第8 章 物性数据的估算
- 格式:pdf
- 大小:64.19 KB
- 文档页数:10
气相参数求解(一)潜热的计算: 按文献上的公式计算 (二)比热容的计算:(1)由于考虑的是低压下的蒸发状态,以理想气体状态计算'23p c A BT CT DT =+++ (1) 式中,, , , A B C D 可以从有关资料附录查到。
(2)混合气体比热容 液滴蒸汽质量比:,/vapvap o air vap airM m M Y M M =+- (3),vap f m =0 (4)液滴蒸汽摩尔比:,0,00/vap vap y p p = (5),0,,0,0//(1)/vap vapvap vap vap vap airm M y m M m M ∞=+- (6)蒸汽摩尔比:,0,()/2vap vap vap y y y ∞=+ (7)介质气体摩尔比:1air vap y y =- (8)混合气体比热容:''',,p p vap vap p air air c c y c y =+ /cal mol K ⋅ (9)(三)混合气体粘度计算 (1)动力粘度1/30.809c V σ= (10)式中,σ为硬球直径,单位为0A 。
//1.2593c k T ε= (11)式中,κ为Boltzmann 常数,ε为特征能量。
*/TT εκ=(12) **exp(*)exp()V B A C E FT T DT Ω=++ (13) 式中, 1.16145, 0.14874, =0.52487, 0.77320, 2.16178, 2.43787A B C D E F =====Vμ= (14) 式中,M 是蒸汽分子量,μ为粘度,单位P μ(微泊),7110a P P s μ-=⋅估算*T 为约化温度(3)对于二元混合气体的粘度,C.R.Wilke 应用了Sutherland 的动力模型理论得到:112212122121m y y y y y y μμμφφ=+++ (16)式中,1/21/421212121/212[1(/)(/)]|8[1(/)]|M M M M μμφ+=+ 11211222M M μφφμ= 12,μμ分别是双元混合气体中两种气体的粘度 ,12,y y 分别是双原混合气体中两种气体的摩尔比。
利用ASPEN PLUS软件进行物性估算系别:生物与化学工程学院专业:化学工程与工艺班级:091611姓名:杨振学号:016109051指导老师:宋伟利用ASPEN PLUS 软件进行物性估算Aspen Plus 是一款功能十分强大的工艺模拟软件,对有模拟。
其自带的各种物质的物性数据库较全, 可满足绝大多数的工艺过程的模拟要求。
但在实际的工艺模拟计算过程中, 有时也会遇到在Aspen Plus 自带的物性数据库中查不到的物质,使模拟过程无法正常进行下去。
此时, 利用Aspen Plus软件提供的物性估算功能, 可以很好地解决此类问题。
以下以发酵液中低浓度1,3- 丙二醇分离项目中的重要的中间产物2-甲基- 1,3- 二噁烷( 2MD) 的物性估算为例, 说明AspenPlus 软件物性估算功能的使用。
正文:Aspen Plus提供一套功能强大的模型分析工具,最大化工艺模型的效益: 收敛分析:自动分析和建议优化的撕裂物流、流程收敛方法和计算顺序,即使是巨大的具有多个物流和信息循环的流程,收敛分析非常方便。
calculatormodels计算模式: 包含在线FORTRAN和Excel模型界面。
灵敏度分析:非常方便地用表格和图形表示工艺参数随设备规定和操作条件的变化而变化。
案例研究:用不同的输入进行多个计算,比较和分析。
设计规定能力:自动计算操作条件或设备参数,满足规定的性能目标。
数据拟合:将工艺模型与真实的装置数据进行拟合,确保精确的和有效的真实装置模型。
优化功能:确定装置操作条件,最大化任何规定的目标,如收率、能耗、物流纯度和工艺经济条件。
提供必要的基本物性数据, 包括分子结构、常压沸点、分子量、各种试验测得的物性等。
以上这些物性中, 仅分子结构是物性估算中所必需的, 依据分子结构,AspenPlus软件可计算出常压沸点和10.水溶液数据库,包括900 种离子,主要用于电解质的应用。
1.2MD 物性的输入2- 甲基- 1,3-二噁烷( 2MD)是1,3- 丙二醇分离项目中的中间产物,由于Aspen Plus软件自带的物性数据库中查不到2MD,使模拟分离、确定工艺条件的过程中遇到困难,所以采用物性估算的功能对2MD 计算。
1 纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus 软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难, 所以采用物性估算的功能对乙基2-乙氧基乙醇计算。
已知:最简式:(C6H14O3)分子式:(CH3-CH2-O-CH2-CH2-O-CH2-CH2-OH)沸点:195℃1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation Input Pure Component(估计输入纯组分) 对纯组分物性的这些参数进行估计。
