数值分析重点公式
- 格式:pdf
- 大小:147.97 KB
- 文档页数:7
数值分析学习公式总结数值分析是数学的一个分支,研究如何利用计算机求解数学问题。
数值分析学习过程中会遇到许多公式,下面对其中一些重要的公式进行总结。
1.插值公式:-拉格朗日插值公式:设已知函数 f 在 [a,b] 上的 n+1 个节点,节点分别为x0,x1,...,xn,且在这些节点上 f(x0),f(x1),...,f(xn) 均已知。
则对于任意x∈[a,b],可使用拉格朗日插值公式来估计f(x),公式如下:-牛顿插值公式:牛顿插值公式是通过差商的方法来构造插值多项式的公式。
设已知函数 f 在 [a,b] 上的 n+1 个节点,节点分别为 x0,x1,...,xn,且在这些节点上 f(x0),f(x1),...,f(xn) 均已知。
则对于任意x∈[a,b],可使用牛顿插值公式来估计f(x),公式如下:2.数值积分公式:-矩形公式:矩形公式是用矩形面积来估计曲线下的面积,主要有左矩形公式、右矩形公式和中矩形公式。
以左矩形公式为例,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间左端点的函数值作为矩形的高,子区间长度作为矩形的宽,则曲线下的面积可以近似为各个矩形面积的和,公式如下:-梯形公式:梯形公式是用梯形面积来估计曲线下的面积,主要有梯形公式和复合梯形公式。
以梯形公式为例,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间两个端点对应的函数值作为梯形的底边的两个边长,子区间长度作为梯形的高,则曲线下的面积可以近似为各个梯形面积的和,公式如下:-辛普森公式:辛普森公式是用抛物线面积来估计曲线下的面积,对应区间[a,b],将[a,b]分割成n个等长子区间,取每个子区间三个端点对应的函数值作为抛物线的三个顶点,则曲线下的面积可以近似为各个抛物线面积的和,公式如下:3.线性方程组求解公式:- Cramer法则:Cramer法则适用于 n 个线性方程、n 个未知数的线性方程组。
数值分析期末复习资料数值分析期末复习题型:一、填空 二、判断 三、解答(计算) 四、证明第一章误差与有效数字一、有效数字1、定义:若近似值X*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n 位,就说x*有n 位有效数字。
2、两点理解:(1) 四舍五入的一定是有效数字(2) 绝对误差不会超过末位数字的半个单位eg. ・§丄% 3、 定理1 (P6):若x*具有n 位有效数字,则其相对误差虧疗茲T 4、考点:(1)计算有效数字位数:一个根据定义理解,一个根据定理1 (P7例题3) 二、避免误差危害原则 1、原则:(1) 避免大数吃小数(方法:从小到大相加;利用韦达定理:xl*x2= c / a ) 避免相近数相减(方法:有理化)eg. V777-77 =c ・2 X2sin7 或 减少运算次数(方法:秦九韶算法)eg.P20习题14 三. 数值运算的误差估计 1、公式:(1) 一元函数:I £*( f 3))1 Q |「(於)1・| £*(力|或其变形公式求相对误差(两边同时除以f (卅))eg. P19习题1、2、5(2) (3) ln(x + £)- In x = In 1;1 — cos X =(2)多元函数(P8) eg. P8例4, P19习题4第二章插值法一、插值条件1、定义:在区间[a, b]上,给定n+1个点,aWxoVx[V・・・VxWb的函数值yi=f(xi),求次数不超过n的多项式P(x),饋兀)=儿 i =0,1,2,…,力2、定理:满足插值条件、n+1个点、点互异、多项式次数Wn的P(x)存在且唯一二、拉格朗日插值及其余项1、n次插值基函数表达式(P26 (2.8))2、插值多项式表达式(P26 (2.9))3、插值余项(P26 (2.12)):用于误差估计4、插值基函数性质(P27 (2. 17及2. 18)) eg. P28例1三、差商(均差)及牛顿插值多项式1、差商性质(P30):(1)可表示为函数值的线性组合(2)差商的对称性:差商与节点的排列次序无关(3)均差与导数的关系(P31 (3.5))2、均差表计算及牛顿插值多项式例:已知X=1,4,9的平方根为1,2,3,利用牛顿基本差商公式求"的近似值。
