+-++--=+-+=⎢⎥⎣⎦ .又知110102232122110131211666-++++++>-++++> s =()199810126=+-.19991998<<∴s ,[]1998=s ,∴选B.评析 s 显然是数列⎭⎬⎫⎩⎨⎧n 1的前610项的和,直接求和,无法可依.能否用裂项相消法将每一项拆成异号的两项之和呢?考虑到111--=-+n n n n ,于是将n1变为nn +2,再放大为12-+n n ,或缩小为21n n++,便使问题获解.这是一道用“放缩法”求解不等式问题的好题目。