高三第一次合模拟考试
- 格式:doc
- 大小:973.51 KB
- 文档页数:17
上海高中2024年高三第一次模拟考试(数学试题含解析)请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合2{|1}M x x ==.N 为自然数集,则下列表示不正确的是( )A .1M ∈B .{1,1}M =-C .M ∅⊆D .M N ⊆ 2.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 3.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞D .[]2,2- 4.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( ) A .a b c >> B .a c b >> C .b a c >> D .c b a >>5.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( )A .23-B .23C .3D .-36.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:参加用户比 40% 40% 10% 10%脱贫率 95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( )A .2728倍B .4735倍C .4835倍D .75倍 7.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( )A .1(,0)2-B .1(2,)2-C .(1,1)-D .1(,1)28.函数()3221f x x ax =-+在()0,∞+内有且只有一个零点,则a 的值为( )A .3B .-3C .2D .-2 9.函数的定义域为( )A .[,3)∪(3,+∞)B .(-∞,3)∪(3,+∞)C .[,+∞)D .(3,+∞)10.2019年某校迎国庆70周年歌咏比赛中,甲乙两个合唱队每场比赛得分的茎叶图如图所示(以十位数字为茎,个位数字为叶).若甲队得分的中位数是86,乙队得分的平均数是88,则x y +=( )A .170B .10C .172D .12 11.下列与函数y x=定义域和单调性都相同的函数是( ) A .2log 2x y = B .21log 2x y ⎛⎫= ⎪⎝⎭ C .21log y x = D .14y x =12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ).A .122B .112C .102D .92二、填空题:本题共4小题,每小题5分,共20分。
2025届湖南省长沙雅礼中学高三第一次模拟考试语文试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
1、阅读下面的文字,完成下列小题。
中国在2001年前几乎没有世界级的超算产品,因为构建一整套全球顶级的超算系统,也并非堆砌处理器这么简单。
中国超算研发的全面崛起,是建立在强有力的计算个体芯片、先进的运算管理技术和可靠的操作系统支持基础之上的。
芯片无疑是超级计算机的核心部分,一台超算产品至少装有几千枚甚至数万枚CPU和GPU芯片,同时配备特殊的操作系统,负责管理这些芯片之间如何合作,进行一系列复杂的运算,才能真正使之拥有十分可靠的强大算力。
国防科技大学分别在2010和2013年建造的“天河一号”和“天河二号”超级电脑,都曾登顶世界超算TOP500榜单,两者都主要使用Intel和AMD提供的芯片。
2015年4月,美国政府宣布制裁中国四家超算中心,禁止向中国超算中心出售Intel的Xeon Phi超算芯片。
天河二号就因为美国的制裁,耽搁了升级计划,不得已调整技术路线,并且采用国产矩阵2000替换Intel的Xeon Phi。
但这无法阻止中国超算研发的强势崛起。
2017年,广州超算中心宣布使用国产矩阵2000芯片,升级了天河二号超算系统,并成功实现算力翻倍。
而神威·太湖之光超级计算机起初就安装了40960个中国自主研发的“申威26010”众核处理器,而且性能不俗。
多年以来,计算机CPU芯片一直遵循摩尔定律进行升级迭代。
但摩尔定律也是有极限的,集成电路上的元器件已经足够小,己经逼近“原子尺度”了。
很难再延续过往路径进行升级迭代。
这个时候,就要想办法挖掘计算机的系统潜力。
在挖掘计算机系统潜力方面有两个思维路径:一个是阿里方案,一个是联想方案。
山东菏泽市2025届高三第一次模拟考试语文试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
1、阅读下面的文字,完成下面小题。
大家都知道,获得银牌的选手的成绩肯定比获铜牌选手的更好一一第二名当然强过第三名。