数值分析常用公式及示例数值分析是用数值方法研究数学问题的一种方法。
在数值分析中,我们经常会用到一些常用的公式和方法,下面是一些常用的公式和示例。
1.插值公式:插值是用已知数据点来估计未知数据点的一种方法。
常用的插值公式有拉格朗日插值、牛顿插值和埃尔米特插值等。
拉格朗日插值公式:对于给定的n+1个数据点(x0, y0), (x1,y1), ..., (xn, yn),拉格朗日插值公式为P(x) = y0·l0(x) + y1·l1(x) + ... + yn·ln(x)其中li(x) = Π(j≠ i)((x - xj) / (xi - xj))。
2.数值积分公式:数值积分是用数值方法计算函数积分的一种方法。
常用的数值积分公式有梯形公式、辛普森公式和高斯公式等。
梯形公式:对于一个区间[a,b]上的函数f(x),梯形公式的积分近似值为∫(a, b) f(x)dx ≈ (b - a) / 2 · (f(a) + f(b))。
辛普森公式:对于一个区间[a,b]上的函数f(x),辛普森公式的积分近似值为∫(a, b) f(x)dx ≈ (b - a) / 6 · (f(a) + 4f((a + b) / 2) + f(b))。
3.数值解方程公式:数值解方程是通过数值计算方法找到方程的根的一种方法。
常用的数值解方程公式有二分法和牛顿法等。
二分法:对于一个在区间[a,b]上连续的函数f(x),如果f(a)·f(b)<0,则函数在该区间内存在一个根。
二分法的基本思想是将区间不断二分,直到找到根。
具体步骤为:1)如果f(a)·f(b)>0,则输出“区间[f(a),f(b)]上不存在根”;2)否则,计算c=(a+b)/2;3)如果f(c)≈0,则输出c为方程的一个根;4)否则,如果f(a)·f(c)<0,则更新b=c,并返回第2步进行下一次迭代;5)否则,更新a=c,并返回第2步进行下一次迭代。
数值分析重点公式下面是一些数值分析中的重点公式:1.最大值和最小值:- 最大值:记作 max(a, b) 表示 a 和 b 中较大的值。
- 最小值:记作 min(a, b) 表示 a 和 b 中较小的值。
2.线性插值:-线性插值:对于给定的两个点(x1,y1)和(x2,y2),如果希望在这两个点之间的x值为x的位置计算对应的y值,可以使用线性插值:y=y1+(y2-y1)*((x-x1)/(x2-x1))。
3.数值微分:-前向差商:用f'(x)≈(f(x+h)-f(x))/h的形式近似表示函数f(x)在点x处的导数,其中h是一个小的正数。
-后向差商:用f'(x)≈(f(x)-f(x-h))/h的形式近似表示函数f(x)在点x处的导数。
-中心差商:用f'(x)≈(f(x+h)-f(x-h))/(2*h)的形式近似表示函数f(x)在点x处的导数。
4.数值积分:-矩形法则:使用函数在每个小矩形中的平均值作为矩形高度来计算定积分的近似值。
-梯形法则:使用底边为区间长度的梯形面积的一半来计算定积分的近似值。
-辛普森法则:使用函数在每个小区间上的平均值和两个端点值的加权平均来计算定积分的近似值。
5.数值解线性方程组:-高斯消元法:将线性方程组转化为上三角矩阵,然后通过回代求解各个未知数。
-LU分解:将线性方程组的系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,再通过回代求解各个未知数。
-追赶法(托马斯算法):适用于解三对角系数矩阵的线性方程组,通过追赶的方式求解。
6.数值解非线性方程:-二分法:通过计算函数在区间端点的值的符号来确定函数在区间内的根的存在,并迭代缩小区间直至满足精度要求。
-牛顿法:通过迭代逼近函数的根,在每一步迭代中使用切线来逼近根的位置。
-弦截法:通过迭代逼近函数的根,在每一步迭代中使用割线来逼近根的位置。
7.数值解常微分方程:-欧拉方法:使用函数在当前点的导数值来估计下一个点的函数值。
