物理牛顿运动定律专项及解析
- 格式:doc
- 大小:416.00 KB
- 文档页数:9
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
高考物理易错题专题三物理牛顿运动定律(含解析)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
牛顿运动定律的综合应用题型一动力学的连接体问题和临界问题【解题指导】整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.1(2023上·安徽亳州·高三蒙城第一中学校联考期中)中沙“蓝剑一2023”海军特战联训于10月9日在海军某部营区开训。
如图所示,六位特战队员在进行特战直升机悬吊撤离课目训练。
若质量为M的直升机竖直向上匀加速运动时,其下方悬绳拉力为F,每位特战队员的质量均为m,所受空气阻力是重力的k倍,不计绳的质量,重力加速度为g,则()A.队员的加速度大小为F6m-gB.上面第二位队员和第三位队员间绳的拉力大小13FC.队员的加速度大小为F6m-kgD.上面第二位队员和第三位队员间绳的拉力大小23F【答案】D【详解】以六位特战队员为研究对象F-6k+1mg=6ma设第二位队员和第三位队员间绳的拉力为T,以下面的4名特战队员为研究对象T-4k+1mg=4ma解上式得T=23F,a=F6m-k+1g故选D。
2(2024·辽宁·模拟预测)如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时,B与A分离,下列说法正确的是()A.B 和A 刚分离时,弹簧长度等于原长B.B 和A 刚分离时,它们的加速度为gC.弹簧的劲度系数等于mghD.在B 和A 分离前,它们做加速度增大的加速直线运动【答案】C【详解】AB .在施加外力F 前,对A 、B 整体受力分析,可得2mg =kx 1A 、B 两物体分离时,A 、B 间弹力为零,此时B 物体所受合力F 合=F -mg =0即受力平衡,则两物体的加速度恰好为零,可知此时弹簧弹力大小等于A 受到重力大小,弹簧处于压缩状态,故AB 错误;C .B 与A 分离时,对物体A 有mg =kx 2由于x 1-x 2=h所以弹簧的劲度系数为k =mgh故C 正确;D .在B 与A 分离之前,由牛顿第二定律知a =F +kx -2mg 2m =F +kx 2m-g在B 与A 分离之前,由于弹簧弹力一直大于mg 且在减小,故加速度向上逐渐减小,所以它们向上做加速度减小的加速直线运动,故D 错误。
高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。
质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。
忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。
【考点】牛顿定律的应用。
3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。
木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。
t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。
碰撞前后木板速度大小不变,方向相反。
运动过程中小物块第一次减速为零时恰好从木板上掉下。
已知木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2。
求:(1)t=0时刻木板的速度;(2)木板的长度。
【答案】(1)05/v m s =(2)163l m =【解析】【详解】(1)对木板和物块:()()11M m g M m a μ+=+令初始时刻木板速度为0v 由运动学公式:101v v a t =+代入数据求得:0=5m/s v(2)碰撞后,对物块:22mg ma μ= 对物块,当速度为0时,经历时间t ,发生位移x 1,则有21112v x a =,112v x t = 对木板,由牛顿第二定律:()213mg M m g Ma μμ++=对木板,经历时间t ,发生位移x 2221312x v t a t =- 木板长度12l x x =+代入数据,16=m 3l2.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量m1=0.98kg 的小木块.射钉枪以速度v 0=100m/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N;(3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆=【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+ 解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5ma g s μ==,且方向向右 板产生的加速度220.5mgm a s M μ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -= 此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--= 故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s'=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-= 代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;(3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1,则:21121v a t a t -=,解得:11t s = 此时2211121110.522x v t a t a t m ∆=--=''3210.5m v v at s=-= 碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-= 故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.3.如图所示,小红和妈妈利用寒假时间在滑雪场进行滑雪游戏。
物理牛顿运动定律的应用专项习题及答案解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
高一物理牛顿运动定律试题答案及解析1.如图所示,台秤上放有一杯水,杯内底部处用线系着一小木球浮在水中,若细线突然断开,试分析在小木球上浮的过程中,台秤的示数如何变化?A.增大B.减小C.不变D.以上三种情况都有可能【答案】B【解析】若细线突然断开,小木球上浮的过程中,水向下运动,有向下的加速度,系统处于失重状态,台秤的示数减小,B正确。
2.关于力和运动的关系,下列选项中正确的是A.若物体的速度不断增大,则物体所受的合力一定不为0B.若物体的位移不断增大,则物体所受的合力一定不为0C.若物体的位移与时间的平方成正比,则物体所受的合力一定为0D.若物体的加速度不变,则物体所受合力一定为0【答案】A【解析】只要物体速度变化,则一定存在加速度,所以合外力一定不为零;A对,D错。
位移增大,不一定速度变化,可以是匀速运动,所以合力可以为零,B错;位移与时间的平方成正比,则物体肯定不是做匀速运动,所以加速度一定不为零,合力一定不为零,C错;3.如图所示,空间存在着场强为E=2.5×102 N/C、方向竖直向上的匀强电场,在电场内一长为L =0.5 m的绝缘细线,一端固定在O点,另一端拴着质量为m=0.5 kg、电荷量为q=4×10-2 C 的小球.现将细线拉直到水平位置,使小球由静止释放,当小球运动到最高点时细线受到的拉力恰好达到它能承受的最大值而断裂.取g=10 m/s2.求:(1)小球的电性;(2)细线能承受的最大拉力;(3)当细线断裂后,小球继续运动到与O点水平方向距离为L时(仍在匀强电场中),小球距O点的高度.【答案】(1)正(2)(3)0.625 m【解析】(1)由小球运动到最高点可知,小球带正电.(2)设小球运动到最高点时速度为v,对该过程由动能定理有,①在最高点对小球进行受力分析,由圆周运动和牛顿第二定律得,②由①②式解得,(3)小球在细线断裂后,在竖直方向的加速度设为a,则③设小球在水平方向运动位移为L的过程中,所经历的时间为t,则④设竖直方向上的位移为x,则⑤由①③④⑤解得x=0.125 m所以小球距O点的高度为x+L=0.625 m【考点】考查了牛顿第二定律,圆周运动,动能定理4.如图所示,用细绳把小球悬挂起来,当小球静止时,下列说法中正确的是()A.小球对细绳的拉力和细绳对小球的拉力是一对作用力和反作用力B.小球受到的重力和小球对细绳的拉力是一对作用力和反作用力C.小球受到的重力和细绳对小球的拉力是一对平衡力D.