21.4.3 实际问题中的一般最值问题
- 格式:pptx
- 大小:4.05 MB
- 文档页数:31
初中数学最值问题解题技巧
在学习数学的过程中,最值问题是我们必须掌握的重要知识点,它涉及到最大值和最小值的概念,跨越初中和高中的层面。
学好最值问题对数学的后续学习也有重要的意义。
下面,我们就来聊聊初中数学最值问题解题技巧。
首先,我们要明确一个最值问题的特征:最值问题会出现在一组数据中,即求解的数值必然属于这一组数据。
有了这一特点,我们就可以运用比较法来解决这些问题。
其次,针对最大值问题,我们可以采用枚举法。
所谓枚举法就是把一组数据中的每一个数据罗列出来,然后逐个进行比较,找出其中最大的数,就是所求的解。
再次,针对最小值问题,我们可以采用反枚举法。
反枚举法与枚举法相似,只是着重于找出最小的数。
同样地,我们可以将一组数据中的每一个数据列举出来,然后逐个进行比较,最后得出最小值即可。
最后,在解决最值问题时,我们应尽量简化解题过程,以减少计算量。
比如,当出现一个较长的数列时,我们可以判断最大值就出现在最后一个数上,那么就可以将这数列缩减为只有一个数,以减少计算过程。
以上就是初中数学最值问题解题技巧,希望大家在以后的数学学习中,能够运用上述解题技巧来更好地解决问题。
解题不仅要有技术,而且还要有思想,在解题时要多思考,多发散,我们将能够更快速地得出正确的答案。
最值问题是初中数学的重要内容,是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,无论是代数题还是几何题都有最值问题。
数形结合的思想贯穿始终。
一、代数中的最值问题1、代数求最值方法 ①利用一次函数的增减性一次函数(0)y kx b k =+≠的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;实际问题中,当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
1、某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?②配方法,利用非负数的性质2、(1)求二次三项式223x x -+的最小值(2)设a 、b 为实数,那么222a ab b a b ++--的最小值为_______。
③判别式法3、(1)求2211x x x x -+++的最大值与最小值。
(2),x y 为实数且x y m ++=5,xy ym mx ++=3,求实数m 最大值与最小值。
④零点区间讨论法4、求函数|1||4|5y x x =--+-的最大值。
⑤基本不等式性质222()020a b a ab b -≥∴-+≥即222a b ab +≥,仅当a b =时,等号成立由此可推出222a b ab +≤(0,0)2a ba b +≤≥≥⑥夹逼法通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为夹逼法。
5、不等边三角形的两边上的高分别为4和12且第三边上的高h 为整数,那么此高h 的最大值可能为________。
⑦二次函数模型(中考第23题,应用题)该题基本来自课本3个探究例题不断的变化、加深:探究1:商品定价 探究2:磁盘计算(含圆) 探究3:拱桥问题 变化趋势:前几年武汉中考主要考查经济类问题,求最经济、最节约和最高效率等这种类型的考题(探究1的演变);近2年变化为建立函数模型解决实际问题(探究2、3的演变),即利用二次函数的对称性及增减性,确定某范围内函数的最大或最小值。
生活中的最值问题在实际生活中,经常会遇到怎样才能使所用材料最省、费用最少、利润最高等问题。
这类问题,有时可以归结为二次函数的最值问题,中考中,利用二次函数解决实际问题也是重点之一。