第一章非线性方程和方程组的数值解法i 12)迭代法收敛阶:lim 一p c 0,若p 1则要求0 c 1i3) 单点迭代收敛定理:定理一:若当x a,b 时,(x) a,b 且 '(x) l 1, x a,b ,则迭代格式收敛于唯一的根;定理二:设 (x)满足:①xa,b 时, (x) a,b ,0, j 1,L ,P 1, (P)( )0( Taylor 展开证明)4) --------------------------------------------------- Newton 迭代法:x 1 x,平方收敛f (x)5) Newton 迭代法收敛定理:设f (x)在有根区间 a,b 上有二阶导数,且满足:①: f (a)f(b) 0 ;②: 1f (x)0,x a,b ;③:f 不变号,x a,b④:初值 x 0 a,b 使得 f (x) f (x)0 ;则Newt on 迭代法收敛于根。
1) 二分法的基本原理,误差:2k② x ,,x 2a,b ,有(xj(x 2) lx , x 2 ,0 l 1则对任意初值x 0 a,b 迭代收敛,且:1 —X i 1 x 1 l l i---- X 1 X o 1 l定理三:设(x)在 的邻域内具有连续的一阶导数, 敛性;且'()1,则迭代格式具有局部收定理四:假设 (x)在根的邻域内充分可导,则迭代格式x 1(xj 是P 阶收敛的(j)()6)多点迭代法:X j 1 X jf (X i)f(x) f(X j 1)X i x 1f (X j) f(X i 1)X i X jf (X i) f (X j 1) f(X 1) f(X)收敛阶:P 1 527)Newt on迭代法求重根(收敛仍为线性收敛),对Newt on法进行修改①:已知根的重数r,X i X「鵲(平方收敛)②:未知根的重数:X i 1叫u(X)u (X i)f (X)帀,为f (X)的重根,则为U(X)的单根。
第一章1霍纳(Horner )方法: n a 1-n a 2-n a ……2a 1a 0a输入=c+ n b *c c b n *1- c b *3 c b *2 c b *1n b 1-n b 2-n b 2b 1b 0bAnswer P (x )=0b该方法用于解决多项式求值问题P (x )=n a n x +1-n a 1-n x +2-n a 2-n x +……+2a 2x +1a x +0a2 注:p ˆ为近似值绝对误差:|ˆ|pp E p -=相对误差:|||ˆ|p pp R p -=有效数字:210|||ˆ|1d p p pp R -<-= (d 为有效数字,为满足条件的最大整数) 3 Big Oh(精度的计算): O(h ⁿ)+O(h ⁿ)=O(h ⁿ);O(h m )+O(h n )=O(h r ) [r=min{p,q}]; O(h p )O(h q )=O(h s ) [s=q+p]; 第二章2.1 求解x=g(x)的迭代法 用迭代规则,可得到序列值{}。
设函数g 。
如果对于所有x ,映射y=g(x)的范围满足y , 则函数g 在内有一个不动点; 此外,设定义在内,且对于所有x ,存在正常数K<1,使得,则函数g 在内有唯一的不动点P 。
定理2.3 设有(i )g ,g ’,(ii )K 是一个正常数,(iii )。
如果对于所有如果对于所有x 在这种情况下,P 成为排斥不动点,而且迭代显示出局部发散性。
. 波尔查诺二分法(二分法定理)<收敛速度较慢>试值(位)法:<条件与二分法一样但改为寻求过点(a,f(a))和(b,f(b))的割线L 与x 轴的交点(c,0)>应注意越来越小,但可能不趋近于0,所以二分法的终止判别条件不适合于试值法.牛顿—拉夫森迭代函数:)(')()(1111-----==k k k k k p f p f p p g p 其中k=1,2,……证明:用泰勒多项式证明第三章线性方程组的解法 对于给定的解线性方程组Ax=b一Gauss Elimination (高斯消元法 )第一步Forward Elimination 第二步 BackSubstitution二LU Factorization第一步 A = LU 原方程变为LUx=y ;第二步 令Ux=y,则Ly = b 由下三角解出y ; 第三步 Ux=y,又上三角解出x ;三Iterative Methods (迭代法)2n n 22221211n n 1212111b x a x a x a b x a x a x a =+++=+++nn nn 22n 11n 2n n 22221211n n 1212111b x a x a x a b x a x a x a b x a x a x a =+++=+++=+++初始值四 Jacobi Method1.选择初始值2.迭代方程为五Gauss Seidel Method1.