小球受到的重力和小球对细绳的拉力是一对平衡力【答案】AC【解析】解:对小球受力分析,受地球对其的重力,细线对其向上的拉力,小球保持静止状态,加速度为零,合力为零,故重力和拉力是一对平衡力;细线对小球的拉力的反作用力是小球对细线的向下的拉力,这两个力是一对相互作用力,故AC正确,BD错误故选:AC.【考点】作用力和反作用力.分析:一对平衡力与“作用力与反作用力“的共同的特点:二力都是大小相等,方向相反,作用在同一条直线上.一对平衡力与“作用力与反作用力“的区别:作用力与反作用力描述的是两个物体间相互作用的规律,二力平衡描述的是一个物体在二力作用下处在平衡状态.点评:本题涉及三力,重力、细线对小球的拉力和小球对细线的拉力,其中重力和细线对小球的拉力是平衡力(因为小球处于平衡状态),细线对小球的拉力和小球对细线的拉力是相互作用力;平衡力和相互作用力是很容易混淆的,要注意其最明显的区别在于是否同体.5.(12分)如图所示为某高楼电梯上升的速度-时间图像,试求:(1)在t1=5s、t2=8s时刻的速度;(2)求出各段的加速度;(3)画出电梯上升的加速度-时间图像.【答案】(1)v1=10m/s;v2=5m/s(2)0s~2s :5m/s2;2s~5s :0m/s2;5s~8s :-1.7m/s2;(3)图线如图:【解析】(1)由图线可知在t1=5s时的速度是10m/s;在t2=8s时刻的速度是5m/s;(2)0s~2s :5m/s2;2s~5s :a2=0m/s2;5s~8s :;(3)电梯上升的加速度-时间图像:【考点】v-t图线.【名师】此题考查了v-t图线在实际生活中的应用问题;要了解图线的物理意义:斜率大小等于物体的加速度大小,斜率的符号反映加速度的方向;图线与坐标轴围成的面积等于物体的位移;做题时要会分段处理;此题难度不大.6.两物体都做匀变速直线运动,在给定的时间间隔t内()A.加速度大的,其位移一定大B.初速度大的,其位移一定大C.末速度大的,其位移一定大D.平均速度大的,其位移一定大【答案】D【解析】解:A、根据x=知,加速度大,位移不一定大,还与初速度有关.故A错误.B、根据x=知,初速度大的,位移不一定大,还与加速度有关.故B错误.C、末速度大,位移不一定大,还与初速度有关.故C错误.D、根据,时间一定,平均速度大,位移一定大.故D正确.故选D.【考点】匀变速直线运动的速度与时间的关系;匀变速直线运动的位移与时间的关系.分析:根据匀变速直线运动位移时间公式x=和平均速度公式去判断一定时间内的位移大小.点评:解决本题的关键掌握匀变速直线运动的位移时间公式x=和平均速度公式.7.如图所示,为做直线运动质点的v﹣t图象,则下列说法正确的是()A.质点在0~2s内做匀加速直线运动B.质点在2~6s内处于静止状态C.质点t=8s时的位移为零D.质点在8~10s内做匀加速直线运动【答案】AD【解析】解:A、质点在0~2s内速度均匀增大,做匀加速直线运动.故A正确.B、质点在2~6s内速度不变,做匀速直线运动,故B错误.C、根据面积表示位移,可知质点t=8s时的位移为 x=m=36m,故C错误.D、质点在8~10s内沿负方向做匀加速直线运动,故D错误.故选:AD【考点】匀变速直线运动的图像.【分析】v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.图象与坐标轴所围的面积表示位移.由此分析.【点评】本题的解题关键是抓住两个数学意义来分析和理解图象的物理意义:速度图象的斜率等于加速度、速度图象与坐标轴所围“面积”大小等于位移.明确v﹣t图象中倾斜的直线表示匀变速直线运动,平行于时间轴的直线表示匀速直线运动.8.一物体以20m/s的速度沿光滑斜面向上做匀变速直线运动,加速度大小为a=5m/s2.如果斜面足够长,那么当速度大小变为10m/s时物体所通过的路程可能是多少?【答案】物体通过路程可能为30m,可能为50m.【解析】解:当末速度的方向与初速度方向相同,根据速度位移公式得,物体通过的路程s=.若末速度的方向与初速度方向相反,则物体向上做匀减速运动的位移,向下做匀加速运动的位移,则路程s=x1+x2=40+10m=50m.答:物体通过路程可能为30m,可能为50m.【考点】匀变速直线运动的位移与时间的关系.【分析】当末速度的方向与初速度方向相同,直接结合匀变速直线运动的速度位移公式求出物体通过的路程.当末速度的方向与初速度方向相反,根据速度位移公式分别求出向上匀减速运动的位移和向下匀加速运动的位移,从而得出路程.【点评】解决本题的关键掌握匀变速直线运动的速度位移公式,并能灵活运用,注意末速度的方向可能与初速度方向相同,可能与初速度方向相反.9.跳伞运动员从300m高空无初速度跳伞下落,他自由下落4s后打开降落伞,以恒定的加速度做匀减速运动,到达地面时的速度为4.0m/s,g=10m/s2.求:(1)运动员打开降落伞处离地面的高度;(2)运动员打开伞后运动的加速度;(3)运动员在空中运动的总时间.【答案】(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【解析】解:竖直向下方向为正方向.(1)运动员自由下落4s的位移为运动员打开降落伞处离地面的高度为:h2=h﹣h1=300﹣80m=220m(2)运动员自由下落4s末的速度为:v1=gt1=10×4m/s=40m/s打开降落伞后做匀减速直线运动,根据速度位移关系有:2可得加速度==﹣3.6m/s2(3)打开降落伞后做匀减速时间达到地面的时间为:所以运动在空中下落的总时间为:t=t1+t2=4+10s=14s答:(1)运动员打开降落伞处离地面的高度为220m;(2)运动员打开伞后运动的加速度为﹣3.6m/s2;(3)运动员在空中运动的总时间为14s.【考点】匀变速直线运动的位移与时间的关系;匀变速直线运动的速度与时间的关系.【分析】(1)根据自由落体运动的规律求得物体下落4s的高度,从而求得离地面的高度;(2)根据匀减速运动的速度位移关系求得打开伞后的加速度;(3)求得匀减速下落的时间和自由落体运动的时间即为在空中下落的总时间.【点评】掌握匀变速直线运动的位移时间关系和速度时间关系是正确解题的关键,不难属于基础题.10.某研究性学习小组,为探究电梯起动和制动时的加速度大小,董趣同学站在体重计上乘电梯从1层到10层,之后又从10层返回到1层,并用照相机进行记录,请认真观察分析下列图片,得出正确的判断是()A.根据图乙和图丙,可估测电梯向上起动时的加速度B.根据图甲和图乙,可估测电梯向上制动时的加速度C.根据图甲和图戊,可估测电梯向下制动时的加速度D.根据图丁和图戊,可估测电梯向下起动时的加速度【答案】C【解析】解:A、图2表示电梯加速上升时这位同学超重时的示数,图3,表示向上减速时的示数,由此两图不能够求出的是电梯向上起动时的加速度,所以A错误.B、图1表示电梯静止时的示数,图2显示加速上升时的示数,此时能够求出的是电梯向上加速时的加速度,所以B错误.C、图1表示电梯静止时的示数,图5表示电梯减速下降时的示数,此时能够求出的是电梯向下减速时的加速度,所以C正确.D、图4表示电梯加速下降时的示数,图5表示电梯减速下降时的示数,此时不能够求出电梯向下起动时的加速度,所以D错误.故选C【考点】加速度.【分析】图甲表示电梯静止时体重计的示数,乙图表示电梯加速上升时这位同学超重时的示数,丙图表示电梯减速上升时这位同学失重时的示数,丁图表示电梯加速下降时这位同学失重时的示数,戊图表示电梯减速下降时这位同学超重时的示数,根据牛顿第二定律可以应用图甲和另外某一图示求出相应状态的加速度.【点评】本题主要考查了对超重失重现象的理解,人处于超重或失重状态时,人的重力并没变,只是对支持物的压力变了.11.(20分)下列是《驾驶员守则》中的安全距离图示(如图)和部分安全距离表格.请根据图表计算:(1)如果驾驶员的反应时间一定,请求出表格中的A 的数据; (2)如果路面情况相同,请求出表格中的B 、C 的数据;(3)如果路面情况相同,一名喝了酒的驾驶员发现前面50 m 处有一队学生正在横过马路,此时他的车速为72 km/h.而他的反应时间比正常时慢了0.1 s ,请问他能在50 m 内停下来吗? 【答案】(1)20;(2)40;60;(3)不能 【解析】(1)反应时间为,即解得A =20 m.因路面情况相同,故知刹车时的加速度相同, 由v 2 =2ax 得 对第一组刹车数据分析,加速度为分析第三组数据知,刹车距离为:所以停车距离为:C =A +B =60 m. 正常情况下司机的反应时间为而喝酒情况下司机的反应距离为 由v 2=2ax 知,此时司机的刹车距离为L =s +x =52.4 m,52.4 m>50 m ,故不能在50 m 内停下来. 【考点】匀变速直线运动的规律12. 物体由A 向B 做匀变速直线运动,所用时间为t ,在时到达D 点,C 为AB 的中点,以v C 和v D 分别表示物体在C 点和D 点时的速度,以下叙述中正确的是:( ) A .若物体做匀加速运动,则v C >v D B .若物体做匀减速运动,则v C >v DC .不论物体做匀加速运动,还是做匀减速运动,都有v C <v DD .如果不确定物体做匀加速运动或匀减速运动,则无法比较v C 和v D 的大小【答案】AB【解析】根据匀变速直线运动的规律,物体在中间时刻D 的速度为;物体在中间位置C 的速度为:;由数学知识可知,恒成立,则v C >v D ,故选项AB 正确,CD 错误;故选AB.【考点】匀变速直线运动的规律13. (8分)跳伞运动员做低空跳伞表演,他离开飞机后先做自由落体运动,当距地面120 m 时打开降落伞,开伞后运动员以大小为12.5 m/s 2的加速度做匀减速运动,到达地面时的速度为5 m/s ,求:(1)运动员离开飞机瞬间距地面的高度;(2)离开飞机后,经多长时间到达地面.(g 取10 m/s 2) 【答案】(1)271.25 m ;(2)9.5 s【解析】(1)由v12-v2=2ah2解出v=55 m/s. (2分)又因为v02=2gh1解出h1=151.25 m. (2分)所以h=h1+h2=271.25 m. (1分)(2)又因为t1==5.5 s, (1分)t2==4 s, (1分)所以t=t1+t2=9.5 s,(1分)【考点】匀变速直线运动的规律【名师】本题难度较小,自由落体运动其实就是初速度为零的匀加速直线运动,灵活应用匀变速运动规律求解本题。
