原子物理学
- 格式:doc
- 大小:255.50 KB
- 文档页数:7
原子物理学的基础知识原子物理学是研究原子及其内部结构、性质和相互作用的科学领域。
它是现代物理学的重要组成部分,对于我们理解物质的微观世界具有重要意义。
本文将介绍原子物理学的基础知识,包括原子结构、原子核、电子能级和量子力学等内容。
原子结构原子是物质的基本单位,由原子核和围绕核运动的电子组成。
原子核由质子和中子组成,质子带正电荷,中子不带电荷。
电子带负电荷,围绕在原子核外部的轨道上运动。
原子核原子核是原子的中心部分,它决定了原子的质量和化学性质。
原子核由质子和中子组成,其中质子数量决定了元素的种类,中子数量可以不同,同一元素的不同同位素就是由中子数量不同而形成的。
电子能级电子在原子内部运动时,只能处于特定的能量状态,这些能量状态被称为电子能级。
每个能级可以容纳一定数量的电子,按照一定的规则填充。
最靠近原子核的能级能容纳的电子数量最少,依次递增。
量子力学量子力学是描述微观粒子行为的理论框架,它是原子物理学的基础。
根据量子力学的原理,电子在原子内部运动时,不再像经典物理学中的粒子那样具有确定的轨道和速度,而是呈现出波粒二象性。
电子的运动状态由波函数描述,波函数可以用来计算电子在不同位置和能级上的概率分布。
原子光谱原子光谱是研究原子内部结构和性质的重要手段。
当原子受到外界能量激发时,电子会跃迁到较高能级,然后再回到低能级释放出能量。
这个过程伴随着特定波长或频率的光线的发射或吸收,形成了原子光谱。
通过分析原子光谱可以得到有关原子结构和能级的重要信息。
原子核反应原子核反应是指原子核之间发生的转变过程。
在核反应中,原子核可以发生裂变、聚变、衰变等变化。
核反应是核能的重要来源,也是研究原子核结构和性质的重要手段。
应用领域原子物理学的研究成果在许多领域都有广泛的应用。
例如,核能技术在能源领域具有重要地位,医学中的放射性同位素应用于诊断和治疗,原子钟在时间测量中具有高精度等。
结论原子物理学作为现代物理学的重要分支,对于我们理解物质的微观世界具有重要意义。
原子物理学基本概念原子物理学是研究物质的微观结构和性质的科学领域,它的发展对于我们理解物质构成和相互作用的基本规律具有重要意义。
本文将探讨原子物理学的基本概念,包括原子结构、元素周期表、电子能级和辐射等方面。
1. 原子结构原子是物质的基本单位,由原子核和围绕核运动的电子组成。
原子核由质子和中子构成,质子带正电,中子不带电。
电子则带负电荷,静电力将其束缚在原子核周围形成稳定的电子轨道。
根据电子轨道的不同能量级,原子被分为若干不同的壳层和亚壳层。
2. 元素周期表元素周期表是按照原子序数(即质子数)排列的化学元素列表。
元素周期表的主要特点是周期性和区域性。
周期性指的是原子性质和周期表的排列顺序之间的规律性关系,如周期性的原子半径、电离能和电负性等。
区域性则指的是元素周期表的不同区域具有特定的化学性质,如主族元素、过渡元素和稀土元素等。
3. 电子能级电子能级是描述电子能量的概念,不同的电子能级对应着不同的能量大小。
原子中的电子依据能级的不同而分布在不同的轨道上。
电子能级的填充顺序遵循泡利不相容原理和阻塞原理,即每个能级最多容纳一定数量的电子,并且电子首先填充低能级。
4. 辐射辐射是指物质释放能量时通过空间传递的现象。
在原子物理学中,辐射主要包括电磁辐射和粒子辐射。
电磁辐射指的是电磁波的传播,包括可见光、紫外线、X射线和γ射线等。
粒子辐射则由带电粒子(如α粒子、β粒子)或中性粒子(如中子)的运动而产生。
总结原子物理学作为现代物理学的重要分支,对于揭示物质微观世界的奥秘有着重要的意义。
通过研究原子结构、元素周期表、电子能级和辐射等基本概念,我们能够更好地理解物质的基本性质和相互作用规律。