迭代方程为00201,,,n x x x 00201,,,n x x x nnk n nn k n k n n k n k nn k k kn n k k a x a x a x a bx a x a x a bx a x a x a b x )()()(1122111222121212111212111--++++++-=++-=++-=k k k kn n k k kn n k k a x a x a bx a x a x a bx )()(1112221121212111212111++++++++-=++-=2.选择初始值 判断是否能用Jacobi Method 或者GaussSeidel Method 的充分条件(绝对对角占优原则)第四章 插值与多项式逼近·第一节 泰勒级数和函数计算一些常用函数的泰勒级数展开:for all x for all x for all x -1 -1for00201,,,nx x x定理4.1(泰勒多项式逼近)设,而是固定值。
第1章数值分析中的误差一、重点内容误差设精确值x* 的近似值x,差e=x-x* 称为近似值x 的误差(绝对误差)。
误差限近似值x 的误差限 是误差e 的一个上界,即|e|=|x-x*|≤ε。
相对误差e r是误差e 与精确值x* 的比值,。
常用计算。
相对误差限是相对误差的最大限度,,常用计算相对误差限。
绝对误差的运算:ε(x1±x2)=ε(x1)+ε(x2)ε(x1x2)≈|x1|ε(x2)+|x2|ε(x1)有效数字如果近似值x 的误差限ε 是它某一个数位的半个单位,我们就说x 准确到该位。
从这一位起到前面第一个非0 数字为止的所有数字称为x 的有效数字。
关于有效数字:(1) 设精确值x* 的近似值x,x=±0.a1a2…a n×10ma1,a2,…,a n是0~9 之中的自然数,且a1≠0,|x-x*|≤ε=0.5×10m-l,1≤l≤n则x 有l位有效数字.(2) 设近似值x=±0.a1a2…a n×10m有n 位有效数字,则其相对误差限(3) 设近似值x=±0.a1a2…a n×10m的相对误差限不大于则它至少有n 位有效数字。
(4) 要求精确到10-3,取该数的近似值应保留4 位小数。
一个近似值的相对误差是与准确数字有关系的,准确数字是从一个数的第一位有效数字一直数到它的绝对误差的第一位有效数字的前一位,例如具有绝对误差e=0.0926 的数x=20.7426 只有三位准确数字2,0,7。
一般粗略地说,具有一位准确数字,相对于其相对误差为10% 的量级;有二位准确数字,相对于其相对误差为1% 的量级;有三位准确数字,相对于其相对误差为0.1% 的量级。
二、实例例1 设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的误差是0.001526…,有|x-x*|=0.001526…≤0.5×101-3即l=3,故x=3.14 有 3 位有效数字。
数值分析学习公式总结数值分析是以计算机为工具,对数学问题进行数值计算和近似方法的研究。
在数值分析中,有许多重要的数学公式和算法被广泛应用。
下面是一些数值分析中常用的公式和算法的总结。
1.插值公式:-拉格朗日插值公式:假设有给定的n个点(x_0,y_0),(x_1,y_1),...,(x_n,y_n),则对于任意一个x,可以通过拉格朗日插值公式计算出相应的y值。
-牛顿插值公式:利用差商构造的插值公式,对给定n个点进行插值,得到一个多项式函数。
2.数值积分公式:-矩形法:将区间分割成若干小矩形,计算每个矩形的面积然后求和。
-梯形法:将区间分割成若干个梯形,计算每个梯形的面积然后求和。
-辛普森法则:将区间分割成若干个小区间,通过对每个小区间应用辛普森公式计算出近似的定积分值。
3.数值微分公式:-前向差分公式:利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。
-后向差分公式:类似于前向差分公式,但是利用函数在特定点的导数与函数在该点附近的值之间的关系,通过近似计算导数的值。
-中心差分公式:利用函数在特定点的导数与函数在该点两侧的值之间的差异,通过近似计算导数的值。
4.数值解线性方程组方法:-直接法:高斯消元法,LU分解法等。
-迭代法:雅可比迭代法,高斯-赛德尔迭代法等。
