子环的充分必要条件是,S关于R的减法与乘法封闭, 即任给 , 有a.b~s,有a-b~S,ab~S
§2.2 子环
• 定理2 设R是一个环,S是R的非空子集, 则S为R的
证明
证明
例3
§2.2 子环
由S关于R的减法封闭, 从而(S,+)是(R,+)的子环. 进一 步由定理条件知, 满足定理1的两个条件, 所以 为 的子环. 于是, 充分性得证, 而必要性是显然的.
近世代数
第二章 群、环、域
基本概念
在普通代数里,我们计算的对象是数, 计算的方法是加、减、乘、除,数学渐渐 进步,我们发现,可以对于若干不是数的 事物,用类似普通计算的方法来加以计算。 这种例子我们在高等代数里已经看到很多, 例如对于向量、矩阵、线性变换等就可 以进行运算。近世代数(或抽象代数)的 主要内容就是研究所谓代数系统,即带有 运算的集合。
定理8
设R是有单位元的交换环, 则R的每个极大理想都是素理想. • 证明 设I为R的极大理想. 设ab~I,a~]I. 令N=(a)+I,则N为R的理想,且 I(a),但I=!(a)+I. 因为I为R的极大理想, 所以N=R. 从而1R~I, 故存在 t~R,c~I,使得1R=at+c,所以,b=b*1R=abt+bc~I.这就证明了I为R的素 理想.
例7
试求Z的所有理想为dZ,d~Z且d>=0
§2.3 理想
定义3
设R为环,I1,I2为R的理想. 集合 I1+I2={a1+a2|a1~I1,a2~I2},I1#I2={a|a~I1,a~I2}分别称为理想 I1,I2的和与交. 定理3 环R的两个理想I1与I2的和I1+I2与交I1#I2都是R的理想. 类似地, 可以定义环R的任意有限多个理想的和与任意多个理想的交的 概念, 并且可以证明: 定理4 环R的任意有限多个理想的和还是理想.环R的任意多个理想的交 还是理想.