为估计纯组分物性参数,则需1. 在 Data (数据)菜单中选择Properties(性质)2. 在 Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3. 在 Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4. 单击 Pure Component(纯组分)页5. 在 Pure Component 页中选择要用Parameter(参数)列表框估计的参数6. 在 Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择All(所有)估计所有组分的物性7. 在每个组分的 Method(方法)列表框中选择要使用的估计方法可以规定一个以上的方法。
具体操作过程如下:1、打开一个新的运行,点击Date/Setup2、在Setup/Specifications-Global页上改变Run Type位property Estimation3、在Components-specifications Selection页上输入乙基2-乙氧基乙醇组分,将其Component ID为DIMER4、在Properties/Molecular Structure -Object Manager上,选择DIMER,然后点Edit5、在Gageneral页上输入乙基2-乙氧基乙醇的分子结构6、转到Properties/Parameters/Pure Component Object Manager上,点击“NEW”然后创建一个标量(Scalar)参数TB7、输入DIMER的标准沸点(TB)195℃8、然后转到Properties/Estimation/Set up页上,选择Estimation all missing Parameters9、运行该估算,并检查其结果。
1纯组分物性常数的估算1.1、乙基2-乙氧基乙醇物性的输入由于Aspen Plus软件自带的物性数据库中很难查乙基2-乙氧基乙醇的物性参数, 使模拟分离、确定工艺条件的过程中遇到困难,所以采用物性估算的功能对乙基2-乙氧基乙醇计算。
已知:最简式:(C6H4O)分子式:(CH>CH-O-CH-CH-O-CH-CH-OH)沸点:195C1.2、具体模拟计算过程乙基2-乙氧基乙醇为非库组分,其临界温度、临界压力、临界体积和临界压缩因子及理想状态的标准吉布斯自由能、标准吉生成热、蒸汽压、偏心因子等一些参数都很难查询到,根据的已知标准沸点TB,可以使用aspen plus软件的Estimation In put Pure Component(估计输入纯组分)对纯组分物性的这些参数进行估计。
为估计纯组分物性参数,则需1.在Data (数据)菜单中选择Properties(性质)2.在Data Browser Menu(数据浏览菜单)左屏选择Estimation(估计)然后选Input(输入)3.在Setup(设置)表中选择Estimation(估计)选项,Identifying Parameters to be Estimated(识别估计参数)4.单击Pure Component(纯组分)页5.在Pure Component页中选择要用Parameter(参数)列表框估计的参数6.在Component(组分)列表框中选择要估计所选物性的组分如果要为多组分估计选择物性可单独选择附加组分或选择 All (所有)估计所有组分的物性7. 在每个组分的Method (方法)列表框中选择要使用的估计方法可以规定一个以上 的方法。
具体操作过程如下:1打开一个新的运行,点击 Date/Setup Pl 'I Setup Specifications ■ Data BrowserInput Complete 2、在 Setup/Specifications-Global 页上改变 Run Type 位 property Estimation 母 Special ions <<]|A T "71 »\ ol^l N*|iet 990口岂©©co 岂」1「i ra-fr “ Q EL Specifications Simulation Options Stream Class Substreams Units-Sets Custom Units Report Options - .. r Properties Streams Blocks Reactions 匚onvergm 匚耳 Flowsheeting Options Medel Analysis Tools EO Configuratfon^/Global ^Descriptioini | Accounting | Diagnodics |Tsit tc M e-ack 匚n 丄 ct r sport ■file. E'ilp.r 3 <■!