进一步的研究和探索将有助于我们在能源、材料和医学等领域取得更大的突破和创新。
原子物理学的基本概念原子物理学是研究原子及其组成要素的学科,是现代物理学的基石之一。
它探索了物质的最基本组成单位——原子的结构、性质和相互作用。
本文将介绍原子物理学的基本概念,包括原子结构、元素周期表和原子能级等内容。
一、原子结构原子是由电子、质子和中子组成的。
质子和中子几乎全部集中在原子核中,而电子则绕着原子核运动。
原子核带正电,电子带负电,因此原子整体呈电中性。
质子的数量决定了原子的元素,而中子的数量可能会有所变化,形成同一元素的不同同位素。
二、元素周期表元素周期表是将所有已知元素按照一定顺序排列的表格。
根据元素的原子序数(质子数量),元素周期表将元素分为不同的周期和族。
周期指的是元素外层电子的最高能级,族指的是元素拥有相同外层电子组态的特定元素群。
元素周期表的排列方式充分反映了原子结构和元素性质的规律性。
三、原子能级原子能级是电子在原子内的一种状态。
根据量子力学的理论,电子只能处于特定的能级上,不同电子能级之间存在能隙。
当电子从低能级跃迁到高能级时,吸收能量;当电子从高能级跃迁到低能级时,释放能量。
原子能级的理论解释了光谱现象和化学反应等现象。
四、原子间的相互作用原子之间的相互作用是由于原子核带正电,而电子带负电,产生的电磁相互作用。
原子之间的相互作用主要分为两种类型:吸引力和斥力。
吸引力是由于原子核和电子之间的相互作用力,使得原子之间会产生相互吸引;斥力是由于两个原子的电子云重叠,使得原子之间会产生相互排斥。
原子间的相互作用决定了物质的宏观性质,如气体的压强、液体的黏稠度等。
五、原子物理学的应用原子物理学的研究成果在广泛的领域都有应用。
首先,元素周期表为化学家提供了一个重要的工具,可以预测和解释元素化学性质及其化学反应。
其次,原子物理学为材料科学做出了巨大贡献,通过改变原子结构,可以改变材料的性质。
此外,原子物理学还应用于核能源的研究和医学影像学等多个领域。
结论原子物理学是现代物理学研究的重要领域,它研究了原子的结构、周期性以及相互作用等基本概念。
原子物理学。
原子物理学是研究原子及其内部结构、性质和相互作用的学科。
它是现代物理学的重要分支之一,对理解物质的微观世界起着至关重要的作用。
原子物理学的研究对象是原子,它是物质的基本单位。
原子由原子核和围绕核运动的电子组成。
原子核由质子和中子组成,质子带有正电荷,中子没有电荷。
电子带有负电荷,数量与质子相等,使得原子整体呈现出电中性。
在原子物理学中,我们研究原子的结构和性质。
原子的结构由电子云和核组成。
电子云是电子在原子周围的分布,它的形状和能级决定了原子的化学性质。
原子核由质子和中子组成,质子的数量决定了原子的元素性质。
不同的元素由不同数量的质子组成,因此具有不同的化学性质。
原子物理学的研究还包括原子的相互作用。
原子之间可以通过电磁力相互作用,形成分子和晶体等复杂结构。
原子内部的相互作用也非常重要,如原子核内质子和中子之间的相互作用,以及电子与原子核之间的相互作用。
这些相互作用决定了原子的稳定性和性质。
通过研究原子物理学,我们可以更好地理解物质的性质和行为。
原子物理学在许多领域具有广泛的应用,包括材料科学、能源研究、医学和环境科学等。
例如,原子物理学可以帮助我们开发新型材料,
改善能源利用效率,探索医学诊断和治疗的新方法,以及研究大气污染和环境保护等问题。
原子物理学是一门重要的学科,它研究原子的结构、性质和相互作用,对于我们理解物质世界起着重要的作用。
通过深入研究原子物理学,我们可以更好地认识和利用原子的特性,推动科学技术的发展,为人类社会的进步做出贡献。
原子物理学的基础知识原子物理学是物理学的一个重要分支,研究的对象是原子及其内部结构、性质和相互作用。