那么,第二名的选手应该比第三名的选手更加开心吧?研究结果却给出相反的答案:银牌得主往往并不满意。
戴维.松本和鲍勃·威林厄姆分析了2004年雅典夏季奥运会柔道选手的面表情,最终结果发现,几乎所有(93%)金牌得主都露出了笑容,大部分(70%)铜牌得主也露出了笑容,但是没有一名银牌得主露出笑容。
研究人员将研究结果命名为“银牌脸现象”。
为什么铜牌得主比银牌得主更高兴呢?和普通人一样,运动员会把自己与最相近的人做对比。
对于银牌得主,最的比较对象就是金牌得主。
人人梦寐以求的是金牌,而不是银牌。
但是从客观上来说,银牌也代表着巨大的成就,所以银牌得主在与金牌得主相比时,只会感到深深地自卑。
领奖台上与金牌得主,银牌得主会情不自禁地联想自己若能再往上走一步的情形。
而对铜牌得主来说,情況又不一样了。
铜牌得主更于下行的对比,也就是和第四名进行比较。
第四名没有任何奖励,在领奖台上也没有位置。
所以铜牌得主觉得自己是的,挤进了前三也就意味着他不仅是“参赛者”,更是一名“奖牌得主”。
能够获得银牌当然更好,但是第二名和第三名都能够获得奖牌,也很不错。
1.依次填入文中横线上的词语,全都恰当的一项是()A.显而易见近在咫尺倾向幸运B.显而易见近在咫尺偏向庆幸C.有目共睹触手可及偏向幸运D.有目共睹触手可及倾向庆幸2.下列各句中的破折号和文中“一一第二名当然强过第三名”的破折号,作用相同的一项是()A.“画的真好。
2025届四川省德阳中学高三第一次模拟考试语文试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
1、阅读下面的文字,完成下列小题。
历史与文学是两个不同领域。
《史记》作为史学经典,能“跨界”文学领域,既有内在原因,也有外部因素。
《史记》虽被替为“不虚美不隐恶”的“实录”著作,但其审美观有“爱奇”倾向。
刘勰《文心雕龙史传》说《史记》“爱奇之甚”。
认为司马迁爱奇,不只是记载神话传说,更是司马迁选择大量奇特之人和奇特事件。
鲁迅《汉文学史纲委》说,《史记》创作目的是要“传奇人于千秋”。
“奇人”,即司马迁所说的“倜傥非常之人”。
这些人,或在历史上有非凡之举,或在逆境中奋发有为,或有理想作为却落得悲剧结局,或出身卑贱又有出众之处。
正是他们的出现,使《史记》成为一部具有强大力量的作品。
为突出表现这些奇特人物,司马迁尤其注重特异性的故事情节和场面,如《田单列传》的火牛阵,《淮阴候列传》的背水一战,《越王勾践世家》的卧薪尝胆等。
“爱奇”审美观不只是史学家搜求历史资料,更是文学家通过资料发现美之对象,能体现生命力的人和事,且不受他人约束,这就使《史记》不同于一般的历史著作,所写的奇特之人都有热乎的生命,具有文学传奇色彩、故事特征和审美享受。
后世文学家把《史记》作为创作标本进行借鉴,古代大量咏史诗从《史记》中取材,亦见其对后世之影响。
《史记》选择典型事件表现人物个性,如项羽的巨鹿之战、鸿门宴、垓下之围。
描绘典型环境,让人物在矛盾冲突中表现自己:用心理等细节描写充实人物个性:多侧面写人,使人物由平面化转向立体化;运用对比描写,显示人物个性,等等。
这些手法的运用,使《史记》插上了文学翅膀,避免了单纯的客观叙述和呆板的生平介绍。
尤其是个性化语言,这是历史跨入文学的一道槛,司马迁的努力创造,使《史记》迈过了这道槛。
2025届甘肃天水一中高三第一次模拟考试语文试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.1、阅读下面的作品,完成下面小题。
好姑娘加孜玉曼李娟在冬库儿,卡西弄坏了我外套上的拉链,并且将我的一件外套、两件毛衣、一件T恤和三条裤子上挂出了大洞。
另外,还弄丢了我一条纱巾、一条围巾、三把梳子、三面镜子、一串项链、一枚成指、十来枚小卡子,七八只圆珠笔。
又因为我全部的家当差不多就只有这些,这位姑娘施加于我的所有破坏行为也只好到此为止。
总之,经历过这家伙的洗礼之后,再面对加孜玉曼这样的好姑娘,简直快要流泪了。
加孜玉曼和卡西是初中同学,也同时回去放羊。
卡西总是四处桂彩,大大咧明,像个孩子一样。
而加孜玉曼总是整齐清洁,坐在大家中间总是默默无声,被人注视时会羞赧地微笑,也还是像个孩子。
为什么会这样呢?大概因为她们本来就是孩子吧。
海拉提一家人口单薄,牛羊又多。
于是海拉提的妻子沙拉古丽常常请这两个小姑娘来家里帮忙千活。
海拉提每天都要出去放羊,沙拉古丽身体瘦弱多病,爷爷托海又上了年纪。
于是很多事情都得靠邻居们帮忙。
比如洗羊毛什么的。
洗羊毛是很辛苦的活。
因为羊毛实在太脏了,又脏又沉重,而溪水冰凉刺骨。
大家洗衣服时都会生火烧热水洗,为什么洗羊毛时就只用凉水呢?我们四个人抬着一只长铁盆、一只大塑料圆盆以及几大块刚剥离的羊毛片,来到山下的水流边。
两个姑娘面对面蹲着,不停地地揉啊拧啊,还洒了洗衣粉用木棍又捶又捣的,忙乎了两个多钟头,才洗完这几块羊毛。
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212x N x −≤=∈R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