5.最小二乘拟合法:-线性最小二乘拟合:通过线性回归的方法,寻找最佳的拟合直线。
-非线性最小二乘拟合:通过非线性回归的方法,寻找最佳的非线性拟合曲线。
6.数值求解常微分方程方法:-欧拉法:将微分方程离散化,通过迭代计算得到近似解。
-改进欧拉法:利用欧拉法的计算结果进行修正,提高近似解的精度。
- 二阶龙格-库塔法:利用四阶Runge-Kutta法的计算结果进行修正,提高近似解的精度。
7.插值法的误差估计:-真实误差:插值函数与原函数之间的差异。
-误差界:对于给定的插值公式,通过计算条件和边界限制,得到误差的上限。
8.特殊函数的数值计算:-常用特殊函数的近似计算方法,如阶乘函数,指数函数,对数函数等。
数学分析公式总结数学分析是数学中的一门重要课程,它主要研究函数的性质和运算法则,以及极限、导数和积分等概念及其应用。
在学习数学分析时,我们经常会遇到各种各样的公式。
下面是对其中一些重要的数学分析公式进行总结。
一、极限公式1.常值函数的极限公式:\(\lim_{x\to a} c = c\)2.幂函数的极限公式:\(\lim_{x\to a} x^{m} = a^{m}\) (其中m为整数)3.正弦函数和余弦函数的极限公式:\(\lim_{x\to 0} \dfrac{\sin x}{x} = 1\)\(\lim_{x\to 0} \dfrac{1-\cos x}{x} = 0\)4.自然对数函数的极限公式:\(\lim_{x\to 0} \dfrac{e^{x}-1}{x} = 1\)5.无穷小替换公式:当\(x\to a\)时,若\(\lim_{x\to a} f(x) = 0\),\(\lim_{x\to a} g(x) = 0\),且\(\lim_{x\to a} \dfrac{f(x)}{g(x)}\)存在,则:\(\lim_{x\to a} \dfrac{f(x)}{g(x)} = \lim_{x\to a}\dfrac{f'(x)}{g'(x)}\)二、导数公式1.基本导数公式:\((c)'=0\)(其中c为常数)\((x^{n})' = nx^{n-1}\) (其中n为整数)\((\sin x)' = \cos x\)\((\cos x)' = -\sin x\)\((e^{x})'=e^{x}\)2.乘积法则:\((f(x)g(x))'=f'(x)g(x)+f(x)g'(x)\)3.商法则:\((\dfrac{f(x)}{g(x)})' = \dfrac{f'(x)g(x) -f(x)g'(x)}{(g(x))^2}\)4.链式法则:若y=f(u)和u=g(x)都可导,则\(y'(x)=f'(u)g'(x)\)三、积分公式1.基本积分公式:\(\int cdx = cx + C\) (其中c为常数,C为常数)\(\int x^{n}dx = \dfrac{x^{n+1}}{n+1} + C\) (其中n不等于-1)\(\int \sin xdx = -\cos x + C\)\(\int \cos xdx = \sin x + C\)\(\int e^{x}dx = e^{x} + C\)2.基本换元公式:\(\int f(g(x))g'(x)dx = \int f(u)du\) (其中u = g(x))四、泰勒展开公式泰勒展开公式是一种将一个函数在其中一点附近用多项式逼近的方法。
第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。
例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。
科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。
由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|< 为止,此时取x *≈(x k +x k -1)/2作为近似根。
第一章非线性方程和方程组的数值解法I B j J L2) 迭代法收敛阶:lim 匚4 =c^0,若p=1则要求Occ<1F 闾。