原子是构成一切物质的基本单位,了解原子的结构和性质对于理解物质的基本规律至关重要。
本文将介绍原子物理学的基础知识,包括原子的结构、元素周期表、原子核、量子力学等内容。
1. 原子的结构原子是由原子核和围绕核运动的电子组成的。
原子核由质子和中子组成,质子带正电荷,中子不带电荷。
电子带负电荷,围绕原子核以不同的能级轨道运动。
原子的质子数决定了元素的种类,而电子数决定了原子的化学性质。
2. 元素周期表元素周期表是按照元素的原子序数排列的表格,具有周期性规律性。
元素周期表中的每一个水平行称为一个周期,每一个垂直列称为一个族。
元素周期表的排列反映了元素的电子结构和化学性质的规律性,为化学和物理研究提供了重要参考。
3. 原子核原子核是原子的中心部分,包含质子和中子。
质子数决定了元素的种类,中子数可以不同,同一种元素不同中子数的原子称为同位素。
原子核的直径约为10^-15米,但包含了原子绝大部分的质量。
4. 量子力学量子力学是描述微观世界的物理学理论,包括波粒二象性、不确定性原理等基本概念。
量子力学揭示了原子和分子的微观结构和性质,对于解释原子光谱、化学键合等现象具有重要意义。
5. 原子的能级和谱线原子的电子围绕核运动时只能处于特定的能级上,不同能级对应不同的能量。
当电子跃迁到更低的能级时,会释放能量,产生特定波长的光谱线。
原子的能级结构和谱线特性是原子物理学研究的重要内容。
6. 原子的激发态和离子原子在受到能量激发后,电子会跃迁到高能级,形成激发态。
激发态的原子会通过辐射或碰撞等方式回到基态,释放能量。
当原子失去或获得电子后形成带电离子,带电离子具有特定的化学性质。
7. 原子核的稳定性和放射性原子核由质子和中子组成,稳定的原子核中质子数和中子数之和是一个特定值。
放射性元素的原子核不稳定,会发生放射性衰变,释放放射线和粒子。
原子物理学教学大纲原子物理学教学大纲引言:原子物理学是物理学的重要分支之一,研究原子及其组成部分的性质和行为。
在现代科学中,原子物理学扮演着关键的角色,为我们理解自然界的基本规律提供了重要的基础。
为了更好地进行原子物理学的教学,制定一份合理的教学大纲是必要的。
本文将探讨原子物理学教学大纲的内容和结构。
一、基本概念与原理1. 原子的基本结构:介绍原子的组成部分,包括质子、中子和电子,以及它们的相对质量和电荷。
2. 原子的量子性质:介绍原子的量子理论,包括波粒二象性、不确定性原理等,以及与原子性质相关的量子数和波函数。
3. 原子的能级结构:讲解原子的能级和轨道,以及原子的光谱现象,如吸收光谱、发射光谱和拉曼光谱等。
二、原子物理学实验技术1. 原子的探测与观测:介绍原子的探测技术,如原子力显微镜、透射电子显微镜等,以及原子的观测技术,如原子吸收光谱法、原子发射光谱法等。
2. 原子的激发与激光技术:讲解原子的激发过程和激发能级,以及激光技术在原子物理学中的应用,如激光冷却和激光激发等。
三、原子物理学的应用1. 原子核物理学:介绍原子核的结构和性质,以及核反应和核能的应用。
2. 量子力学的应用:讲解量子力学在原子物理学中的应用,如原子的波函数描述、原子的束缚态和散射态等。
3. 原子物理学在材料科学中的应用:探讨原子物理学在材料性质研究、纳米材料制备和表征等方面的应用。
四、实验与实践1. 实验设计与操作:介绍原子物理学实验的设计原理和操作技巧,培养学生的实验能力和科学思维。
2. 数据分析与结果解读:引导学生分析实验数据,理解实验结果,并提出合理的解释和结论。
结语:原子物理学教学大纲的制定旨在系统地介绍原子物理学的基本概念、原理和应用,并培养学生的实验能力和科学思维。
通过学习原子物理学,学生可以深入理解物质的微观结构和性质,为他们今后的学术研究和科学实践打下坚实的基础。