南京市、盐城市2024届高三年级第一次模拟考试语文注意事项:1.本试卷考试时间为150分钟,试卷满分150分,考试形式闭卷;2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分;3.答题前,务必将自己的学校、班级、姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成小题。
什么是龙,确乎是一个谜。
龙像马,所以马往往被呼为龙。
《月令》“驾苍龙”,《周礼·庾人》“马八尺以上为龙”,皆其例。
龙有时又像狗。
《后汉书·孔僖传》“画龙不成反类狗”,所以狗也被呼为龙。
此外还有一种有鳞的龙像鱼,一种有翼的又像鸟,一种有角的又像鹿。
至于与龙最容易相混的各种爬虫类的生物,更不必列举了。
然则龙究竟是个什么东西呢?我们的答案是:它是一种图腾(Totem),并且是只存在于图腾中而不存在于生物界中的一种虚拟的生物,因为它是由许多不同的图腾糅合成的一种综合体。
因部落的兼并而产生的混合的图腾,古埃及是一个最显著的例子。
在我们历史上,五方兽中的北方玄武本是龟蛇二兽,也是一个好例。
不同的是,这些是几个图腾单位并存着,各单位的个别形态依然未变,而龙则是许多单位经过融化作用,形成了一个新的大单位,其各小单位已经是不复个别的存在罢了。
前者可称为混合式的图腾,后者化合式的图腾。
部落既总是强的兼并弱的,大的兼并小的,所以在混合式的图腾中总有一种主要的生物或无生物,作为它的基本的中心单位,同样的在化合式的图腾中,也必然是以一种生物或无生物的形态为其主干,而以其他若干生物或无生物的形态为附加部分。
龙图腾,不拘它局部的像马也好,像狗也好,或像鱼,像鸟,像鹿都好,它的主干部分和基本形态却是蛇。
这表明在当初那众图腾单位林立的时代,内中以蛇图腾为最强大,众图腾的合并与融化,便是这蛇图腾兼并与同化了许多弱小单位的结果。
金文龙字的偏旁皆从巳,而巳即蛇,可见龙的基调还是蛇。
2024届开封市高三语文上学期第一次模拟考试卷(试卷满分150分,考试时间150分钟)2023.12一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1-5题。
人工智能对文学艺术领域的介入已构成一个醒目的事实。
微软“小冰”的诗集《阳光失了玻璃窗》令人震惊——一些诗歌发表于互联网,几乎没有人意识到这是人工智能的作品。
相对地说,新闻稿或者侦探小说的基本模式远比诗歌清晰稳定,人工智能可以娴熟地驾驭它们的“叙事语法”。
人工智能绘画与作曲的消息已经屡屡见诸媒体,一个小视频曾经在互联网广泛流传:人工智能操纵的机械臂写出具有相当水准的书法作品。
如同自动驾驶、疾病诊断或者不同语种的翻译,文学艺术领域的“陷落”指日可待。
阿尔法狗击败围棋冠军是一个意味深长的事实:几乎没有人事先预料到,这一天的降临竟然如此之快。
人工智能的介入在文学艺术圈制造了持久的喧哗,各种观点错杂交叠。
欣然接受人工智能的作家不多,反对人工智能的观点指向不一:一些作家认为,人工智能的作品低劣粗陋,人工智能的“算法”无法企及幽深的精神世界,那些电子元件或者集成电路怎么可能体会微妙的韵味或者奇特的艺术风格?另一些作家感到,人工智能冒犯了人类的尊严,这些机械拼凑出来的作品不仅无可称道,而且包含了亵渎文学艺术的意味。
然而,没有理由蔑视人工智能的作品质量。
从韵味、风格到波动的意识轨迹,人工智能可能在模仿的意义上给予精确的再现。
考察过阿尔法狗对弈的棋谱即可发现,人工智能可以自如地处理微妙的权衡、关联,以及种种起伏、迂回、呼应。
如果阿尔法狗的“神经网络”深度学习投入文学艺术范畴,复制大师的水准并不困难。
即使现今的作品尚未达标,未来的潜力无可怀疑。
因此,问题的真正焦点毋宁是,我们是否接受这一切?通常的观念之中,科技以工具的面目出现。
时至如今,我们不再拒绝科技工具提供的种种产品——我们并不反感烤箱烘焙的面包、电磁波转换的电话语音或者电子望远镜显现的遥远星空。
2025届陕西省教育联盟高三第一次模拟考试语文试题考生注意:1.本试卷满分150分,考试时间150分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:高考范围。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:一、没有调查,没有发言权你对于某个问题没有调查,就停止你对于某个问题的发言权。
这不太野蛮了吗?一点也不野蛮。
你对那个问题的现实情况和历史情况既然没有调查,不知底里,对于那个问题的发言便一定是瞎说一顿。
瞎说一顿之不能解决问题是大家明了的,那么,停止你的发言权有什么不公道呢?许多同志都成天地闭着眼睛在那里瞎说,这是共产党员的耻辱,岂有共产党员可以闭着眼睛瞎说一顿的吗?要不得!要不得!注重调查!反对瞎说!二、调查就是解决问题你对于那个问题不能解决吗?那么,你就去调查那个问题的现状和它的历史吧!你完完全全调查明白了,你对那个问题就有解决的办法了。