物理牛顿运动定律专项习题及答案解析及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求:(1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ?【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】(1)滑块与小车动量守恒0()mv m M v =+可得1m/s v =(2)木板静止后,滑块匀减速运动,根据动能定理有:2102mgs mv μ-=- 解得0.25m s =(3)从滑块滑上木板到共速时,由能量守恒得:220111()22mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+=2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2(1)求木块和木板保持相对静止的时间t 1; (2)t =10s 时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF 的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m2:F﹣μ1m2g=m2a2 F=3t=30N解得:a2=12m/s2(3)图象过(1、0),(4.3),(10、12)图象如图所示.3.如图所示,在风洞实验室里,粗糙细杆与竖直光滑圆轨AB相切于A点,B为圆弧轨道的最高点,圆弧轨道半径R=1m,细杆与水平面之间的夹角θ=37°.一个m=2kg的小球穿在细杆上,小球与细杆间动摩擦因数μ=0.3.小球从静止开始沿杆向上运动,2s后小球刚好到达A 点,此后沿圆弧轨道运动,全过程风对小球的作用力方向水平向右,大小恒定为40N .已知g =10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球在A 点时的速度大小;(2)小球运动到B 点时对轨道作用力的大小及方向. 【答案】(1)8m/s (2)12N 【解析】 【详解】(1)对细杆上运动时的小球受力分析,据牛顿第二定律可得:cos sin (sin cos )F mg F mg ma θθμθθ--+=代入数据得:24m/s a =小球在A 点时的速度8m/s A v at ==(2)小球沿竖直圆轨道从A 到B 的过程,应用动能定理得:2211sin37(1cos37)22B A FR mgR mv mv -︒-+︒=- 解得:2m/s B v =小球在B 点时,对小球受力分析,设轨道对球的力竖直向上,由牛顿第二定律知:2N Bv mg F m R-=解得:F N =12N ,轨道对球的力竖直向上由牛顿第三定律得:小球在最高点B 对轨道的作用力大小为12N ,方向竖直向下.4.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。
高一物理牛顿运动定律试题答案及解析1.(8分)汽车发动机的额定功率为60kW,汽车质量为5t,汽车在水平路面上行驶时,阻力是车重的0.1倍,g取10m/s2,问:(1)汽车保持额定功率从静止起动后能达到的最大速度是多少?(2)若汽车保持0.5m/s2的加速度做匀加速运动,这一过程能维持多长时间?【答案】(1)12m/s;(2)16s。
【解析】(1)因为v=m/s=12m/s;(2)做匀加速运动的最大速度为v′=m/s=8m/s;故这一过程的时间为t==16s【考点】汽车启动问题。
2.如图所示,光滑水平面上放有质量均为m的滑块A和斜面体C,在C的斜面上又放有一质量也为m的滑块B,用力F推滑块A使三者无相对运动地向前加速运动,则各物体所受的合力()A.滑块A最大B.斜面体C最大C.同样大D.不能判断谁大谁小【答案】C【解析】由于三者无相对运动地向前共同加速运动,且质量均相同,根据牛顿第二定律F=ma可知,F均相同,故C正确。
【考点】牛顿第二定律3.一辆以12m/s的速度在水平路面上行驶的汽车,在关闭油门后刹车过程中以3m/s2的加速度做匀减速运动,那么汽车关闭油门后2s内的位移是多少米?关闭油门后5s内的位移是多少米?【答案】(1)18m(2)24m【解析】汽车停下来的时间为,汽车在关闭油门后2s内的位移是由于汽车在4s末停止运动,所以前4s的位移等于5s末的位移故有关闭油门后5s内的位移是【考点】考查了匀变速直线运动规律的应用4.一辆值勤的警车停在公路边,当警员发现在他前面9m处以7m/s的速度匀速向前行驶的货车有违章行为时,决定前去追赶,经3.0s,警车发动起来,以加速度a=2m/s2做匀加速运动.求:(1)警车发动后经多长时间能追上违章的货车,这时警车速度多大;(2)在警车追上货车之前,何时两车间的最大距离,最大距离是多少.【答案】(1)t=10s,20m/s(2)【解析】①得 t=10s v=at=20m/s②当两车速度相等时,两车间距最大【考点】追击相遇问题【名师】关键是抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远,(1)根据位移关系,结合运动学公式求出追及的时间,根据速度时间公式求出警车的速度.(2)当两车的速度相等时,相距最远,根据速度时间公式求出相距最远的时间,根据位移公式求出相距的最远距离5.(10分)如图所示,小球在较长的斜面顶端,以初速度v=2m/s,加速度a=2m/s2向下滑,在到达底端的前1s内,所滑过的距离为,其中L为斜面长,则(1)小球在斜面上滑行的时间为多少?(2)斜面的长度L是多少?【答案】(1)3s;(2)15m【解析】设小球在斜面上运动的总时间为t,则由题意和公式 x=vt+at2得:解上面两个方程得:t=3s;L=15m【考点】匀变速直线运动的规律6.(10分)一列车A的制动性能经测定:当它以标准速度V=20m/s在平直轨道上行驶时,制动后需tA =40s才停下。
高考物理牛顿运动定律的应用真题汇编(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,倾角α=30°的足够长传送带上有一长L=1.0m ,质量M=0.5kg 的薄木板,木板的最右端叠放质量为m=0.3kg 的小木块.对木板施加一沿传送带向上的恒力F ,同时让传送带逆时针转动,运行速度v=1.0m/s 。
已知木板与物块间动摩擦因数μ1=3,木板与传送带间的动摩擦因数μ2=34,取g=10m/s 2,最大静摩擦力等于滑动摩擦力。
(1)若在恒力F 作用下,薄木板保持静止不动,通过计算判定小木块所处的状态;(2)若小木块和薄木板相对静止,一起沿传送带向上滑动,求所施恒力的最大值F m ;(3)若F=10N ,木板与物块经过多长时间分离?分离前的这段时间内,木板、木块、传送带组成系统产生的热量Q 。
【答案】(1)木块处于静止状态;(2)9.0N (3)1s 12J 【解析】【详解】(1)对小木块受力分析如图甲:木块重力沿斜面的分力:1sin 2mg mg α= 斜面对木块的最大静摩擦力:13cos 4m f mg mg μα==由于:sin m f mg α>所以,小木块处于静止状态;(2)设小木块恰好不相对木板滑动的加速度为a ,小木块受力如图乙所示,则 1cos sin mg mg ma μαα-=木板受力如图丙所示,则:()21sin cos cos m F Mg M m g mg Ma αμαμα--+-= 解得:()99.0N 8m F M m g =+=(3)因为F=10N>9N ,所以两者发生相对滑动对小木块有:21cos sin 2.5m/s a g g μαα=-=对长木棒受力如图丙所示()21sin cos cos F Mg M m g mg Ma αμαμα--+-'=解得24.5m/s a ='由几何关系有:221122L a t at =-' 解得1t s =全过程中产生的热量有两处,则 ()2121231cos cos 2Q Q Q mgL M m g vt a t μαμα⎛⎫=+=+++ ⎪⎝⎭解得:12J Q =。
