传热学三
- 格式:pdf
- 大小:500.54 KB
- 文档页数:23
传热学第三版课程设计
一、课程设计目的
热传导、热对流和热辐射是传热学中的三种基本传热方式,广泛用于热工业、材料科学、环境保护等领域。
本课程设计旨在让学生深刻理解传热学各个方面的基本原理和数学模型,掌握用数学方法解决传热学问题的能力,并在实践中体验传热学的基本原理和现代应用。
二、教学内容
2.1 传热学基础理论
让学生掌握传热学基本概念、基本方程、基本原理和数学形式化模型,包括:•热传导定律
•热对流定律
•热辐射定律
•热传导方程
•热力学第二定律
2.2 典型传热学问题
讲解典型传热学问题,并要求学生利用传热学基础理论和数学方法进行求解。
包括:
•热传导问题
•对流传热问题
•热辐射问题
•复杂传热问题
1。
传热学第三章对流传热一、名词解释1.速度边界层:在流场中壁面附近流速发生急剧变化的薄层。
2.温度边界层:在流体温度场中壁面附近温度发生急剧变化的薄层。
3.定性温度:确定换热过程中流体物性的温度。
4.特征尺度:对于对流传热起决定作用的几何尺寸。
5.相似准则(如Nu,Re,Pr,Gr,Ra):由几个变量组成的无量纲的组合量。
6.强迫对流传热:由于机械(泵或风机等)的作用或其它压差而引起的相对运动。
7.自然对流传热:流体各部分之间由于密度差而引起的相对运动。
8.大空间自然对流传热:传热面上边界层的形成和发展不受周围物体的干扰时的自然对流传热。
9.珠状凝结:当凝结液不能润湿壁面(θ>90˚)时,凝结液在壁面上形成许多液滴,而不形成连续的液膜。
10.膜状凝结:当液体能润湿壁面时,凝结液和壁面的润湿角(液体与壁面交界处的切面经液体到壁面的交角)θ<90˚,凝结液在壁面上形成一层完整的液膜。
11.核态沸腾:在加热面上产生汽泡,换热温差小,且产生汽泡的速度小于汽泡脱离加热表面的速度,汽泡的剧烈扰动使表面传热系数和热流密度都急剧增加。
12.膜态沸腾:在加热表面上形成稳定的汽膜层,相变过程不是发生在壁面上,而是汽液界面上,但由于蒸汽的导热系数远小于液体的导热系数,因此表面传热系数大大下降。
二、填空题1.影响自然对流传热系数的主要因素有:、、、、、。
(流动起因,流动速度,流体有无相变,壁面的几何形状、大小和位置,流体的热物理性质)2.速度边界层是指。
(在流场中壁面附近流速发生急剧变化的薄层。
)温度边界层是指。
(在流体温度场中壁面附近温度发生急剧变化的薄层。
)3.流体刚刚流入恒壁温的管道作层流传热时,其局部对流传热系数沿管长逐渐,这是由于。
(减小,边界层厚度沿管长逐渐增厚)4.温度边界层越对流传热系数越小,强化传热应使温度边界层越。
(厚,簿)5.流体流过弯曲的管道或螺旋管时,对流传热系数会,这是由于。
(增大,离心力的作用产生了二次环流增强了扰动)6. 流体横掠管束时,一般情况下, 布置的平均对流传热系数要比 布置时高。
第三章 非稳态导热分析解法1、 重点内容:① 非稳态导热的基本概念及特点;② 集总参数法的基本原理及应用;③一维及二维非稳态导热问题。
2、掌握内容:① 确定瞬时温度场的方法;② 确定在一时间间隔内物体所传导热量的计算方法。
3、了解内容:无限大物体非稳态导热的基本特点。
许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。
如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。
因此,应确定其内部的瞬时温度场。
钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。
§3—1 非稳态导热的基本概念一、非稳态导热1、定义:物体的温度随时间而变化的导热过程称非稳态导热。
2、分类:根据物体内温度随时间而变化的特征不同分:1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ2)物体的温度随时间而作周期性变化1)物体的温度随时间而趋于恒定值如图3-1所示,设一平壁,初值温度t 0,令其左侧的表面温度突然升高到1t 并保持不变,而右侧仍与温度为0t 的空气接触,试分析物体的温度场的变化过程。
首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍保持原来的t 0 。
如图中曲线HBD ,随时间的推移,由于物体导热温度变化波及范围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线HCD 、HE 、HF 。
最后,当时间达到一定值后,温度分布保持恒定,如图中曲线HG (若λ=const ,则HG 是直线)。
由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参与换热的两个不同阶段。
(1)第一阶段(右侧面不参与换热)温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。
传热学三大基本公式Nu = 2+0.6(Re^1/2)(Pr^1/3) 。
F=Q/kK*△tm F 是换热器的有效换热面积。
Q 是总的换热量。