同时,教学大纲的内容和结构应不断更新,以适应科学研究的发展和教学需求的变化。
原子物理学的基础知识原子物理学是物理学的一个重要分支,主要研究原子的结构、性质及其相互作用。
这一领域不仅在基础科学研究中占据重要地位,还为现代技术的发展提供了理论基础。
本文将从原子的基本构成、发展历程、量子力学的引入以及应用等多个方面,系统介绍原子物理学的基础知识。
原子的基本构成原子是物质的基本单位,由三个主要的粒子构成:质子、中子和电子。
质子和中子统称为核子,位于原子的核心——原子核中;而电子则围绕着原子核运动。
以下是这些粒子的详细介绍:质子质子的电荷为正,质量约为1.67 × 10^-27千克。
质子的数量决定了元素的种类,换句话说,一个元素的原子中含有多少个质子就代表了它的原子序数。
例如,氢原子的质子数为1,而氧原子的质子数为8。
中子中子的电荷为零,质量与质子相近,也约为1.67 × 10^-27千克。
中子的存在使得原子核更加稳定,对抗由于质子之间的静电排斥力。
如果中子的数量过少或过多,就可能导致原子的放射性。
例如,碳-12原子中有6个质子和6个中子,而碳-14则有6个质子和8个中子。
电子电子的电荷为负,质量远小于质子和中子,约为9.11 × 10^-31千克。
电子常常被视为粒子的波动性,其运动在量子力学框架内表现为概率波动。
电子的排列决定了化学性质,特别是在元素参与化学反应时。
原子的历史发展了解原子的历史发展可以帮助我们更好地理解当前在这个领域取得的成就。
早期,人们对于物质的构成有着多种观点,从古希腊时期的“元素说”到19世纪的达尔顿原子论,这一过程经历了几个关键阶段。
古希腊时期哲学家德谟克利特提出了“原子”的概念,认为物质由不可见的小颗粒构成,这些小颗粒在空无一物的空间中运动。
这一想法虽然缺少实验依据,却在思想史上具有重要意义。
近代科学革命19世纪初,约翰·道尔顿提出了现代的原子论。
他通过实验观察到不同化合物中的元素质量比、定律,并从这种经验总结出元素由不可分割的小颗粒组成,每种元素都有其独特的相对质量。
原子物理学原子物理学是研究原子结构与性质的学科,其中包括原子的精细结构以及电子自旋。
原子的精细结构是指在原子核外的电子轨道上,电子与核之间相互作用所形成的能级结构。
而电子的自旋则是描述电子自身特性的一个重要属性。
在20世纪初,德国物理学家约瑟夫·约鲁斯顿(Johannes Stark)和其他科学家们发现,原子光谱线可以分为许多非常接近的细分的谱线。
这些细分的谱线不能通过经典物理学的原子模型来解释,因此科学家们意识到原子内部存在一些新的结构性质。
为了解释这些细分的谱线,物理学家尼尔斯·玻尔(Niels Bohr)提出了著名的玻尔模型。
根据这个模型,电子绕核运动只允许存在一些特定的能级,每个能级对应着不同的能量。
电子可以通过吸收或发射一定能量的光子来跃迁到不同的能级。
这个模型成功地解释了氢原子光谱的细分现象。
然而,随着实验技术的发展,科学家们发现一些无法用玻尔模型解释的现象。
例如,一个能级上只能存在一定数量的电子,并且每个电子的状态是互不相同的。
为了解释这些现象,瑞士物理学家沃尔夫冈·保罗(Wolfgang Pauli)于1925年提出了保里不相容原理。
这个原理指出,一个原子的每个能级最多只能容纳两个电子,且这两个电子的自旋量子数必须相反。
电子的自旋是描述其内禀角动量的一个属性。
在量子力学中,自旋被描述为一个量子数,可以取两个可能值:+1/2和-1/2、这意味着一个能级上最多可以容纳两个电子,其中一个电子的自旋为+1/2,另一个电子的自旋为-1/2除了保里不相容原理外,电子自旋还参与了原子物理学中的其他一些重要现象。
例如,电子自旋与原子间的电子-电子相互作用密切相关。
在原子光谱的解释中,原子的精细结构可以通过考虑电子的自旋和轨道角动量相互作用得到。