高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求:(1)物体与水平面间的动摩擦因数;(2)水平推力F的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。
高中物理必修一一、【牛顿运动定律】1.伽利略的斜面实验证明了()A.使物体运动必须有力的作用,没有力的作用,物体将静止B.使物体静止必须有力的作用,没有力的作用,物体将运动C.物体不受外力作用时,一定处于静止状态D.物体不受外力作用时,总保持原来的匀速直线运动状态或者静止状态解析:选D.伽利略的斜面实验证明了:运动不需要力来维持,物体不受外力作用时,总保持原来的匀速直线运动状态或静止状态,故D正确.2.关于运动状态与所受外力的关系,下面说法中正确的是()A.物体受到恒定的力作用时,它的运动状态不发生改变B.物体受到不为零的合力作用时,它的运动状态要发生改变C.物体受到的合力为零时,它一定处于静止状态D.物体的运动方向与它所受的合力方向一定相同解析:选B.力是改变物体运动状态的原因,只要物体受力(合力不为零),它的运动状态就一定会改变,A错误,B正确;物体受到的合力为零时,物体可能处于静止状态,也可能处于匀速直线运动状态,C错误;物体所受合力的方向可能与物体的运动方向相同或相反,也可能不在一条直线上,D错误.3.某同学为了取出如图所示羽毛球筒中的羽毛球,一只手拿着球筒的中部,另一只手用力击打羽毛球筒的上端,则()A.此同学无法取出羽毛球B.羽毛球会从筒的下端出来C.羽毛球筒向下运动过程中,羽毛球受到向上的摩擦力才会从上端出来D.该同学是在利用羽毛球的惯性解析:选D.羽毛球筒被手击打后迅速向下运动,而羽毛球具有惯性要保持原来的静止状态,所以会从筒的上端出来,D 正确.4.(多选)下列说法正确的是( )A .运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B .同一物体在地球上不同的位置受到的重力是不同的,但它的惯性却不随位置的变化而变化C .一个小球竖直上抛,抛出后能继续上升,是因为小球运动过程中受到了向上的推力D .物体的惯性大小只与本身的质量有关,质量大的物体惯性大,质量小的物体惯性小 解析:选BD .惯性是物体本身的固有属性,其大小只与物体的质量大小有关,与物体的受力及运动情况无关,故选项B 、D 正确;速度大的汽车要停下来时,速度变化大,由Δv =at 可知需要的时间长,惯性未变,故选项A 错误;小球上抛时是由于惯性向上运动,并未受到向上的推力,故选项C 错误.5.夸克(quark)是一种基本粒子,也是构成物质的基本单元.其中正、反顶夸克之间的强相互作用势能可写为E p =-k 4αs 3r,式中r 是正、反顶夸克之间的距离,αs 是无单位的常量,k 是与单位制有关的常数,则在国际单位制中常数k 的单位是( )A .N ·mB .NC .J/mD .J ·m解析:选D .由题意有k =-3E p r 4αs,αs 是无单位的常量,E p 的国际单位是J ,r 的国际单位是m ,在国际单位制中常数k 的单位是J ·m ,D 正确,A 、B 、C 错误.6. (多选)如图所示,质量为m 的小球被一根橡皮筋AC 和一根绳BC 系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ解析:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mg cos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC上的拉力F也发生了突变,小球的加速度方向沿与BC垂直的方向且斜向下,大小为a=mg sin θ=g sin θ,B正确,A错误;在BC被突然剪断的瞬间,橡皮筋AC的拉力不变,小m=球的合力大小与BC被剪断前拉力的大小相等,方向沿BC方向斜向下,故加速度a=Fm gcos θ,C正确,D错误.7. (多选)搭载着“嫦娥三号”的“长征三号乙”运载火箭在西昌卫星发射中心发射升空,下面关于卫星与火箭升空的情形叙述正确的是()A.火箭尾部向下喷气,喷出的气体反过来对火箭产生一个反作用力,从而让火箭获得了向上的推力B.火箭尾部喷出的气体对空气产生一个作用力,空气的反作用力使火箭获得飞行的动力C.火箭飞出大气层后,由于没有了空气,火箭虽然向后喷气,但也无法获得前进的动力D.卫星进入运行轨道之后,与地球之间仍然存在一对作用力与反作用力解析:选AD.火箭升空时,其尾部向下喷气,火箭箭体与被喷出的气体是一对相互作用的物体.火箭向下喷气时,喷出的气体对火箭产生向上的反作用力,即为火箭上升的推动力.此动力并不是由周围的空气对火箭的反作用力提供的,因而与是否飞出大气层、是否存在空气无关,选项B、C错误,A正确;火箭运载卫星进入轨道之后,卫星与地球之间依然存在相互吸引力,即地球吸引卫星,卫星吸引地球,这就是一对作用力与反作用力,故选项D正确.8.如图,一截面为椭圆形的容器内壁光滑,其质量为M,置于光滑水平面上,内有一质量为m的小球,当容器受到一个水平向右的力F作用向右匀加速运动时,小球处于图示位置,此时小球对椭圆面的压力大小为()A .m g 2-⎝⎛⎭⎫F M +m 2B .m g 2+⎝⎛⎭⎫F M +m 2C .m g 2+⎝⎛⎭⎫F m 2D .(mg )2+F 2解析:选B .先以整体为研究对象,根据牛顿第二定律得:加速度为a =F M +m,再对小球研究,分析受力情况,如图所示,由牛顿第二定律得到:F N =(mg )2+(ma )2=m g 2+⎝ ⎛⎭⎪⎫F M +m 2,由牛顿第三定律可知小球对椭圆面的压力大小为m g 2+⎝ ⎛⎭⎪⎫F M +m 2,故B 正确.9.如图所示,将两个相同的条形磁铁吸在一起,置于桌面上,下列说法中正确的是( )A .甲对乙的压力的大小小于甲的重力的大小B .甲对乙的压力的大小等于甲的重力的大小C .乙对桌面的压力的大小等于甲、乙的总重力大小D .乙对桌面的压力的大小小于甲、乙的总重力大小解析:选C .以甲为研究对象,甲受重力、乙的支持力及乙的吸引力而处于平衡状态,根据平衡条件可知,乙对甲的支持力大小等于甲受到的重力和吸引力的大小之和,大于甲的重力大小,由牛顿第三定律可知,甲对乙的压力大小大于甲的重力大小,故A 、B 错误;以整体为研究对象,整体受重力、支持力而处于平衡状态,故桌面对乙的支持力等于甲、乙的总重力的大小,由牛顿第三定律可知乙对桌面的压力大小等于甲、乙的总重力大小,故C 正确,D 错误.10.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法正确的是( )A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.由于滑轮光滑,甲拉绳子的力等于绳子拉乙的力,若甲的质量大,则由甲拉绳子的力等于乙受到的绳子拉力,得甲攀爬时乙的加速度大于甲,所以乙会先到达滑轮,选项A正确,B错误;若甲、乙的质量相同,甲用力向上攀爬时,甲拉绳子的力等于绳子拉乙的力,甲、乙具有相同的加速度和速度,所以甲、乙应同时到达滑轮,选项C、D错误.11.如图所示,跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板上,随跳板一同向下做变速运动到达最低点,然后随跳板反弹,则()A.运动员与跳板接触的全过程中只有超重状态B.运动员把跳板压到最低点时,他所受外力的合力为零C.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他的重力D.运动员能跳得高的原因从受力角度来看,是因为跳板对他的作用力远大于他对跳板的作用力解析:选C.运动员与跳板接触的下降过程中,先向下加速,然后向下减速,最后速度为零,则加速度先向下,然后向上,所以下降过程中既有失重状态也有超重状态,同理上升过程中也存在超重和失重状态,故A错误;运动员把跳板压到最低点时,跳板给运动员的弹力大于运动员受到的重力,合外力不为零,故B错误;从最低点到运动员离开跳板过程中,跳板对运动员的作用力做正功,重力做负功,二力做功位移一样,运动员动能增加,因此跳板对他的作用力大于他的重力,故C正确;跳板对运动员的作用力与运动员对跳板的作用力是作用力与反作用力,大小相等,故D错误.12.如图所示,甲、乙两人在冰面上“拔河”.两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.根据牛顿第三定律可知甲对绳的拉力与绳对甲的拉力是一对作用力与反作用力,选项A错误;因为甲对绳的拉力和乙对绳的拉力作用在同一个物体(绳)上,故两力不可能是作用力与反作用力,故选项B错误;若甲的质量比乙大,则甲的惯性比乙的大,故运动状态改变比乙难,故乙先过界,选项C正确;“拔河”比赛的输赢只与甲、乙的质量有关,与收绳速度无关,选项D错误.13.(山东省2020等级考试) (多选)如图所示,某人从距水面一定高度的平台上做蹦极运动.