■>! <<IRT T] »| Q |^| N >|fl*w £#r th*Jnput Complete3、在 Components-specifications Selection 页上输入乙基 2-乙氧基乙醇组分,将其 Component ID 为 DIMER4、在 Properties/Molecular Structure -Object Manager 上,选择 DIMER ,然后点 EditSetupComponent'sPropertiesFlowsheeting OptionsResults Summary /Global p/De«iiptiQn | Title: Accouning | Diagnostics | I 纯组分物性墾教的店尊 U nits of rneaswement METCB^j- 荷匚吐▼ Global settingsRun t^pe;Pioperty Estimahon zi Input mockS 柜 ady-State 创 Stream class: CONVEHJ Ffcw basis: |MoleA Ambient pressure: d Ambient temp.: 师 |Fd Valid phases: 厂 Use free water calculationsSetupInput dais : Output resdts:5、在Gage neral 页上输入乙基2-乙氧基乙醇的分子结构圧卜讷叩 匡岂 Components B- Vj Properties 二|Property Methods 由岂 E^timabori B-圉 Molecular Stryrture & DIMER 由 V Parameters 口 Data] ffi-T l Advanced 匡二 A owsheeting Options 匡•划 Results Summary Atom number: atom hype 匚口irKpctidercBAtom number 1 2 3 q 5 5 7Alam 卯e c c 0 c c 0 c4pn;富“ Tnaber i£entiry:x< an in the nLe^vle. Xc^tn. FK E viLl 占】.印:町the trpe ar Kt ^as enttrsd Input Complete6、转到Properties/Parameters/PureComponent Object Managet ,点击“ NEW ”® DIMER耳如m ■州圧•书时叩 吁岂Components B 剧Propetlies Property MethodsEstimabonMolecular StryrtureParameters 日刘 PureCj&mponentResulte Not Available -^Propertes ProjMrty Methods ・ Data BrokerJ Prepay Metlwds 三砺I till« — 」时 | I |工令TB母二j Binary Interaction□ Electrolyte PairH 口 Electrolyte Temary■Jj UNIFAC Group口 UNIFAC Group BinaryResults£j Dau 庄…二]Advanced 吁二I Flowsheeting Options £ 口 Re-suhs Su mmaiy Slalus匸亠 RewalNew... FuidimalGioip | FcrmJa | ShwclureAtenfl AliOffnS 8i«'dNumberTjps Number Type ■C2 c Single tend2 C3 0 Single bond2 Q ■1 cSingle band4C 5 c Single bond 5 C B Q Single bandB 0 7 c Sing letond 7 c B c Single bandBc 9 0 Single bondDelire- mdecule iU connedivilii然后创建一个标量(Scalar )参数TBResults Nat Available 、输入DIMER 的标准沸点(TB ) 195C Obiect manager Mame T^pe I 3 二j PircComponert New Pure Component Parameters u v Edt Hide 2d 也岂“:甲由:B . I . ........ 1!.:■田. Setup Comportents Propertits 二| PtQ^erty Methods 卤 Estimation型 Mdecular Structure'| Parameters2j Pure Component 田••二j Binary Interaction二| ElBctrolyte Pair :—二| Electrolyte- Terna ry 二 UNUFAC Group •二 UNIFAC Group Binary 由 l | Results 口 Data •二j Advanced Flowsheet] ng Options Results SumiTiflry广 esrrela i H >:>ILCOILV«ILl:L OHEll lltlfl-r HAST IlBdTiA or «CC<pi Properties Parameters Pure ComponentTB - Data Browser 口 |E |QTB 日 包币 |ENG 73 ^1^1 AH 弓 >〉| 口匸 | 附|M a '-a 田;由. Setup Components Properties h ] Property Methods / Estimation Molecular Structure = 0 TB s Binary Interaction 匚 E ettrolyte Pair r — Elert no lyte Ternary : UNIFAC Group ;■■■■□ UNIFAC Group Binary 0-0 ResuKs Pa r-a meters |-岂 Pu re Component /input Parameters Unite Data Component Componsml : DIMER - T TB C 1 195 Ftire component scalar par^neters a 申“口 io•…口 Oats Jj Advanced Flows heating OptionsResults SummaryInput CompleteInput Complete9、运行该估算,并检查其结果。
气相参数求解(一)潜热的计算: 按文献上的公式计算 (二)比热容的计算:(1)由于考虑的是低压下的蒸发状态,以理想气体状态计算'23p c A BT CT DT =+++ (1) 式中,, , , A B C D 可以从有关资料附录查到。
(2)混合气体比热容 液滴蒸汽质量比:,/vapvap o air vap airM m M Y M M =+- (3),vap f m =0 (4)液滴蒸汽摩尔比:,0,00/vap vap y p p = (5),0,,0,0//(1)/vap vapvap vap vap vap airm M y m M m M ∞=+- (6)蒸汽摩尔比:,0,()/2vap vap vap y y y ∞=+ (7)介质气体摩尔比:1air vap y y =- (8)混合气体比热容:''',,p p vap vap p air air c c y c y =+ /cal mol K ⋅ (9)(三)混合气体粘度计算 (1)动力粘度1/30.809c V σ= (10)式中,σ为硬球直径,单位为0A 。
//1.2593c k T ε= (11)式中,κ为Boltzmann 常数,ε为特征能量。
*/TT εκ=(12) **exp(*)exp()V B A C E FT T DT Ω=++ (13) 式中, 1.16145, 0.14874, =0.52487, 0.77320, 2.16178, 2.43787A B C D E F =====Vμ= (14) 式中,M 是蒸汽分子量,μ为粘度,单位P μ(微泊),7110a P P s μ-=⋅估算*T 为约化温度(3)对于二元混合气体的粘度,C.R.Wilke 应用了Sutherland 的动力模型理论得到:112212122121m y y y y y y μμμφφ=+++ (16)式中,1/21/421212121/212[1(/)(/)]|8[1(/)]|M M M M μμφ+=+ 11211222M M μφφμ= 12,μμ分别是双元混合气体中两种气体的粘度 ,12,y y 分别是双原混合气体中两种气体的摩尔比。
化工热力学*11化工物性数据估算*11化工物性数据估算11・1基本物性常数估算1仁2流体蒸气压的估算比勺数据的评估'❶临界参数的估算... .....正常沸点触算— <>熔点与凝固点的估算偏心因子的估算11.1基本物性常数估算 促字工业出版初空卍字工业出版?I11.1.1临界参数的估算1 (1) Lydersen法1 T c = T b[0. 367 十工灯―工(AT)2]-1(11-1) 1 1 Pc = M(0. 34 + 工A/?)-2(11-2) 1 1 匕=40 + 工 AV (11-3) 1(2) Ambrose法1 T c = 7U1 +(1・242+》AT)T] (11-4) 1 Pc = Mo. 339 +》△/>)—2 (11-5) 1 V c - 40 + S AV (11-6)lE^xai!出版?i(3) Joback法+ 0. 965工 AT C—(工 AT C)2J-]p©=(0. 113+0. 0032% — S 2V c = 17.3 + ^AV CT c=几_0・ 584 (11-7a) (lP7b)表11-1 Lydcrscn法的基团贡献值0基团基团△丁非环念氧—CH30. 0200. 227 ■ ■—(用(薛)0. 082 0. 06(18)1 —OH(酚) 0. 031 (-0.02) (3)—CH21 0. 020 0. 227 55—-〔非环)0. 021 0. 1620-CH1 0.012 0. 210 51—(1〔环)(0.014)(0. 12)(8)1 11—C=(K非环)0・0400. 2960-c—0. 000. 210 41|1 —C=()〔环)(0.033) (0.2) (50)=<:H20.0180. 198 45 I1 IK=()(g^)0. 048 0. 3373 =<:H 0.0180. 198 45 —COOHC 酸)0. 085 (0.4) 801 ! —厂0.00. 198 36 —CCX)-(^)0. 0470. 4780V=()(除上述)(0・02) (0. 12) (11)=「= 0.00. 198 36 含氮N、H e. oo50. 