3) 单点迭代收敛定理:定理一:若当x 乏[a,b ]时,④(X )E [a,b ]且®'(x)兰I cl, P [a,b ],则迭代格式收敛 于唯一的根;定理二:设 (x)满足:①x :」a,b 1时,:(x) := a,b I ②亦,x 2 亡 ta,b 1 有 ®(x L ) -申(x 2)| 兰I 为—x 2 ,0 <1 c l 则对任意初值x^a,b i 迭代收敛,且:« —xX j 卅一x1 -I I j僅 一 x 兰X i — Xo1 -I定理三:设(x)在〉的邻域内具有连续的一阶导数, 且「'(:•):::1,则迭代格式具有局部收 敛性;定理四:假设 (x)在根〉的邻域内充分可导,则迭代格式x;:(x j )是P 阶收敛的=0,j =1,|l(, P-1,心(:)=0( Taylor 展开证明)f (x),4) Newton 迭代法:x+=x - —-,平方收敛f (x)5) Newton 迭代法收敛定理:设f (x)在有根区间La, b 1上有二阶导数,且满足:①: f (a)f(b) ::0 ; ②: f (x) = 0,x b,b 1 ;③: f 不变号,x •〔a,b 11)二分法的基本原理,误差:b -a④:初值x0•〔a,b 】使得f (x) f (x) ::: 0 ;则Newt on迭代法收敛于根〉。
f i-X26)多点迭代法: f (X i )f (X i ) f(X i 」)X j 1 — XjX 1X jf(X i ) — f(X i 」) f(X i ) — f(X i1) — f(X 1)—f(x)Xi —X 」收敛阶: PJ '5 2 7) Newton 迭代法求重根(收敛仍为线性收敛) ,对Newt on 法进行修改①:已知根的重数「,x 卄“老(平方收敛) ②:未知根的重数: X i 1 二 X - '( ),u(x),(),:•为 f (x)的重根,则〉为 u(x)的单u (X i ) f (X)根。
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
数值分析公式大全数值分析(Numerical Analysis)是数学的一个分支,主要研究数学问题的计算方法和数值计算的理论基础。
数值分析具有广泛的应用领域,包括物理学、工程学、经济学、计算机科学等。
在数值分析中,有许多重要的公式和方法,下面是一些常用的数值分析公式:1.插值公式插值公式是通过已知函数在给定数据点上的取值来求出未知函数在其他数据点上的近似值的方法。
常见的插值公式包括拉格朗日插值、牛顿插值、埃尔米特插值等。
2.数值微积分公式数值微积分公式主要用于计算函数的导数和积分的近似值。
常见的数值微积分公式包括梯形公式、辛普森公式、龙贝格公式等。
3.线性方程组解法线性方程组解法是求解形如Ax=b的线性方程组的方法,其中A是一个已知的矩阵,b是一个已知的向量。
常见的线性方程组解法包括高斯消元法、LU分解法、迭代法等。
4.非线性方程求根非线性方程求根是求解形如f(x)=0的非线性方程的方法,其中f(x)是一个已知的函数。
常见的非线性方程求根方法包括二分法、牛顿迭代法、割线法等。
5.数值积分公式数值积分公式主要用于计算函数在给定区间上的积分近似值。
常见的数值积分公式包括梯形公式、辛普森公式、高斯积分公式等。
6.数值微分公式数值微分公式用于计算函数的导数的近似值。
常见的数值微分公式包括中心差分公式、前向差分公式、后向差分公式等。
7.数值优化方法数值优化方法主要用于求解最优化问题,即求解函数的最大值或最小值。
常见的数值优化方法包括牛顿法、梯度下降法、拟牛顿法等。
8.常微分方程数值解法常微分方程数值解法用于求解形如dy/dx=f(x,y)的常微分方程的数值解。
常见的常微分方程数值解法包括欧拉方法、龙格-库塔方法等。
9.偏微分方程数值解法偏微分方程数值解法用于求解形如u_t=f(u,x,y)+Φ(u,x,y)的偏微分方程的数值解。
常见的偏微分方程数值解法包括有限差分法、有限元法等。
上述公式和方法只是数值分析中的一部分,不同问题需要选择适合的公式和方法进行求解。