劲度系数为k的弹性绳一端固定在人身上,另一端固定在平台上.人从静止开始竖直跳下,在其到达水面前速度减为零.运动过程中,弹性绳始终处于弹性限度内.取与平台同高度的O点为坐标原点,以竖直向下为y轴正方向,忽略空气阻力,人可视为质点.从跳下至第一次到达最低点的运动过程中,用v、a、t分别表示人的速度、加速度和下落时间.下列描述v与t、a与y的关系图象可能正确的是()解析:选AD.人在下落的过程中,弹性绳绷紧之前,人处于自由落体状态,加速度为g;弹性绳绷紧之后,弹力随下落距离均匀增加,人的加速度随下落距离先均匀减小后反向均匀增大,C 错误,D 正确;人的加速度先减小后反向增加,可知速度时间图象的斜率先减小后反向增加.B 错误,A 正确.14.(多选)某物体在光滑的水平面上受到两个恒定的水平共点力的作用,以10 m/s 2的加速度做匀加速直线运动,其中F 1与加速度的方向的夹角为37°,某时刻撤去F 1,此后该物体( )A .加速度可能为5 m/s 2B .速度的变化率可能为6 m/s 2C .1 秒内速度变化大小可能为20 m/sD .加速度大小一定不为10 m/s 2解析:选BC .根据牛顿第二定律得F 合=ma =10m ,F 1与加速度方向的夹角为37°,根据几何知识可知,F 2有最小值,最小值为F 2min =F 合sin 37°=6m ,所以当F 1撤去后,合力的最小值为F min =6m ,此时合力的取值范围为F 合≥6m ,所以最小的加速度为a min =F min m=6 m/s 2,故B 、C 正确. 15.如图所示,在倾角为θ=30°的光滑斜面上,物块A 、B 质量分别为m 和2m .物块A 静止在轻弹簧上面,物块B 用细线与斜面顶端相连,A 、B 紧挨在一起,但A 、B 之间无弹力,已知重力加速度为g ,某时刻把细线剪断,当细线剪断瞬间,下列说法正确的是( )A .物块A 的加速度为0B .物块A 的加速度为g 3C .物块B 的加速度为0D .物块B 的加速度为g 2 解析:选B .剪断细线前,弹簧的弹力:F 弹=mg sin 30°=12mg ,细线剪断的瞬间,弹簧的弹力不变,仍为F 弹=12mg ;剪断细线瞬间,对A 、B 系统分析,加速度为:a =3mg sin 30°-F 弹3m =g 3,即A 和B 的加速度均为g 3,方向沿斜面向下. 16.(多选) 如图所示,两轻质弹簧a 、b 悬挂一质量为m 的小球,整体处于平衡状态,弹簧a 与竖直方向成30°,弹簧b 与竖直方向成60°,弹簧a 、b 的形变量相等,重力加速度为g ,则( )A .弹簧a 、b 的劲度系数之比为 3∶1B .弹簧a 、b 的劲度系数之比为 3∶2C .若弹簧a 下端松脱,则松脱瞬间小球的加速度大小为3gD .若弹簧b 下端松脱,则松脱瞬间小球的加速度大小为g 2解析:选AD .由题可知,两个弹簧相互垂直,对小球受力分析,如图所示,设弹簧的伸长量都是x ,由受力分析图知,弹簧a 中弹力F a =mg cos 30°=32mg ,根据胡克定律可知弹簧a 的劲度系数为k 1=F a x =3mg 2x ,弹簧b 中的弹力F b =mg cos 60°=12mg ,根据胡克定律可知弹簧b 的劲度系数为k 2=F b x =mg 2x,所以弹簧a 、b 的劲度系数之比为3∶1,A 正确,B 错误;弹簧a 中的弹力为32mg ,若弹簧a 的下端松脱,则松脱瞬间弹簧b 的弹力不变,故小球所受重力和弹簧b 弹力的合力与F a 大小相等、方向相反,小球的加速度大小a =F a m=32g ,C 错误;弹簧b 中弹力为12mg ,若弹簧b 的下端松脱,则松脱瞬间弹簧a 的弹力不变,故小球所受重力和弹簧a 弹力的合力与F b 大小相等、方向相反,故小球的加速度大小a ′=F b m=12g ,D 正确.二、【牛顿第二定律的应用】1. (多选)如图所示,一木块在光滑水平面上受一恒力F 作用,前方固定一足够长的水平轻弹簧,则当木块接触弹簧后,下列判断正确的是( )A .木块立即做减速运动B .木块在一段时间内速度仍增大C .当F 等于弹簧弹力时,木块速度最大D .弹簧压缩量最大时,木块速度为零但加速度不为零解析:选BCD .木块刚开始接触弹簧时,弹簧对木块的作用力小于外力F ,木块继续向右做加速度逐渐减小的加速运动,直到二力相等,而后,弹簧对木块的作用力大于外力F ,木块继续向右做加速度逐渐增大的减速运动,直到速度为零,但此时木块的加速度不为零,故选项A 错误,B 、C 、D 正确.2.质量为1 t 的汽车在平直公路上以10 m/s 的速度匀速行驶,阻力大小不变,从某时刻开始,汽车牵引力减少2 000 N ,那么从该时刻起经过6 s ,汽车行驶的路程是( )A .50 mB .42 mC .25 mD .24 m解析:选C .汽车匀速行驶时,F =F f ①,设汽车牵引力减小后加速度大小为a ,牵引力减少ΔF =2 000 N 时,F f -(F -ΔF )=ma ②,解①②得a =2 m/s 2,与速度方向相反,汽车做匀减速直线运动,设经时间t 汽车停止运动,则t =v 0a =102s =5 s ,故汽车行驶的路程x =v 02t =102×5 m =25 m ,故选项C 正确. 3. (多选)建设房屋时,保持底边L 不变,要设计好屋顶的倾角θ,以便下雨时落在房顶的雨滴能尽快地滑离屋顶,雨滴下滑时可视为小球做无初速度、无摩擦的运动.下列说法正确的是( )A .倾角θ越大,雨滴下滑时的加速度越大B .倾角θ越大,雨滴对屋顶压力越大C .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的速度越大D .倾角θ越大,雨滴从顶端O 下滑至屋檐M 时的时间越短解析:选AC .设屋檐的底角为θ,底边长度为L ,注意底边长度是不变的,屋顶的坡面长度为x ,雨滴下滑时加速度为a ,对雨滴受力分析,只受重力mg 和屋顶对雨滴的支持力F N ,垂直于屋顶方向:mg cos θ=F N ,平行于屋顶方向:ma =mg sin θ.雨滴的加速度为:a=g sin θ,则倾角θ越大,雨滴下滑时的加速度越大,故A正确;雨滴对屋顶的压力大小:F N′=F N=mg cos θ,则倾角θ越大,雨滴对屋顶压力越小,故B错误;根据三角关系判断,屋顶坡面的长度x=L2cos θ,由x=12g sin θ·t2,可得:t=2Lg sin 2θ,可见当θ=45°时,用时最短,D错误;由v=g sin θ·t可得:v=gL tan θ,可见θ越大,雨滴从顶端O下滑至M时的速度越大,C正确.4.如图所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量为m=2 kg的无人机,其动力系统所能提供的最大升力F=36 N,运动过程中所受空气阻力大小恒定,无人机在地面上从静止开始,以最大升力竖直向上起飞,在t=5 s时离地面的高度为75 m(g取10 m/s2).(1)求运动过程中所受空气阻力大小;(2)假设由于动力设备故障,悬停的无人机突然失去升力而坠落.无人机坠落地面时的速度为40 m/s,求无人机悬停时距地面高度;(3)假设在第(2)问中的无人机坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上的最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间.解析:(1)根据题意,在上升过程中由牛顿第二定律得:F-mg-F f=ma由运动学规律得,上升高度:h=12at2联立解得:F f=4 N.(2)下落过程由牛顿第二定律:mg-F f=ma1得:a1=8 m/s2落地时的速度v 2=2a 1H 联立解得:H =100 m.(3)恢复升力后向下减速,由牛顿第二定律得: F -mg +F f =ma 2 得:a 2=10 m/s 2设恢复升力后的速度为v m ,则有 v 2m 2a 1+v 2m2a 2=H 得:v m =4053 m/s由:v m =a 1t 1 得:t 1=553s.答案:(1)4 N (2)100 m (3)553s5.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以加速度a =2.5 m/s 2匀加速下滑.如图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ; (2)恒力F 的大小.解析:(1)对滑块,根据牛顿第二定律可得: mg sin θ-μmg cos θ=ma , 解得:μ=36. (2)使滑块沿斜面做匀加速直线运动,有加速度沿斜面向上和向下两种可能. 由x =12a 1t 2,得a 1=2 m/s 2,当加速度沿斜面向上时:F cos θ-mg sin θ-μ(F sin θ+mg cos θ)=ma 1,代入数据解得:F=7635N;当加速度沿斜面向下时:mg sin θ-F cos θ-μ(F sin θ+mg cos θ)=ma1,代入数据解得:F=437N.答案:(1)36(2)7635N或437N6.(多选)一个质量为2 kg的物体,在5个共点力作用下处于平衡状态.