一切结论产生于调查情况的末尾,而不是在它的先头。
只有蠢人,才是他一个人,或者邀集一堆人,不作调查,而只是冥思苦索地“想办法”“打主意”。
须知这是一定不能想出什么好办法,打出什么好主意的。
换一句话说,他一定要产生错办法和错主意。
许多巡视员,许多游击队的领导者,许多新接任的工作干部,喜欢一到就宣布政见,看到一点表面,一个枝节,就指手画脚地说这也不对,那也错误。
这种纯主观地“瞎说一顿”,实在是最可恶的。
他一定要弄坏事情,一定要失掉群众,一定不能解决问题。
许多做领导工作的人,遇到困难问题,只是叹气,不能解决。
他恼火,请求调动工作,理由是“才力小,干不下”。
江西省南昌市南昌县莲塘一中2024届高三第一次模拟考试语文试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
1、在下面一段话的空缺处依次填入词语,最恰当的一组是以形象为主要特点的汉语言,不可能像西方语言那样作过多的语言规则的理性分析,而应以整体和形象思维为主。
在实际教学过程中,我们应尽可能语言文字的理性规则,让学生通过大量的阅读和语言实践,在潜移默化中领悟民族语言的独特规则,从而能够。
A.感知弱化师心自用B.感知简化学以致用C.感悟简化师心自用D.感悟弱化学以致用2、下列各句表现不同的交际情境,其中表达得体的一句是A.学校公告栏有某学生写的失物启事:我在餐厅吃饭时不小心遗失了《高中数学题典》,如有拾到者,请速还我!B.高考在即,学校领导为了让同学们减轻心理压力,以更好的心态迎接高考,在同学们必经的大门口贴出一副对联,上写道:“逆境锤打造强者,烈火焚烧试真金。
”C.他是个古道热肠的人,无论谁请他帮忙,也无论他能否办得到,他都会满口答应下来:“我一定鼎力相助,您就放心吧!”D.某医生医术高明,治好不少患者多年的顽疾,解除了患者的痛苦,患者对该医生十分感激。
其中一位患者特地制作锦旗表示感谢,上写道:“杏林髙手,医者仁心。
”3、阅读下面的作品,完成下面小题。
高三第一次合模拟考试理科数学答案ABDACB BBACDC (注:11题4,e >∴D 选项也不对,此题无答案。
建议:任意选项均可给分) 13. 2; 14.14; 15.8; 16.[]1,3 17.解:(Ⅰ)证明:113133()222+-=-=-n n n a a a …….3分 12111=-=a b 31=∴+n n b b ,所以数列{}n b 是以1为首项,以3为公比的等比数列;….6分(Ⅱ)解:由(1)知,13-=n n b ,由111n n b m b ++≤-得13131n n m -+≤-,即()143331nm +≤-,…9分 设()143331=+-n n c ,所以数列{}n c 为减数列,()1max 1==n c c , 1∴≥m …….12分18解:(Ⅰ)平均数为500.051500.12500.153500.34500.155500.26500.05370⨯+⨯+⨯+⨯+⨯+⨯+⨯=………….4分(Ⅱ)X 的所有取值为0,1,2,3,4. ……….5分由题意,购买一个灯管,且这个灯管是优等品的概率为0.200.050.25+=,且1~4,4X B ⎛⎫ ⎪⎝⎭4413()(0,1,2,3,4)44-⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭kkk P X k C k所以044181(0)C (1)4256P X ==⨯-=, 1341110827(1)C (1)4425664P X ==⨯⨯-==, 2224115427(2)C ()(1)44256128P X ==⨯-==, 331411123(3)C ()(1)4425664P X ==⨯-==, 4404111(4)C ()(1)44256P X ==⨯-=.以随机变量X 的分布列为:X0 1 2 34 P81256 2764 27128 3641256……………………….10分所以X 的数学期望1()414E X =⨯=.…….12分 19.(Ⅰ)证明:四边形ABCD 是菱形,BD AC ∴⊥.⊥AE 平面ABCD ,BD ⊂平面ABCDBD AE ∴⊥. ⋂=AC AE A ,BD ∴⊥平面ACFE .………….4分(Ⅱ)解:如图以O 为原点,,OA OB 为,x y 轴正向,z 轴过O 且平行于CF ,建立空间直角坐标系.则(0,3,0),(0,3,0),(1,0,2),(1,0,)(0)B D E F a a -->,(1,0,)=-OF a .…………6分设平面EDB 的法向量为(,,)=n x y z , 则有00⎧⋅=⎪⎨⋅=⎪⎩n OB n OE ,即3020y x z ⎧=⎪⎨+=⎪⎩令1z =,(2,0,1)=-n .…………8分由题意o2||2sin 45|cos ,|2||||15⋅=<>===+OF n OF n OF n a 解得3a =或13-. 