一、最值问题在物理方面的应用1、弹簧弹性最值问题例题:质量为2m的木板,静止放在光滑的水平面上,木板左端固定着一根劲度系数为k的轻质弹簧,弹簧的自由端到小车右端的距离为L,一质量为m的小木块从板的右端以速度v0开始沿木板向左滑行,最终回到木块右端刚好不从木板滑出.设木板与小车间的动摩擦因数为μ.求:在木块压缩弹簧的过程中,弹簧具有的最大弹性势能.E求解:弹簧被压缩至最短时,具有最大弹性势能pm设m在M上运动时,摩擦力做的总功转化为内能为2E从初状态到末状态,系统动量守恒,由初状态到有最大弹性势能动量亦守恒均满足mv0=(m+2m)v……①由初始状态到弹簧具有最大弹性势能,对系统依能量守恒定律1/2mv0^2=1/2*3m*v^2+EPm+E……②由初状态到末状态,依能量守恒定律1/2mv0^2=1/2*3mv^2+2E……③由①②③求出 EPm=1/6mv0^22、物理运动学追及问题中的最值问题例题:追及问题中,为什么速度相等时,两物体间距离取得最大或最小值?为什么加速度为0时,速度取得最值?求解:追及过程中两物体间距离不是在增大就是在减小(不含反超情况),当速度相等时距离s0不是最大值就是最小值,从速度相等时计时,两物体间距离:s=s0+v1t-v2t=s0为恒定值,而s0不是最大值就是最小值。
二、在加速度不小于零或不大于零的情况下,速度只增或只减。
当加速度为零时,速度增到最大值或减到最小值,因加速度为零,所以速度不再变化。
3、物理电路最大值问题例题:有两电阻R1上标有200欧母,0.5瓦,R2标有150欧,0.54瓦。
1)若并联,求最大总电流;2)若串联,求最大总电压.求解:已得出并联时I1=0.05A,I2=0.06A 串联U1=10V,U2=9V(1).串联电路电流相等,为了不使额定电流小的电阻烧坏,串联电路中的最大电流就不能超过额定电流小的电阻的额定电流;(2).并联电路电压相等,为了不使额定电压小的电阻烧坏,并联电路两端的最大电压就不能超过额定电压小的电阻的额定电压。
应用题中的最值问题在数学中,应用题是帮助我们将数学知识应用于实际问题的重要手段之一。
其中,最值问题是应用题中常见且具有挑战性的一类问题。
本文将探讨应用题中的最值问题,并通过实际例子展示如何解决这些问题。
一、最值问题的定义和解决方法最值问题是指在一定范围内,找出函数的最大值或最小值的问题。
在解决最值问题时,我们需要明确以下几个步骤:1. 确定问题背景和条件:了解题目所给的具体情境和限制条件,确保对问题有全面的理解。
2. 建立数学模型:将问题转化为数学表达式。
根据题目提供的信息,可以通过建立函数或方程来描述问题,以便后续求解。
3. 求导并解方程:对所建立的函数或方程进行求导,并解决相关方程。
根据问题要求,我们可以找到导数为0的临界值,以及一些特殊点。
4. 检验临界值和特殊点:将临界值和特殊点代入函数或方程,进行验证。
通过验证,确认所求的最值是否存在或有效。
5. 给出最终答案:根据问题所求,可以得到最大值或最小值,并做出符合问题背景的解释和结论。
二、实例分析:最值问题的应用为了更好地理解最值问题的应用,我们来看一个具体例子。
假设某电商平台推出了一件商品,初始价格为x元。
经过一段时间的销售,该商品的销量与价格之间存在一定的关系。
现在需要确定一个最佳价格,使得销售利润达到最大值。
解决该问题的关键步骤如下:1. 确定问题背景和条件:假设该商品的每个单位价格对应的销量可以通过函数f(x)表示,其中x为价格,f(x)为销量。
另外,我们还需要考虑商品的成本和利润率等因素。
2. 建立数学模型:根据题目要求,可以建立一个代表销售利润的函数p(x),其中p(x) = (x - c) * f(x),其中c表示商品的成本。
这里,我们通过将价格与销量的关系转化为销售利润的函数,建立了一个数学模型。
3. 求导并解方程:对所建立的销售利润函数p(x)进行求导,并解方程p'(x) = 0。
在求解过程中,我们可以找到导数为0时的价格值,即为存在最大利润的价格。