总结来说,原子的精细结构和电子自旋是原子物理学中关键的概念。
通过对这些概念的研究和理解,科学家们能够更好地解释和预测原子性质及其与其他粒子的相互作用。
考点二 原子物理学1.如图3所示为氢原子的能级示意图,已知红光、紫光的光子能量分别为1.62eV 和3.11eV ,用紫外线照射锌板时能发生光电效应。
关于氢原子在能级跃迁过程中发射或吸收光子,下列说法中正确的是A .用氢原子从高能级向基态跃迁时发射的光子照射锌板一定不 能产生光电效应B .处于n =3能级的氢原子可以吸收任意频率的紫外线,并发生电离C .处于n =2能级的氢原子能吸收任意频率的紫外线D .氢原子从高能级向n =3的能级跃迁时发出的光热效应不明显 2.下列说法中不正确...的是 A .在α粒子散射实验中,使少数α粒子产生大角度偏转的力是原子核对粒子的库仑斥力B .氢原子在辐射出一个光子后,核外电子的动能增大C .已知氦原子的质量m 1、电子质量m 2、质子质量m 3、中子质量m 4,则质子和中子在结合成氦核时的质量亏损为(2 m 4+2 m 3-m 1)D .爱因斯坦狭义相对论的基本结论之一是运动物体长度会收缩,即l =l 0 221c v -,它是因时空条件不同而引起的观测效应3.太阳内部持续不断地发生着4个质子(H 11)聚变为1个氦核(He 42)的热核反应, 核反应方程是2X He H 44211+→,这个核反应释放出大量核能。
已知质子、氦核、X 的质量分别为m 1、m 2、m 3,真空中的光速为c 。
下列说法中正确的是A .方程中的X 表示中子(n 10)B .方程中的X 表示电子(e01-) C .这个核反应中质量亏损Δm=4m 1-m 2D .这个核反应中释放的核能ΔE =(4m 1-m 2-2m 3)c 24.下列叙述中不正..确.的是 A .对α粒子散射实验的研究使人们认识到中子是原子核的组成部分B .电子衍射现象的发现为物质波理论提供了实验支持C .电子的发现使人们认识到原子有复杂的结构D .天然放射现象的发现使人们认识到原子核有复杂的结构5.下列叙述中符合历史史实的是A .卢瑟福的α粒子散射实验揭示了原子核内部有复杂结构B .玻尔理论成功地解释了各种原子的发光现象C .爱因斯坦成功地解释了光电效应现象D .牛顿提出的质量不变性是狭义相对论的基本假设之一6.许多科学家在物理学发展过程中做出了重要贡献,下列叙述中符合物理学史实的是A .卡文迪许通过扭秤实验,总结并提出了真空中两个静止点电荷间的相互作用规律B .卢瑟福通过α粒子散射实验提出原子核具有复杂结构C .牛顿提出了万有引力定律,并通过实验测出了引力常量D .法拉第经过多年的实验探索终于发现了电磁感应现象1 -13.612 -3.403 -1.514 -0.85 5 -0.54 ∞ 0 n E /eV 图37.下列与α粒子相关的说法中正确的是A .天然放射性现象中产生的α射线速度与光速相当,贯穿能力很强B .U 23892(铀238)核放出一个α粒子后就变为Th 23490(钍234)C .高速α粒子轰击氮核可从氮核中打出中子,核反应方程为n O N He 1016814742+→+D .丹麦物理学家玻尔进行了α粒子散射实验并首先提出了原子的核式结构模型8.放射性元素放出的三种射线,按穿透能力由弱到强的排列顺序是 ( )A .α粒子,β粒子,γ射线B .β粒子,α粒子,γ射线C .γ射线,α粒子,β粒子D .γ射线,β粒子,α粒子9.氢原子的部分能级如图所示。
用单色光照射处于基态的氢原子,氢原子吸收光子后跃迁到n=3的激发态,此后氢原子又放出光子。