由0>a ,得3=a .…….12分20. 解:(Ⅰ)由题意得22222,3,2122 1.a b c ca a b⎧⎪⎪=+⎪⎪=⎨⎪⎪⎪+=⎪⎩解得 2.1,3.a b c ⎧=⎪=⎨⎪=⎩所以C 的方程为2214x y +=.…….4分(Ⅱ)存在0x .当04x =时符合题意. 当直线l 斜率不存在时,0x 可以为任意值.设直线l 的方程为(1)y k x =-,点A ,B 满足:22(1),1.4y k x x y =-⎧⎪⎨+=⎪⎩所以A x ,B x 满足2224(1)4x k x +-=,即2222(41)8440k x k x k +-+-=.所以22222222(8)4(41)(44)0,8,4144.41A B A B k k k k x x k k x x k ⎧⎪∆=-++>⎪⎪+=⎨+⎪⎪-=⎪+⎩………8分 不妨设1A x >>B x ,因为||||A B d PB d PA ⋅-⋅=00||1||||1|]A B B A x x x x x x -⋅---⋅-00(1)()2]0A B A B x x x x x x =-+++=从而2200228(1)8(1)204141x k k x k k +--+=++.整理得0280x -=,即04x =. 综上,04=x 时符合题意.…….12分21.解:(Ⅰ)'()2xf x e ax =-,由题设得,'(1)2f e a b =-=,(1)1f e a b =-=+, 解得,1,2a b e ==-.…….4分 (Ⅱ)法1:由(Ⅰ)知,[]2(),'()21210,0,1x x f x e x f x e x x x x x =-∴=-≥+-=-≥∈,故()f x 在[]0,1上单调递增,所以,max ()(1)1f x f e ==-.法2:由(Ⅰ)知,2(),'()2,''()2xxxf x e x f x e x f x e =-∴=-=-,'()f x ∴在()0,ln 2上单调递减,在()ln 2,+∞上单调递增,所以,'()'(ln 2)22ln 20f x f ≥=->,所以,()f x 在[]0,1上单调递增,所以,max ()(1)1f x f e ==-.…….7分(Ⅲ)因为(0)1f =,又由(Ⅱ)知,()f x 过点(1,1)e -,且()y f x =在1x =处的切线方程为(2)1y e x =-+,故可猜测:当0,1x x >≠时,()f x 的图象恒在切线(2)1y e x =-+的上方.下证:当0x >时,()(2)1f x e x ≥-+.设()()(2)1,0g x f x e x x =--->,则'()2(2),''()2x xg x e x e g x e =---=-, 由(Ⅱ)知,'()g x 在()0,ln 2上单调递减,在()ln 2,+∞上单调递增, 又'(0)30,'(1)0,0ln 21,'(ln 2)0g e g g =->=<<∴<, 所以,存在()00,1x ∈,使得'()0g x =, 所以,当()()00,1,x x ∈+∞时,'()0g x >;当0(,1)x x ∈,'()0g x <,故()g x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,+∞上单调递增. 又2(0)(1)0,()(2)10xg g g x e x e x ==∴=----≥,当且仅当1x =时取等号.故(2)1,0x e e x x x x+--≥>. 由(Ⅱ)知,1xe x ≥+,故ln(1),1ln x x x x ≥+∴-≥,当且仅当1x =时取等号.所以,(2)1ln 1x e e x x x x+--≥≥+. 即(2)1ln 1x e e x x x+--≥+.所以,(2)1ln x e e x x x x +--≥+, 即(1)ln 10x e e x x x +---≥成立,当1x =时等号成立.…….12分22. 解:(Ⅰ)作'AA EF ⊥交EF 于点'A ,作'BB EF ⊥交EF 于点'B .因为''A M OA OM =-,''B M OB OM =+,所以2222''2'2A M B M OA OM +=+.从而222222''''AM BM AA A M BB B M +=+++2222('')AA OA OM =++.故22222()AM BM r m +=+……5分(Ⅱ)因为EM r m =-,FM r m =+,所以22AM CM BM DM EM FM r m ⋅=⋅=⋅=-.因为2222AM BM AM BM AM BM CM DM AM CM BM DM EM FM ++=+=⋅⋅⋅ 所以22222()AM BM r m CM DM r m++=-. 又因为3=r m ,所以52+=AM BM CM DM .…………….10分23.解:(Ⅰ)直线l 的极坐标方程分别是8sin =θρ. 