现同时撤去大小分别为15 N和10 N的两个力,其余的力保持不变,关于此后该物体的运动的说法中正确的是()A.一定做匀变速直线运动,加速度大小可能是5 m/s2B.一定做匀变速运动,加速度大小可能等于重力加速度的大小C.可能做匀减速直线运动,加速度大小是2.5 m/s2D.可能做匀速圆周运动,向心加速度大小是5 m/s2解析:选BC.根据平衡条件得知,其余力的合力与撤去的两个力的合力大小相等、方向相反,则撤去大小分别为15 N和10 N的两个力后,物体的合力大小范围为5 N≤F合≤25 N,根据牛顿第二定律a=Fm得:物体的加速度范围为2.5 m/s2≤a≤12.5 m/s2.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向不在同一直线上,物体做匀变速曲线运动,加速度大小可能为5 m/s2,故A错误.由于撤去两个力后其余力保持不变,则物体所受的合力不变,一定做匀变速运动,加速度大小可能等于重力加速度的大小,故B正确.若物体原来做匀速直线运动,撤去的两个力的合力方向与速度方向相同时,物体做匀减速直线运动,故C正确.由于撤去两个力后其余力保持不变,在恒力作用下不可能做匀速圆周运动,故D错误.7.如图所示,几条足够长的光滑直轨道与水平面成不同角度,从P点以大小不同的初速度沿各轨道发射小球,若各小球恰好在相同的时间内到达各自的最高点,则各小球最高点的位置()A .在同一水平线上B .在同一竖直线上C .在同一抛物线上D .在同一圆周上解析:选D .设某一直轨道与水平面成θ角,末速度为零的匀减速直线运动可逆向看成初速度为零的匀加速直线运动,则小球在直轨道上运动的加速度a =mg sin θm =g sin θ,由位移公式得l =12at 2=12g sin θ·t 2,即l sin θ=12gt 2,不同的倾角θ对应不同的位移l ,但l sin θ相同,即各小球最高点的位置在直径为12gt 2的圆周上,选项D 正确.8.如图所示,B 是水平地面上AC 的中点,可视为质点的小物块以某一初速度从A 点滑动到C 点停止.小物块经过B 点时的速度等于它在A 点时速度的一半.则小物块与AB 段间的动摩擦因数μ1和BC 段间的动摩擦因数μ2的比值为( )A .1B .2C .3D .4解析:选C .物块从A 到B 根据牛顿第二定律,有μ1mg =ma 1,得a 1=μ1g .从B 到C 根据牛顿第二定律,有μ2mg =ma 2,得a 2=μ2g .设小物块在A 点时速度大小为v ,则在B 点时速度大小为v 2,由于AB =BC =l ,由运动学公式知,从A 到B :⎝⎛⎭⎫v 22-v 2=-2μ1gl ,从B到C ∶0-⎝⎛⎭⎫v 22=-2μ2gl ,联立解得μ1=3μ2,故选项C 正确,A 、B 、D 错误.9.有一个冰上滑木箱的游戏节目,规则是:选手们从起点开始用力推箱一段时间后,放手让箱向前滑动,若箱最后停在有效区域内,视为成功;若箱最后未停在有效区域内就视为失败.其简化模型如图所示,AC 是长度为L 1=7 m 的水平冰面,选手们可将木箱放在A 点,从A 点开始用一恒定不变的水平推力推木箱,BC 为有效区域.已知BC 长度L 2=1 m ,木箱的质量m =50 kg ,木箱与冰面间的动摩擦因数μ=0.1.某选手作用在木箱上的水平推力F =200 N ,木箱沿AC 做直线运动,若木箱可视为质点,g 取10 m/s 2.那么该选手要想游戏获得成功,试求:(1)推力作用在木箱上时的加速度大小; (2)推力作用在木箱上的时间满足的条件.解析:(1)设推力作用在木箱上时的加速度大小为a 1,根据牛顿第二定律得F -μmg =ma 1, 解得a 1=3 m/s 2.(2)设撤去推力后,木箱的加速度大小为a 2,根据牛顿第二定律得 μmg =ma 2, 解得a 2=1 m/s 2.推力作用在木箱上时间t 内的位移为x 1=12a 1t 2.撤去推力后木箱继续滑行的距离为x 2=(a 1t )22a 2.为使木箱停在有效区域内,要满足 L 1-L 2≤x 1+x 2≤L 1, 解得1 s ≤t ≤76s. 答案:(1)3 m/s 2 (2)1 s ≤t ≤76s 10.如图所示,一儿童玩具静止在水平地面上,一名幼儿用沿与水平面成30°角的恒力拉着它沿水平地面运动,已知拉力F =6.5 N ,玩具的质量m =1 kg ,经过时间t =2.0 s ,玩具移动的距离x =2 3 m ,这时幼儿将手松开,玩具又滑行了一段距离后停下.(g 取10 m/s 2)求:(1)玩具与地面间的动摩擦因数. (2)松手后玩具还能滑行多远?(3)幼儿要拉动玩具,拉力F 与水平方向夹角θ为多少时拉力F 最小? 解析:(1)玩具做初速度为零的匀加速直线运动,由位移公式可得 x =12at 2,解得a = 3 m/s 2, 对玩具,由牛顿第二定律得 F cos 30°-μ(mg -F sin 30°)=ma , 解得μ=33. (2)松手时,玩具的速度v =at =2 3 m/s松手后,由牛顿第二定律得μmg =ma ′, 解得a ′=1033m/s 2.由匀变速运动的速度位移公式得 玩具的位移x ′=0-v 2-2a ′=335 m.(3)设拉力与水平方向的夹角为θ,玩具要在水平面上运动,则 F cos θ-F f >0,F f =μF N , 在竖直方向上,由平衡条件得 F N +F sin θ=mg , 解得F >μmgcos θ+μsin θ.因为cos θ+μsin θ=1+μ2sin(60°+θ),所以当θ=30°时,拉力最小. 答案:(1)33 (2)335m (3)30°三、【动力学中的“板块”“传送带”模型】1.(多选)如图所示,表面粗糙、质量M =2 kg 的木板,t =0时在水平恒力F 的作用下从静止开始沿水平面向右做匀加速直线运动,加速度a =2.5 m/s 2,t =0.5 s 时,将一个质量m =1 kg 的小铁块(可视为质点)无初速度地放在木板最右端,铁块从木板上掉下时速度是木板速度的一半.已知铁块和木板之间的动摩擦因数μ1=0.1,木板和地面之间的动摩擦因数μ2=0.25,g =10 m/s 2,则( )A .水平恒力F 的大小为10 NB .铁块放上木板后,木板的加速度为2 m/s 2C .铁块在木板上运动的时间为1 sD .木板的长度为1.625 m解析:选AC .未放铁块时,对木板由牛顿第二定律:F -μ2Mg =Ma ,解得F =10 N ,选项A 正确;铁块放上木板后,对木板:F -μ1mg -μ2(M +m )g =Ma ′,解得:a ′=0.75 m/s 2,选项B 错误;0.5 s 时木板的速度v 0=at 1=2.5×0.5 m/s =1.25 m/s ,铁块滑离木板时,木板的速度:v 1=v 0+a ′t 2=1.25+0.75t 2,铁块的速度v ′=a铁t 2=μ1gt 2=t 2,由题意:v ′=12v 1,解得t 2=1 s ,选项C 正确;铁块滑离木板时,木板的速度v 1=2 m/s ,铁块的速度v ′=1 m/s ,则木板的长度为:L =v 0+v 12t 2-v ′2t 2=1.25+22×1 m -12×1 m =1.125 m ,选项D 错误;故选A 、C .2.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处解析:选BD .行李放在传送带上,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.加速度为a =μg =1 m/s 2,历时t 1=v a =1 s 达到共同速度,位移x 1=v2t 1=0.5 m ,此后行李匀速运动t 2=L -x 1v =1.5 s 到达B ,共用2.5 s ;乘客到达B ,历时t =Lv =2 s ,B 正确;若传送带速度足够大,行李一直加速运动,最短运动时间t min =2L a= 2×21s =2 s ,D 正确. 3.如图甲所示,倾角为37°足够长的传送带以4 m/s 的速度顺时针转动,现将小物块以2 m/s 的初速度沿斜面向下冲上传送带,小物块的速度随时间变化的关系如图乙所示,g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,试求:。
高考物理复习冲刺压轴题专项突破—牛顿运动定律(含解析)一、选择题(1-3题为单项选择题,4-10为多项选择题)1.光滑水平地面上有两个叠放在一起的斜面体A、B,两斜面体形状大小完全相同,质量分别为M、m.如图甲、乙所示,对上面或下面的斜面体施加水平方向的恒力F1、F2均可使两斜面体相对静止地做匀加速直线运动,已知两斜面体间的摩擦力为零,则F1与F2之比为()A.M∶mB.m∶MC.m∶(M+m)D.M∶(M+m)【答案】A【解析】F1作用于A时,设A和B之间的弹力为N,对A有:N cosθ=Mg对B有:N sinθ=ma对A和B组成的整体有:F1=(M+m)a=()M m Mm+g tanθ;F2作用于A时,对B有:mg tanθ=ma′对A和B组成的整体有:F 2=(M +m )a ′=(M +m )·g tan θ,12F M F m.故选A 。