在此过程中,氢原子 A .吸收光子的能量可以是任意值 B .吸收光子的能量是某一确定值 C .放出光子的能量可以是任意值 D .放出光子的能量是某一确定值 10.下列说法正确的是A 、卢瑟福的α粒子散射实验揭示了原子核有复杂结构B 、天然放射现象的发现,揭示了原子核是由质子和中子组成的C 、一束光照射到某种金属上不能发生光电效应,是因为该束光的波长太短D 、按照玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量增大11.下列说法正确的是A .太阳辐射的能量主要来自太阳内部的核裂变反应B .任何一种光照到金属上,只要时间足够长都可以发生光电效应C .放射性元素放出的三种射线电离能力由强到弱的排列顺序是γ射线、β射线、α射线D .放射性元素的半衰期是指大量该元素的原子核中有半数发生衰变需要的时间12.下面是一核反应方程X He H H 423121+→+,用c 表示光速,则.A .X 是质子,核反应放出的能量等于质子质量乘c 2B .X 是中子,核反应放出的能量等于中子质量乘c 2C .X 是质子,核反应放出的能量等于氘核与氚核的质量之和减去氦核与质子的质量之和,再乘c 2D .X 是中子,核反应放出的能量等于氘核与氚核的质量之和减去氦核与中子的质量之和,再乘c 213.如图为氢原子的能级示意图,图中①、②、③分别表示氢原子由所处激发态向低能级的跃迁,跃迁时所发射的光子的频率和波长分别为ν1、ν2、ν3和λ1、λ2、λ3。
下列说法正确的是 A. λ1>λ2 B. λ1>λ3C .ν1>ν2D .ν2<ν3 14.一个氘核和一个氚核经过核反应后生成一个氦核和一0 -13.60-1.51-3.401 2 3 n E /eV ∞ n E n /eV 0 -0.85 -1.51 -3.4 -13.6∞ 4 321 5 -0.54个中子,同时放出一个γ光子。
已知氘核、氚核、中子、氦核的质量分别为m 1、m 2、m 3、m 4,普朗克常量为h ,真空中的光速为c . 下列说法中正确的是A .这个反应的核反应方程是 γ++→+n He H H 10423121B .这个核反应既不是聚变反应也不是裂变反应C .辐射出的γ光子的能量E = (m 3 + m 4-m 1-m 2)c 2D .辐射出的γ光子的波长λ=24321)(c m m m m h--+15.今年3月11日,日本发生强烈地震,其灾情引起了国际社会的广泛关注,包括我国在内的很多国家对日本都伸出了援助之手。
地震导致了福岛核电站内的核反应堆受损严重,给人类造成了危害,下面与核能相关问题的说法中正确的是A .核电站内释放的核能来自于重核的裂变B .人只有直接接触核原料才会对人体产生危害C .核电站内释放核能的核反应方程是23592U →13654Xe +9038Sr+10n16.下列说法正确的是A .核反应堆是人工控制链式反应的装置B .235 92U +10n →140 54Xe +9438Sr +d 10n ,式中d =3C .β衰变中产生的β射线是原子核外电子挣脱原子核束缚后形成的D .4个放射性元素的原子核经过一个半衰期后一定还剩下2个没有发生衰变17.碘-131(13153I )是重要的核裂变产物之一,因此它可以作为核爆炸或核反应堆泄漏事故的信号核素。
碘-131本身也具有放射性,它的放射性物质主要是β射线。
下列说法正确的是A .碘-131有78个中子,β射线是高速电子流B .碘-131有78个质子,β射线是高速电子流C .碘-131有78个中子,β射线是能量很高的电磁波D .碘-131有78个质子,β射线是能量很高的电磁波18.电子是组成原子的基本粒子之一。