圆C 的普通方程分别是22(2)4x y +-=, 所以圆C 的极坐标方程分别是θρsin 4=. …….5分(Ⅱ)依题意得,点M P ,的极坐标分别为⎩⎨⎧==,,sin 4αθαρ和⎩⎨⎧==.,8sin αθαρ所以αsin 4||=OP ,高考数学(文)一轮:一课双测A+B 精练(四十五) 直线的倾斜角与斜率、直线的方程1.若k ,-1,b 三个数成等差数列,则直线y =kx +b 必经过定点( ) A .(1,-2) B .(1,2) C .(-1,2) D .(-1,-2)2.直线2x +11y +16=0关于点P(0,1)对称的直线方程是( ) A .2x +11y +38=0B .2x +11y -38=0 C .2x -11y -38=0D .2x -11y +16=03.(·衡水模拟)直线l1的斜率为2,l1∥l2,直线l2过点(-1,1)且与y 轴交于点P ,则P 点坐标为( )A .(3,0)B .(-3,0)C .(0,-3)D .(0,3)4.(·佛山模拟)直线ax +by +c =0同时要经过第一、第二、第四象限,则a ,b ,c 应满足( )A .ab >0,bc <0B .ab >0,bc >0C .ab <0,bc >0D .ab <0,bc <05.将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A .y =-13x +13B .y =-13x +1C .y =3x -3D .y =13x +16.已知点A(1,-2),B(m,2),且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是( )A .-2B .-7C .3D .17.(·贵阳模拟)直线l 经过点A(1,2),在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是________.8.(·常州模拟)过点P(-2,3)且在两坐标轴上的截距相等的直线l 的方程为________.9.(·天津四校联考)不论m 取何值,直线(m -1)x -y +2m +1=0恒过定点________. 10.求经过点(-2,2),且与两坐标轴所围成的三角形面积为1的直线l 的方程. 11.(·莆田月考)已知两点A(-1,2),B(m,3).(1)求直线AB 的方程; (2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的取值范围. 12.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P(1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.1.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A.⎣⎡⎭⎫π6,π3B.⎝⎛⎭⎫π6,π2C.⎝⎛⎭⎫π3,π2D.⎣⎡⎦⎤π6,π22.(·洛阳模拟)当过点P(1,2)的直线l 被圆C :(x -2)2+(y -1)2=5截得的弦最短时,直线l 的方程为________________.3.已知直线l :kx -y +1+2k =0(k ∈R). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.[答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________ 答 案高考数学(文)一轮:一课双测A+B 精练(四十五)A 级1.A2.B3.D4.A5.选A 将直线y =3x 绕原点逆时针旋转90°得到直线y =-13x ,再向右平移1个单位,所得直线的方程为y =-13(x -1),即y =-13x +13.6.选C 线段AB 的中点⎝⎛⎭⎪⎫1+m 2,0代入直线x +2y -2=0中,得m =3.7.解析:设直线l 的斜率为k ,则方程为y -2=k(x -1),在x 轴上的截距为1-2k ,令-3<1-2k <3,解得k <-1或k >12.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞8.解析:直线l 过原点时,l 的斜率为-32,直线方程为y =-32x ;l 不过原点时,设方程为x a +ya=1,将点(-2,3)代入,得a =1,直线方程为x +y =1.综上,l 的方程为x +y -1=0或2y +3x =0. 答案:x +y -1=0或3x +2y =09.解析:把直线方程(m -1)x -y +2m +1=0,整理得 (x +2)m -(x +y -1)=0,则⎩⎪⎨⎪⎧x +2=0,x +y -1=0,得⎩⎪⎨⎪⎧x =-2,y =3.答案:(-2,3)10.解:设所求直线方程为x a +yb =1,由已知可得⎩⎪⎨⎪⎧-2a +2b=1,12|a||b|=1,解得⎩⎪⎨⎪⎧a =-1,b =-2或⎩⎪⎨⎪⎧a =2,b =1.