2.如图所示,斜劈A 静止放置在水平地面上,木桩B 固定在水平地面上,弹簧k 把物体与木桩相连,弹簧与斜面平行.质量为m 的物体和人在弹簧k 的作用下沿斜劈表面向下运动,此时斜劈受到地面的摩擦力方向向左.则下列说法正确的是()A .若剪断弹簧,物体和人的加速度方向一定沿斜面向下B .若剪断弹簧,物体和人仍向下运动,A 受到的摩擦力方向可能向右C .若人从物体m 离开,物体m 仍向下运动,A 受到的摩擦力可能向右D .若剪断弹簧同时人从物体m 离开,物体m 向下运动,A 可能不再受到地面摩擦力【答案】A【解析】剪断弹簧前,对斜面分析,受重力、地面的支持力和静摩擦力、滑块对斜面体的力(滑块对斜面体的滑动摩擦力和压力的合力),斜劈受到地面的摩擦力方向向左,故根据平衡条件,滑块对斜面体的力向右下方;根据牛顿第三定律,斜面对滑块的力向左上方;若剪断弹簧,滑块和人整体还要受重力,故合力偏左,根据牛顿第二定律,加速度是沿斜面向下,故A 正确;若剪断弹簧,物体和人仍向下运动,故物体和人整体对斜面体的力不变,故斜面体受力情况不变,故地面摩擦力依然向左,故B 错误;若人从物体m 离开,由于惯性,物体m 仍向下运动;动摩擦因数是不变的,故滑块对斜面体压力和滑动摩擦力正比例减小,故压力和滑动摩擦力的合力依然向右下方,故地面对斜面体的静摩擦力依然向左,故C错误;若剪断弹簧同时人从物体m离开,由于惯性,物体m仍向下运动;动摩擦因素是不变的,故滑块对斜面体压力和滑动摩擦力正比例减小,故压力和滑动摩擦力的合力依然向右下方,故地面对斜面体的静摩擦力依然向左,故D错误;故选A3.如图,小球A置于固定在水平面上的光滑半圆柱体上,小球B用水平轻弹簧拉着,弹簧固定在竖直板上.两小球A、B通过光滑滑轮O用轻质细线相连,两球均处于静止状态.已知球B质量为m,O点在半圆柱体圆心O1的正上方,OA与竖直方向成30°角.OA长度与半圆柱体半径相等,OB与竖直方向成45°角,现将轻质细线剪断的瞬间(重力加速度为g)()AB.球B的加速度为gC.球A受到的支持力为D.球A的加速度为1 2 g【答案】D【解析】A、隔离对B分析,根据共点力平衡得:水平方向有:0sin45FB T ︒=竖直方向有:0cos45mg B T ︒=,则0B T =,弹簧弹力F mg =,A 错误;B 、轻绳剪断后,00B T =,另两个力不变,此时:a F m 合==,B 错误;C 、轻绳剪断后,0OA T =,沿圆弧切线和沿半径方向处理力,瞬间速度为零,沿半径方向合力为零,有:1N gsin60g 2A A m m =︒=,C 错误;D 、沿切线方向,0gcos601a 2A A m g m ==,D 正确;故选D .4.如图甲所示,一足够长的传送带倾斜放置,倾角为θ,以恒定速率v =4m/s 顺时针转动。
上的张力先增大后减小上的张力先增大后减小1D.的大小不变,而方向与角,物块也恰好做匀速直线运动,物块与桌面间的动摩擦因数为()2由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)3实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对4表示滑块下滑的加速度大小,用表示挡光片前端到达光电门时滑块的瞬时速度大的关系式为.,.(结果保留3位有效数字)56,放在静止于水平地面上的木板的两;木板的质量为,与地面间的动摩擦因数为两滑块开始相向滑动,初速度大小均为.、相遇时,与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小为.求:开始运动时,两者之间的距离.1上的张力先增大后减小上的张力先增大后减小的合力大小方向不变,且与先增后减,始终变大.2D.;由,可知摩擦力为:,代入数据为:联立可得:,故C正确.故选C.相互作用共点力平衡多个力的动态平衡由图可知,小车在桌面上是(填“从右向左”或“从左向右”)运动的;(1)该小组同学根据图的数据判断出小车做匀变速运动,小车运动到图(b)中点位置时的速度大小为,加速度大小为.(结果均保留位有效数字)(2)34实验步骤如下:如图(a)将光电门固定在斜面下端附近;将一挡光片安装在滑块上,记下挡光片前端相对56开始运动时,两者之间的距离.考点时和板共速和板共速后得加速度:再经过,和板共速,(2)牛顿运动定律牛顿运动定律专题滑块问题。
高中物理牛顿运动定律练习题学校:___________姓名:___________班级:___________一、单选题1.关于电流,下列说法中正确的是( )A .电流跟通过截面的电荷量成正比,跟所用时间成反比B .单位时间内通过导体截面的电量越多,导体中的电流越大C .电流是一个矢量,其方向就是正电荷定向移动的方向D .国际单位制中,其单位“安培”是导出单位2.2000年国际乒联将兵乓球由小球改为大球,改变前直径是0.038m ,质量是2.50g ;改变后直径是0.040m ,质量是2.70g 。
对此,下列说法正确的是( )A .球的直径大了,所以惯性大了,球的运动状态更难改变B .球的质量大了,所以惯性大了,球的运动状态更难改变C .球的直径大了,所以惯性大了,球的运动状态更容易改变D .球的质量大了,所以惯性大了,球的运动状态更容易改变3.在物理学的探索和发现过程中常用一些方法来研究物理问题和物理过程,下列说法错误的是( )A .在伽利略研究运动和力的关系时,采用了实验和逻辑推理相结合的研究方法B .在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想化模型法C .在不需要考虑物体本身的大小和形状时用质点来代替物体,运用了理想化模型法D .比值定义包含“比较”的思想,例如,在电场强度的概念建立过程中,比较的是相同的电荷量的试探电荷受静电力的大小4.下列说法中正确的是( )A .物体做自由落体运动时没有惯性B .物体速度小时惯性小,速度大时惯性大C .汽车匀速行驶时没有惯性,刹车或启动时才有惯性D .惯性是物体本身的属性,无论物体处于何种运动状态,都具有惯性5.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为6N 时,物体处于静止状态。
若小车以20.8m /s 的加速度向右加速运动(取210m /s g ),则( )A .物体A 受到的弹簧拉力不变B .物体相对小车向左运动C .物体A 相对小车向右运动D .物体A 受到的摩擦力增大6.下列说法中错误的是( ) A .沿着一条直线且加速度存在且不变的运动,叫做匀变速直线运动B .为了探究弹簧弹性势能的表达式,把拉伸弹簧的过程分为很多小段,拉力在每一小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做微元法C .从牛顿第一定律我们得知,物体都要保持它们原来的匀速直线运动或静止的状态,或者说,它们都具有抵抗运动状态变化的“本领”D .比值定义法是一种定义物理量的方法,即用两个已知物理量的比值表示一个新的物理量,如电容的定义式Q C U=,表示C 与Q 成正比,与U 成反比,这就是比值定义的特点7.一辆货车运载着圆柱形光滑的空油桶。
高中物理牛顿运动定律题20 套( 带答案 ) 及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体 B 和质量为m=0.2kg 的物体 C,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体 C 竖直向下缓慢压下一段距离后释放,物体 C 就上下做简谐运动,且当物体 C 运动到最高点时,物体 B 刚好对地面的压力为 0.已知重力加速度大小为g=10m/s2.试求:①物体 C 做简谐运动的振幅;②当物体 C 运动到最低点时,物体 C 的加速度大小和此时物体 B 对地面的压力大小.【答案】① 0.07m ②35m/s 214N【解析】【详解】①物体 C 放上之后静止时:设弹簧的压缩量为x0.对物体 C,有: mg kx0解得: x0=0.02m设当物体 C 从静止向下压缩x 后释放,物体 C 就以原来的静止位置为平衡位置上下做简谐运动,振幅 A=x当物体 C 运动到最高点时,对物体B,有:Mg k( A x0)解得: A=0.07m②当物体 C 运动到最低点时,设地面对物体 B 的支持力大小为F,物体 C 的加速度大小为a.x0 )mg ma对物体,有: k ( AC解得: a=35m/s 2对物体 B,有:F Mg k( A x0 )解得: F=14N所以物体 B 对地面的压力大小为14N2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。
如图所示,水平传送带匀速运行速度为v=2m/s ,传送带两端AB 间距离为 s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为 m=5kg 的行李箱无初速度地放上传送带 A 端后,传送到 B 端,重力加速度 g 取 10m/ 2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从 A 端传送到 B 端所用时间t ;(3)整个过程行李对传送带的摩擦力做功W。