153 (36) —NHz 0・031 0.095 280. 005 0. 153 (36) 1 0. 0S1 0. 135 (37) 环•、门1卅・—CH2—0.0130. 184 44.5 1 —NH(环)(0・024〉(0. 09〉⑵〉1 : —CH0.012 0. 192 461—匚〔非环)0.0140. 17 (42)l 1 11一、一(环〉(0・007)(0. 13) (32)—c—1 (-0. 007) (0. 154) (31)—CN (0.060)(0. 36) (80)—\()2 (0・055)(0. 42) (78)续上表表11・2 .loback法的基团贡献值基囲S5非环增量—CH3 0.0141一0・ 0012 65 23.58 —5・10非环増量、CH20.01890 56 22.88 11.2" /\ CH—0.01640.00204121.74 12.64 /\ / C0. 0067O.・ 0043 27 18.25 46.43 / \=CH20.0113-0. 0028 56 18.18-4.32 =CH—0.0129-0. 00064624.96 & 73 / =c 0.01170.. 00113824. 1411.14 \=c= 0. 00260.. 0028 36 26. 1517-78 =CH 0. 0027 一0・0008469.20 -11.18三c- 0. 0020 0.0016 37 27.38 64.32 环増量—CH2—0.01000- 0025 48 27.157.75\ CH—0.0122 0.0G043821.78 19.88/\ / C0. 0042 0.006127 21.32 60.15 / \ =CH—0. 0082 几OOH4126.73 8.13Z =c 0.01430.0008 3231.0137-02、续上表茵増址—F 0.0111-0.0057 27 -0.03 -15.78—C1 0.0105 一 6 0049 58 貉1313.55—Br 0.0133 0. 0057 71 66.86 43.43—I0.0068一6 0034 9? 93.8441・69氧増量—OH®〉0.07410.0112 28 92.88 44.4"—()H (酚)0.02400.0184 -25 76.34 82.83—(1(非环〉0.01680.0015 18 22.42 22,2、—(I环)0.00980. 0048 1331.22 23.050.03800. 003162 76.75 61.20X C=C)(非环)/\0.C284 0. 0028 55 94.9775.97/=()(茹)(YH—(醛)0.037&0. 003082 72.24 36.90—G)OH(^)0.0791 0. 0077 89 159.09155.50—GKWgl) 0.04810. 000582 81.1053.60=()(以上之外的)0.01430. 010136 —10.50 2.08氮增量0.02430.010938 73.23 66.89—NH2;沖非环)0.0295 0. 0077 35 50.17 52.66\0.01300.011429 52.82 101.51/H(环)(非环)0.01690. 0C74 9 11.7448.84/续上表基囲辽ATb 氮増址一、=(非环〉0.0255 一0.009974.60—x=〔环)0.00850. 0076 34 ■ r ■ ■” 506& 40—CN 0.0496—0.010191125.66 59.89 —\()2 0.04370. 006491152.54 127.24貌増童—SH 0.00310. 0084 63 63.56 20.09一 _ / TT \ 0.01190. 0049 54 6& 78 34.40*3 (非坏)一》(环〉0.00190. 0051 38 52.10 79.93(4) MXXC 法T c =几(0・ 573430+ 1.07746工— 1.78632丫 △乃)T =0.1013251nT b (0. 047290+0. 28903 丫 M — °・ 051180丫 △#)-】V c = 28. 89746 + 14. 75246工△匕+ 6・ O3853O(SAV ?)_1(5) CG 法讥.=181 ・ 728In (工確 AT C- + E77zATcJ) p c = l. 3705十(0・ 100220+乞吗△/》)—21V c — —4. 350+ (工了ii AV C ; + 工rij AV C7-)Pc(ll-8a) (11-8b) (U-8c)(ll-9a) (lh9b) dl-9c)表1卜3临界参数估算平均百分误差方法Pc v■①c? Lydersen 1.27 6.03 3.38 Ambrose0.77 1. 35 2.88 JobackMXXC 0. 75 2.72 2. 50 c-c; Pc<L65.22.82.38& 1.42(1)相对分子质量法lgl\ = l・ 929(lgM)°・4134 (2)Waston法Tb = gl^exp 罗卑』-2.94 (3)有机物估算法T b =兀0・567 +工△:T—(工△丁町兀(11=12〉表式(1M2)中常数。