故直线l 的方程为2x +y +2=0或x +2y -2=0. 11.解:(1)当m =-1时,直线AB 的方程为x =-1; 当m ≠-1时,直线AB 的方程为y -2=1m +1(x +1).(2)①当m =-1时,α=π2;②当m ≠-1时,m +1∈⎣⎢⎡⎭⎪⎫-33,0∪(0, 3 ],∴k =1m +1∈(-∞,- 3 ]∪⎣⎢⎡⎭⎪⎫33,+∞,∴α∈⎣⎡⎭⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3. 综合①②知,直线AB 的倾斜角α∈⎣⎢⎡⎦⎥⎤π6,2π3.12.解:由题意可得kOA =tan45°=1, kOB =tan(180°-30°)=-33, 所以直线lOA :y =x ,lOB :y =-33x. 设A(m ,m),B(-3n ,n), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n2,m -0m -1=n -0-3n -1,解得m =3,所以A(3,3). 又P(1,0), 所以kAB =kAP =33-1=3+32, 所以lAB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.B 级1.选B 由⎩⎨⎧y =kx -3,2x +3y -6=0,解得⎩⎪⎨⎪⎧x =32+32+3k ,y =6k -232+3k .∵两直线交点在第一象限,∴⎩⎪⎨⎪⎧x >0,y >0,解得k >33. ∴直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.2.解析:易知圆心C 的坐标为(2,1),由圆的几何性质可知,当圆心C 与点P 的连线与直线l 垂直时,直线l 被圆C 截得的弦最短.由C(2,1),P(1,2)可知直线PC 的斜率为2-11-2=-1,设直线l 的斜率为k ,则k ×(-1)=-1,得k =1,又直线l 过点P ,所以直线l 的方程为x -y +1=0.答案:x -y +1=03.解:(1)证明:法一:直线l 的方程可化为y =k(x +2)+1, 故无论k 取何值,直线l 总过定点(-2,1).法二:设直线过定点(x0,y0),则kx0-y0+1+2k =0对任意k ∈R 恒成立, 即(x0+2)k -y0+1=0恒成立, ∴x0+2=0,-y0+1=0,解得x0=-2,y0=1,故直线l 总过定点(-2,1).(2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k 的取值范围是[0,+∞).(3)依题意,直线l 在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,∴A ⎝ ⎛⎭⎪⎫-1+2k k ,0,B(0,1+2k). 又-1+2k k <0且1+2k>0,∴k>0.故S =12|OA||OB|=12×1+2k k (1+2k)=12⎝⎛⎭⎪⎫4k +1k +4≥12(4+4)=4,当且仅当4k =1k ,即k =12时,取等号.故S 的最小值为4,此时直线l 的方程为 x-2y+4=0.高考数学(文)一轮:一课双测A+B精练(四十)空间几何体的结构特征及三视图和直观图1.(·青岛摸底)如图,在下列四个几何体中,其三视图(正视图、侧视图、俯视图)中有且仅有两个相同的是( )A.②③④B.①②③C.①③④D.①②④2.有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是( )A.1B.2C.3D.43.一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )4.如图是一几何体的直观图、正视图和俯视图.在正视图右侧,按照画三视图的要求画出的该几何体的侧视图是( )5.如图△A′B′C′是△ABC的直观图,那么△ABC是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形6.(·东北三校一模)一个几何体的三视图如图所示,则侧视图的面积为( )A.2+3B.1+3C.2+23D.4+37.(·昆明一中二模)一个几何体的正视图和侧视图都是边长为1的正方形,且体积为1,则这个几何体的俯视图可能是下列图形中的________.(填入所有可能的图形前的编号) 2①锐角三角形;②直角三角形;③四边形;④扇形;⑤圆8.(·安徽名校模拟)一个几何体的三视图如图所示,则该几何体的体积为________.9.正四棱锥的底面边长为2,侧棱长均为3,其正视图(主视图)和侧视图(左视图)是全等的等腰三角形,则正视图的周长为________.10.已知:图1是截去一个角的长方体,试按图示的方向画出其三视图;图2是某几何体的三视图,试说明该几何体的构成.11.(·银川调研)正四棱锥的高为3,侧棱长为7,求侧面上斜高(棱锥侧面三角形的高)为多少?12.