物理牛顿运动定律专项及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。
已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。
求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。
【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示.在距水平地面高h=0.80m的水平桌面一端的边缘放置一个质量m=0.80kg的木块B,桌面的另一端有一块质量M=1.0kg的木块A以初速度v0=4.0m/s开始向着木块B滑动,经过时间t=0.80s与B发生碰撞,碰后两木块都落到地面上,木块B离开桌面后落到地面上的D点.设两木块均可以看作质点,它们的碰撞时间极短,且已知D点距桌面边缘的水平距离s =0.60m ,木块A 与桌面间的动摩擦因数μ=0.25,重力加速度取g =10m/s 2.求:(1)木块B 离开桌面时的速度大小; (2)两木块碰撞前瞬间,木块A 的速度大小; (3)两木块碰撞后瞬间,木块A 的速度大小. 【答案】(1) 1.5m/s (2) 2.0m/s (3) 0.80m/s 【解析】 【详解】(1)木块离开桌面后均做平抛运动,设木块B 离开桌面时的速度大小为2v ,在空中飞行的时间为t ′.根据平抛运动规律有:212h gt =,2s v t '= 解得:2 1.5m/s 2gv sh== (2)木块A 在桌面上受到滑动摩擦力作用做匀减速运动,根据牛顿第二定律,木块A 的加速度:22.5m/s Mga Mμ==设两木块碰撞前A 的速度大小为v ,根据运动学公式,得0 2.0m/s v v at =-=(3)设两木块碰撞后木块A 的速度大小为1v ,根据动量守恒定律有:2Mv Mv mv =+1解得:210.80m/s Mv mv v M-==.3.某研究性学习小组利用图a 所示的实验装置探究物块在恒力F 作用下加速度与斜面倾角的关系。
已知木板OA 可绕轴O 在竖直平面内转动,板足够长,板面摩擦可忽略不计。
某次实验中,质量m =0.1kg 的物块在平行于板面向上、F =0.6N 的恒力作用下,得到加速度a 与斜面倾角的关系图线,如图b 所示,已知图中a 0为图线与纵轴交点,θ1为图线与横轴交点。
(重力加速度g 取10m /s 2)求:(1)a0多大?倾角θ1多大?(2)当倾角θ为30°时,物块在力F作用下由O点从静止开始运动,2s后撤去,求物块沿斜面运动的最大距离?【答案】(1)6m/s2, 37°;(2)2.4m。
【解析】【详解】(1)由图象可知,θ=0°,木板水平放置,此时物块的加速度为a0由牛顿第二定律:F合=F=ma0解得a0=6m/s2由图象可知木板倾角为θ1 时,物块的加速度a=0即:F=mg sinθ1解得θ1=37°(2)当木板倾角为θ=30o时,对物块由牛顿第二定律得:F-mg sinθ=ma1解得a1=1m/s2设木块2s末速度为v1,由v1=a1t得v1=2m/s2s内物块位移s1=12a1t2=2m撤去F后,物块沿斜面向上做匀减速运动。
设加速度为a2 ,对物块由牛顿第二定律得:mg sinθ=ma2a2=g sin30°=5m/s2撤去F后,物块继续向上运动的位移为21220.4m2vsa==则物块沿斜面运动的最大距离s=s1+s2=2.4m4.如图甲所示,质量为m=2kg的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F,t1=0.5s时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ(2)拉力F的大小(3)物体沿斜面向上滑行的最大距离s.【答案】(1)μ=0.5 (2)F=15N (3)s=7.5m【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1 代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.质量9kg M =、长1m L =的木板在动摩擦因数10.1μ=的水平地面上向右滑行,当速度02m/s v =时,在木板的右端轻放一质量1kg m =的小物块如图所示.当小物块刚好滑到木板左端时,物块和木板达到共同速度.取210m/s g =,求:(1)从木块放到木板上到它们达到相同速度所用的时间t ; (2)小物块与木板间的动摩擦因数2μ. 【答案】(1)1s (2)0.08 【解析】 【分析】 【详解】(1)设木板在时间t 内的位移为x 1;铁块的加速度大小为a 2,时间t 内的位移为x 2 则有210112x v t a t =-22212x a t =12x L x =+又012v a t a t -=代入数据得t =1s(2)根据牛顿第二定律,有121()M m g mg Ma μμ++=22mg ma μ=解得20.08μ=6.如图所示,斜面体ABC 放在粗糙的水平地面上,滑块在斜面地端以初速度0υ,沿斜面上滑。
斜面倾角037θ=,滑块与斜面的动摩擦因数μ。
整个过程斜面体保持静止不动,已知小滑块的质量m=1kg ,sin37°=0.6,cos37°=0.8,g 取10 m /s 2。
试求:(1)若0.8μ=,012.4/m s υ=,求滑块从C 点开始在2s 内的位移。
(2)若0.45μ=,09.6/m s υ=,求滑块回到出发点时的速度大小。
【答案】(1) 6.2x m = (2) 4.8 /v m s = 【解析】 【详解】(1)若0.8μ=,滑块上滑过程中,由牛顿第二定律有:0 mgsin mgcos ma θμθ+= , 解得滑块上滑过程的加速度大小2012.4 /,a m s =上滑时间0001 v t s a ==, 上滑位移为2002.162x m a t == (2)若0.45μ=,滑块沿斜面上滑过程,由牛顿第二定律:1 mgsin mgcos ma θμθ+= , 解得219.6 /a m s =设滑块上滑位移大小为L ,则由2012v a L = ,解得 4.8 L m =滑块沿斜面下滑过程,由牛顿第二定律:2 mgsin mgcos ma θμθ-= ,解得22 2.4 /a m s =根据222v a L = ,解得滑块回到出发点处的速度大小为 4.8 /v m s =7.一物块以一定的初速度沿斜面向上滑动,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化的关系如图所示.求: (1)斜面的倾角θ(2)物块与斜面间的动摩擦因μ.【答案】(1)030θ=;(2)3μ 【解析】 【分析】对上滑过程和下滑过程分别运用牛顿第二定律求出斜面的倾角和动摩擦因数。
【详解】物块上滑时做匀减速直线运动,对应于速度图象中0-0.5s 时间段,该段图象的斜率的绝对值就是加速度的大小,即:221480.5m m a ss == 物块下滑时做匀加速直线运动,对应于速度图象中0.5-1.5s 时间段,同理可得:222221m m a ss == 上滑时,根据牛顿第二定律得:m gsinθ+μmgcosθ=ma 1, 下滑时,根据牛顿第二定律得:mgsinθ-μmgcosθ=ma 2, 联立解得:3μ=θ=30°。
【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,知道图线的斜率表示加速度是解题的关键。
8.素有“陆地冲浪”之称的滑板运动已深受广大青少年喜爱。
如图所示是由足够长的斜直轨道,半径R 1=2m 的凹形圆弧轨道和半径R 2=3.6m 的凸形圆弧轨道三部分组成的模拟滑板组合轨道,这三部分轨道依次平滑连接,且处于同一竖直平面内.其中M 点为凹形圆弧轨道的最低点,N 点为凸形圆弧轨道的最高点,凸形圆弧轨道的圆心O 与M 点在同一水平面上,一可视为质点、质量为m =1kg 的滑板从斜直轨道上的P 点无初速度滑下,经M 点滑向N 点,P 点距水平面的高度h =3.2m ,不计一切阻力,g 取10m/s 2.求:(1)滑板滑至M点时的速度大小;(2)滑板滑至M点时,轨道对滑板的支持力大小;(3)若滑板滑至N点时对轨道恰好无压力,求滑板的下滑点P距水平面的高度.【答案】(1)8 m/s (2)42 N (3)5.4 m【解析】试题分析:(1)对滑板由P点滑至M点,由机械能守恒得mgh=mv(2分)所以v M=8 m/s. (1分)(2)对滑板滑至M点时受力分析,由牛顿第二定律得F N-mg=m(2分)所以F N=42 N. (1分)(3)滑板滑至N点时对轨道恰好无压力,则有mg=m(2分)得v N=6 m/s (1分)滑板从P点到N点机械能守恒,则有mgh′=mgR2+mv(3分)解得h′=5.4 m. (2分)考点:机械能守恒定律【名师点睛】本题考查的是牛顿第二定律和机械能守恒结合的问题。
滑板由P点滑至M 点,只有重力做功,机械能守恒。
然后分别对M和N两点进行受力分析,运用牛顿第二定律。