下列对电子的说法中正确的是A .密立根发现电子,汤姆生最早测量出电子电荷量为1.6×10-19CB .氢原子的电子由激发态向基态跃迁时,向外辐射光子,原子能量增加C .金属中的电子吸收光子逸出成为光电子,光电子最大初动能等于入射光电能量D .天然放射现象中的β射线实际是高速电子流,穿透能力比α射线强19.北京时间2011年3月11日13时46分,在日本本州岛附近海域发生里氏9.0级强烈地震,地震和海啸引发福岛第一核电站放射性物质泄漏,其中放射性物质碘131的衰变方程为I13153→ Xe 13154+Y 。
根据有关放射性知识,下列说法正确的是A .Y 粒子为β粒子B .I 13153的半衰期大约是8天,则若取4个碘原子核,经16天就一定剩下1个碘原子核了C .生成的 Xe 13154处于激发态,还会放射γ射线。
γ射线的穿透能力最强,电离能力也最强D .I 13153中有53个质子和131个中子20.一块含23892U (铀238)的矿石质量为M ,其中238U 的质量为m 。
已知23892U 的半衰期为T ,则下列说法正确的是A .经过时间2T 后这块矿石中基本不再含有23892U 了 B .经过时间2T 后矿石中的23892U 有4m 发生了衰变 C .经过时间2T 后该矿石的质量剩下4M m + D .经过时间3T 后矿石中23892U 的质量还剩8m 21.下列各核反应方程中,符号“X ”表示中子的是A .X P He Al 3015422713+→+B .X Pa Th 2349123490+→C .X O He N 17842147+→+D .X Th U 2349023892+→22.一个23592U 原子核在中子的轰击下发生一种可能的核反应为23592U+10n→Z A X+9438Sr +102n ,则下列叙述中正确的是 ( )A .该反应是核聚变反应B .X 原子核中含有140个质子C .该核反应是太阳中进行的主要核反应D .虽然该反应出现质量亏损,但反应前后的原子核总质量数不变23.下列说法中正确的是A .氢原子由较高能级跃迁到较低能级时,电子的动能增加,原子的电势能减少B .氢原子被激发后发出的可见光光子的能量大于紫外线光子的能量C .α射线是由原子核内放射出的氦核,与β射线和γ射线相比它具有较强的穿透能力D .放射性元素的半衰期会随温度或压强的变化而变化24.以下关于原子核的说法正确的是 ( )A .放射性元素的半衰期决定于原子的化学状态,与物理状态无关B .原子序数大于或等于83的元素,都能自发地放出射线C .β射线的穿透能力比γ射线强,能穿透几厘米厚的铅板D .原子核的平均结合能越小,表示原子核中核子结合得越牢固,原子核越稳定25.核反应堆的工作原理是利用中子轰击重核发生的裂变反应。
在众多的裂变反应中,有一种反应方程为2351141929205636U n Ba Kr X a +→++,其中X 为某种粒子,a 为X 的个数,则A .X 为中子,a =2B .X 为中子,a =3C .X 为质子,a =2D .X 为质子,a =326.1938年哈恩用中子轰击铀核,发现产物中有原子核钡(Ba)、氪(Kr)、中子和一些γ射线。
下列关于这个实验的说法正确的是A. 这个实验的核反应方程是23592U+10n→14456Ba+8936Kr+10nB. 这是一个核裂变过程,反应后粒子质量之和大于反应前粒子质量之和C. 这个反应中的释放出的能量可以用爱因斯坦的光电效应方程来计算D. 实验中产生γ射线,其穿透能力极强,比X 射线还强很多倍27..用光子能量为E 的一束单色光照射处于基态的一群氢原子,这群氢原子吸收光子后能发出6种不同频率的光,在这6种光中(h 是普朗克常数,c 是真空中光速)A.频率最低的光,频率是E/hB.光子能量最小的光,频率是E/hC.在真空中波长最大的光,波长是ch/ED.频率为E/h 的光在水中的折射率最大28.治疗肿瘤的放射源发出的射线必须满足两个条件:①放射线具有较强的穿透力,以辐射到体内的肿瘤处;②在较长时间内具有相对稳定的辐射强度。