(·四平模拟)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图;(2)求出侧视图的面积.1.(·江西八所重点高中模拟)底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( )A.23B.3C.3D.42.(·深圳模拟)如图所示的几何体中,四边形ABCD是矩形,平面ABCD⊥平面ABE,已知AB=2,AE=BE=3,且当规定正视方向垂直平面ABCD时,该几何体的侧视图的面积为22.若M,N分别是线段DE,CE上的动点,则AM+MN+NB的最小值为________.3.一个多面体的直观图、正视图、侧视图如图1和2所示,其中正视图、侧视图均为边长为a的正方形.(1)请在图2指定的框内画出多面体的俯视图;(2)若多面体底面对角线AC,BD交于点O,E为线段AA1的中点,求证:OE∥平面A1C1C;(3)求该多面体的表面积.[答题栏]A级1._________2._________3._________4._________5._________6._________B级 1.______2.______ 7.__________8.__________9.__________答案高考数学(文)一轮:一课双测A+B精练(四十)A级1.A2.A3.C4.B5.选B由斜二测画法知B正确.6.选D依题意得,该几何体的侧视图的面积等于22+12×2×3=4+ 3.7.解析:如图1所示,直三棱柱ABE-A1B1E1符合题设要求,此时俯视图△A BE是锐角三角形;如图2所示,直三棱柱ABC-A1B1C1符合题设要求,此时俯视图△ABC是直角三角形;如图3所示,当直四棱柱的八个顶点分别是正方体上、下各边的中点时,所得直四棱柱ABCD-A1B1C1D1符合题设要求,此时俯视图(四边形ABCD)是正方形;若俯视图是扇形或圆,体积中会含有π,故排除④⑤.答案:①②③8.解析:结合三视图可知,该几何体为底面边长为2、高为2的正三棱柱除去上面的一个高为1的三棱锥后剩下的部分,其直观图如图所示,故该几何体的体积为12×2×2sin60°×2-13×12×2×2sin60°×1=533.答案:5339.解析:由题意知,正视图就是如图所示的截面PEF ,其中E 、F 分别是AD 、BC 的中点,连接AO ,易得AO =2,而PA =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2.答案:2+2210.解:图1几何体的三视图为:图2所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体. 11.解:如图所示,正四棱锥S -ABCD 中, 高OS =3,侧棱SA =SB =SC =SD =7, 在Rt △SOA 中,OA =SA2-OS2=2,∴AC =4. ∴AB =BC =CD =DA =2 2. 作OE ⊥AB 于E ,则E 为AB 中点. 连接SE ,则SE 即为斜高, 在Rt △SOE 中,∵OE =12BC =2,SO =3,∴SE =5,即侧面上的斜高为 5.12.解:(1)三棱锥的直观图如图所示. (2)根据三视图间的关系可得BC =23, ∴侧视图中VA =42-⎝ ⎛⎭⎪⎫23×32×232=12=23,∴S △VBC =12×23×23=6.B 级1.选A 当正视图的面积达最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为2 3.2.解析:依题意得,点E 到直线AB 的距离等于32-⎝ ⎛⎭⎪⎫222=2,因为该几何体的左(侧)视图的面积为12·BC ×2=22,所以BC =1,DE =EC =DC =2.所以△DEC 是正三角形,∠DEC =60°,tan ∠DEA =AD AE =33,∠DEA =∠CEB =30°.把△DAE ,△DEC 与△CEB 展在同一平面上,此时连接AB ,AE =BE =3,∠AEB =∠DEA +∠DEC +∠CEB =120°,AB2=AE2+BE2-2AE ·BEcos120°=9,即AB =3,即AM +MN +NB 的最小值为3.答案:33.解:(1)根据多面体的直观图、正视图、侧视图,得到俯视图如下:(2)证明:如图,连接AC ,BD ,交于O 点,连接OE. ∵E 为AA1的中点,O 为AC 的中点, ∴在△AA1C 中,OE 为△AA1C 的中位线. ∴OE ∥A1C.∵OE ⊄平面A1C1C ,A1C ⊂平面A1C1C , ∴OE ∥平面A1C1C.(3)多面体表面共包括10个面,SABCD =a2, SA1B1C1D1=a22,S △ABA1=S △B1BC =S △C 1DC =S △ADD1=a22,S △AA1D1=S △B1A1B =S △C1B1C =S △DC1D1 =12×2a 2×32a 4=3a28, ∴该多面体的表面积S =a2+a22+4×a22+4×3a28=5a2.。