沪科版数学九年级上册21.4《二次函数的应用》教学设计3一. 教材分析《二次函数的应用》是沪科版数学九年级上册第21.4节的内容。
本节主要让学生了解二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
教材通过举例说明了二次函数在几何、物理、化学等学科中的应用,以及如何利用二次函数解决最值问题、平衡问题等。
二. 学情分析九年级的学生已经学习了二次函数的基本概念、图像和性质,对二次函数有了初步的认识。
但学生在实际应用二次函数解决生活中的问题时,往往会因为情境复杂而难以入手。
因此,本节课需要帮助学生建立二次函数与实际问题之间的联系,提高学生运用数学知识解决实际问题的能力。
三. 教学目标1.理解二次函数在实际生活中的应用;2.学会将实际问题转化为二次函数问题,利用二次函数解决实际问题;3.培养学生的数学思维能力和实际问题解决能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用;2.难点:将实际问题转化为二次函数问题,并利用二次函数解决实际问题。
五. 教学方法1.案例分析法:通过分析具体案例,让学生了解二次函数在实际生活中的应用;2.问题驱动法:引导学生提出问题,分析问题,从而解决问题;3.小组讨论法:让学生在小组内讨论问题,培养学生的合作能力。
六. 教学准备1.准备相关的案例材料;2.准备多媒体教学设备;3.准备练习题和作业。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二次函数的基本概念、图像和性质。
然后提出本节课的主题:二次函数在实际生活中的应用。
2.呈现(15分钟)教师展示几个实际问题,如抛物线形的跳板、抛物线形的电信塔等,让学生尝试将这些实际问题转化为二次函数问题。
教师引导学生分析问题,找出关键参数,列出二次函数关系式。
3.操练(15分钟)教师给出一些练习题,让学生独立解决。
题目包括利用二次函数解决最值问题、平衡问题等。
教师在课后批改学生的练习题,了解学生的掌握情况。
中考数学最值问题总结中考数学中最值问题是一个重要的考点,通常涉及到二次函数、一次函数、不等式等问题。
以下是一些常见的最值问题及解决方法:1. 二次函数最值问题二次函数的最值问题是最常见的最值问题之一。
解决这类问题的一般步骤是:首先确定自变量的取值范围,然后利用二次函数的顶点式或开口方向来求最值。
如果二次函数的开口向上,那么在顶点处取得最小值(当x<0时),在x轴上取得最大值(当x>0时)。
如果二次函数的开口向下,那么在顶点处取得最大值(当x<0时),在x轴上取得最小值(当x>0时)。
2. 一次函数最值问题一次函数的最值问题通常涉及到一次函数的单调性和自变量的取值范围。
如果一次函数是递增的,那么在自变量取值范围内的最大值是当x取最大值时的函数值,最小值是当x取最小值时的函数值。
如果一次函数是递减的,那么在自变量取值范围内的最大值是当x取最小值时的函数值,最小值是当x取最大值时的函数值。
3. 不等式最值问题不等式的最值问题通常涉及到不等式的性质和不等式的取值范围。
解决这类问题的一般步骤是:首先确定不等式的取值范围,然后利用不等式的性质来求最值。
如果是不等式左边是一个定值,右边是一个变量的形式,那么当变量取最大或最小值时,不等式取得最值。
如果是不等式两边都是变量,那么需要利用不等式的性质来求解。
4. 代数式的最值问题代数式的最值问题通常涉及到代数式的化简和代数式中字母的取值范围。
解决这类问题的一般步骤是:首先将代数式进行化简,然后根据代数式中字母的取值范围来确定最值。
如果代数式中包含有二次项,那么可以利用配方法将其化简为顶点式或开口方向式来求解最值。
如果代数式中包含有绝对值,那么需要先去掉绝对值符号再化简求解最值。
解决中考数学最值问题需要掌握各种知识点和方法,包括二次函数、一次函数、不等式、代数式等,同时需要注意自变量的取值范围和函数的单调性等问题。