k 是污垢系数一般取0.8-0.9K。
是传热系数。
△tm 是对数平均温差。
传热学三种传热方式可以分开学。
传热学相较于理论力学,工程热力学,流体力学而言还是比较简单的,一般大学生掌握了高等数学完全可以自学的。
学习传热学必须有耐心,了解几种换热方式和常见的几个常数公式(努谢尔特数、格拉晓夫数、伯努利常数,傅里叶常数,而且常常推导下几个常用常数公式间的关系,你会惊奇地发现他们其实不少是远亲的),其实解决传热学问题绝大多数都是在和导热系数较劲,有时候是直接涉及。
扩展资料:在热对流方面,英国科学家牛顿于1701年在估算烧红铁棒的温度时,提出了被后人称为牛顿冷却定律的数学表达式,不过它并没有揭示出对流换热的机理。
传热学作为学科形成于19世纪。
1804年,法国物理学家毕奥在热传导方面得出的平壁导热实验结果是导热定律的最早表述。
稍后,法国的傅里叶运用数理方法,更准确地把它表述为后来称为傅里叶定律的微分形式。
1860年,基尔霍夫通过人造空腔模拟绝对黑体,论证了在相同温度下以黑体的辐射率(黑度)为最大,并指出物体的辐射率与同温度下该物体的吸收率相等,被后人称为基尔霍夫定律。
传热的三种方式:热的传递是由于物体内部或物体之间的温度差引起的。
若无外功输入,根据热力学第二定律,热量总是自动地从温度高的地方传递至温度较低的地方。
热能的传递有三种基本方式:热传导、热对流、热辐射,下面分别介绍这三种传热方式(一)热传导物体各部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递成为热传导。
热传导的基本计算公式是傅立叶定律:在单位时间内热传导方式传递的热量与垂直于热流的截面积成正比,与温度梯度成正比,负号表示导热方向与温度梯度方向相反。
其中Q表示热流率,单位为W; dT/dx为温度梯度,单位为°C/m ;A为导热面积,单位为m2;λ为材料的导热系数,又称热导率,单位为W/(m°C) ,也可以为W/(mK) 。
第三章
复习提要:
1、需要掌握的概念包括:牛顿冷却公式、强制对流、自然对流、层流、湍流、相似原理、量纲分析、雷诺数、努塞尔数、普朗特数、均匀热流、均匀壁温、定性温度、当量直径、横掠单管、横掠管束、流动脱体、叉排、顺排。
2、简答题及填空还有判断部分要注意包括影响对流换热的因素、流体的流动状态分类、影响对流换热系数的物性参数、流动边界层厚度、近壁面处换热微分方程表达式及其意义、相似原理的充要条件、雷诺数Re、努塞尔数Nu、普朗特数Pr的公式表达、管槽内强制对流流动边界层的特点,局部传热系数的特点(层流和湍流,会用曲线表达)、均匀热流和均匀壁温条件下流体截面平均温度及管壁温度的变化情况(能画图并用文字解释原因)、流体在等温、加热及冷却情况下管壁附近流速分布规律(气体和液体)、高雷诺数及低雷诺数条件下流体产生脱体的角度位置及局部换热系数变化特点、叉排和顺排的优缺点,叉排和顺排的示意图及其相关参数,影响叉排和顺排换热效果的几个换热因素。
3、计算需要掌握的公式包括雷诺数Re、努塞尔数Nu及其变换后的公式表达、常规流体的修正关联式表达、顺排及叉排修正关联式表达及运用,要会利用如卡乌斯卡斯关联式及其修正公式得到表面传热系数h的表达式,要注意公式角标每个字母的含义。
传热三大公式传热是一门涉及力学、热力学和流体力学等多个学科的综合性研究,是热环境中能量的传递过程。
它不仅涉及到温度和能量,而且涉及到力学、流体力学和化学反应等知识。
传热的实际应用广泛,在工业生产、生活环境调控、生物医学技术等领域都有突出作用,传热学也成为科学研究的重要研究课题。
传热学主要关注的是能量传递过程及其产生的热环境的温度分布和能量平衡。
在传热学的研究中,传热三大公式是重要的理论依据。
这三个公式分别是:热传导定律、拉格朗日定理和余弦定理。
热传导定律是传热学中用来描述物体的热传导的基本定律,它表明:热传导是按温差的平方比例发生的,其热导率是物体固有属性,并可用热传导定律来描述。
热传导定律确定了材料在热传导方面的基本特性,为设计热传递设备提供了有效的理论支撑。
拉格朗日定理是热传导的基本定理,是用来表达热量的分布的重要定理。
拉格朗日定理确定了热量在受到热传导作用的情况下,在物体中的分布。
既可以用于物质的内部传热,也可以用于不同物质之间的外部传热。
余弦定理是传热学中描述传热在物质之间的分布规律的重要理论,它表明,热量以温度差和热传导率相关的余弦值分布在传热物质之间。
余弦定理主要用于计算多物质体系中的热梯度分布,也可用于传热设备的设计。
传热学的研究不仅要理解热传导定律、拉格朗日定理、余弦定理等一系列的理论概念,还要理解各种传热方式的特点,并运用工程设计方法,设计出有效的传热结构。
常见传热方式有对流传热、辐射传热和传导传热等。
对流传热是流体(气体或液体)在温度不同的物体之间传递热量的一种方式,是最容易被人类理解和掌握的。
由于流体中存在着微小气泡、涡流、湍流、温度流动等不同热损失,对流传热设计实际应用中要注意局部热损失的影响。
辐射传热是传热的一种,其特点是不需要传输介质,它是指物体之间的热量传递,这种形式的传热通过物体发射的热辐射来实现。
辐射传热的发射率往往比其他传热方式要高得多,其传热速率远大于对流传热和传导传热,但一般只适用于热环境,温度高得多的情况。