第一章误差限计算:第二章一多項式函數f(x),在 x = a 的泰勒展開式是:拉格朗日插值基函数:*).(|*)(|*))(( *)(x x f x f x f εε'≈的误差限得).(*)( ),,(,,,,,),,(*1***11**11k nk kn n n n x x f f x x f x x x x x x f εε∑=⎪⎪⎭⎫ ⎝⎛∂∂≈的误差限同理得的近似值为准确值,多元函数 ∏∏∏≠=≠=≠=--=--=nkj j jk j nkj j j knk j j jk x x x x x xxx x l 000)()()(∑==nk kky x lx P 0)()(.||)(||)(||)/( ),(||)(||)( ),()()( 2*2*1*2*2*1*2*1*1*2*2*1*2*1*2*1*2*1x x x x x x x x x x x x x x x x x εεεεεεεεε+≈+≈+=±牛顿插值其中an 为第n 阶差商,0阶差商即为f(x0). 余项 差商表差商导数求法牛顿前插公式(等距点适用)差分表)())(())(()()(110102010----++--+-+=n n n x x x x x x a x x x x a x x a a x N []0101(),,,()()()n n n R x f x x x x x x x x x x =---第三章最小二乘法拟合:直线拟合求a0和a1 多项式拟合⎪⎪⎩⎪⎪⎨⎧=+=+∑∑∑∑∑=====mi ii mi m i i i mi i m i i y x x a x a y x a m a 1110211110xa a x y 10)(+=0121011201ni n i i n i i n i i i n n n n i i n i i i a m a x a x y a x a x a x x y a x a x a x x y++⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩∑∑∑∑∑∑∑∑∑∑∑第四章辛普森求积公式插值求积公式 (拉格朗日插值)插值求积公式余项复合梯形公式复合辛普森公式∑⎰=≈nk k kbax f Adx x f 0)()(⎰=bak k dxx l A )()()()()(0k k nkj j jk j k x x x x x x x x x l ωω'-=--=∏≠=[]⎰⎰+=-=+ban ba dxx n fdxx P x f f R )()!1()()()()()1(ωξ[]b a ,∈ξ⎥⎦⎤⎢⎣⎡++=∑-=)()(2)(211b f x f a f h T n k k n 121101()4()2()()6n n n k k k k h S f a f x f x f b --+==⎡⎤=+++⎢⎥⎣⎦∑∑高斯点及系数表将求积区间[a,b]变换到[-1,1]上数值求导两点公式数值求导三点公式22batabx++-=[]),(2)()(1)(1ξfhxfxfhxf''--='[]).(2)()(1)(11ξfhxfxfhxf''+-='),(3)]()(4)(3[21)(221ξfhxfxfxfhxf'''+-+-='),(6)]()([21)(221ξfhxfxfhxf'''-+-=').(3)](3)(4)([21)(2212ξfhxfxfxfhxf'''++-='第五章杜利特尔分解L y=b 求解 y U x=y 求解 x追赶法L y=b 求解 y U x=y 求解 x范数:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn nn n n u u u u u u U l l l L222112112121,111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----11112122111122211n n nn nn n n u u u l a l al b a c b a c b a c b⎪⎩⎪⎨⎧-=-===+++1,,2,1/11111n i ua b l l c u b l i i i i ii i()111112m ax 8)m ax (m ax ((2()0ij nniji nj nijj ni TTTn A a Aa A A a A AA A A A A f E A A λλλ∞≤≤=≤≤=====-=-=∑∑矩阵范数计算公式定理对阶方阵(称为的行范数)称为的列范数)称为的范数)其中表示的最大特征值即常用的条件数第六章雅可比迭代高斯-塞德尔迭代(i=1,2,…,n k=0,1,2,…)收敛性)det(G I -λ求最大特征值)(G ρ,若>1,发散,若>1,收敛。
数值分析重点公式数值分析是数学和计算机科学的交叉学科,研究如何在实际问题中获取精确或近似数值解的方法。
在数值分析中,有许多重要的公式和方法用于解决各种数学和科学问题。
下面是一些数值分析中的重点公式:1.泰勒展开公式:泰勒展开公式可以将一个函数表示为无限级数。
对于一个无穷可微的函数f(x),其泰勒展开可以表示为:f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...2. 拉格朗日插值公式:拉格朗日插值公式是一种用于通过已知数据点构造一个多项式函数的方法。
对于n个已知点(xi, yi),拉格朗日插值多项式可以表示为:L(x) = Σ yi * l(i)(x)其中l(i)(x)是拉格朗日基函数,定义为:l(i)(x) = Π (x-xj)/(xi-xj) for j ≠ i3.数值微分公式:数值微分公式用于计算函数的导数。
常用的数值微分公式包括前向差分、后向差分和中心差分。
前向差分公式如下:fd'(x) = (f(x+h) - f(x))/h后向差分公式如下:bd'(x) = (f(x) - f(x-h))/h中心差分公式如下:cd'(x) = (f(x+h) - f(x-h))/(2h)其中h是一个小的非零常数,用于控制近似的精度。
4.数值积分公式:数值积分公式用于计算函数的定积分。
常用的数值积分方法包括矩形法、梯形法和辛普森法则。
梯形法则可以表示为:T(f) = h/2 * [f(x0) + 2Σf(xi) + f(xn)]其中h是区间宽度,n是等分的子区间数,xi是区间的分点。
5.龙格-库塔法:龙格-库塔法是解常微分方程组的一种常用方法。
常见的龙格-库塔法有四阶和五阶,其中四阶龙格-库塔法可表示为:yn+1 = yn + (k1 + 2k2 + 2k3 + k4)/6其中:k1 = hf(xn, yn)k2 = hf(xn + h/2, yn + k1/2)k3 = hf(xn + h/2, yn + k2/2)k4 = hf(xn + h, yn + k3)以上只是数值分析中的一些重点公式,这些公式是解决各种数学和科学问题的基础。
数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。
下面我们将逐一介绍这些方面的知识点。
1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。
常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。
其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。
2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。
常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。
其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。
3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。
常见的插值方法包括拉格朗日插值、牛顿插值等。
而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。
4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。
常见的数值微分方法包括向前差分、向后差分、中心差分等。
而数值积分方法则可以直接用差分方法来估计积分的值。
5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。
常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。
而直接法则是指用消元法来求解线性方程组的方法。
6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。
常见的迭代法包括牛顿法、割线法等。
其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。
7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。
其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。