斜截面受剪承载力计算示例
- 格式:pptx
- 大小:341.92 KB
- 文档页数:8
斜截面受剪承载力计算例题4-1解:1)剪力图见书,支座剪力为V =01170 5.7622ql =××=201.6kN2)复合截面尺寸h w =h 0=h -c -8-25/2=600-20-8-12.5=559.5 559.52.244250w h b ==<00.250.25 1.014.3250559.5500.1201.6c c f bh kN V kN β=××××=>=满足。
3)验算是否按计算配置腹筋00.70.7 1.43250559.5140.01201.6t f bh kN V kN =×××=<=应按计算配置腹筋4)计算腹筋数量①只配箍筋由 000.7svt yvA V f bh f h s≤+ 得: 331000.7201.610140.01100.408270559.5sv t yv nA V f bh s f h −×−×≥==×mm 2/mm 选双肢φ8箍筋 1250.3246.570.4080.408sv nA s mm ×≤== 取 s=240mm验算最小配箍率1,min 250.3 1.430.001680.240.240.00127250240270sv t sv sv yv nA f bs f ρρ×===>==×=× 满足仅配箍筋时的用量为双肢φ8@240②即配箍筋又配弯筋a. 先选弯筋,再算箍筋根据已配的4 25纵向钢筋,将1 25的纵筋以45°角弯起,则弯筋承担的剪力:0.8sin 0.8490.936099.972sb yv sb s V f A kN α==×××= 3330100.70.8sin 201.610140.011099.9710270559.5t yv sb s sv yv V f bh f A nA s f h α−−×−×−×≥==×负值 按构造要求配置箍筋并满足最小配箍率要求选双肢φ6@250的箍筋,1,min 228.3 1.430.000910.240.240.00127250250270sv t sv sv yvnA f bs f ρρ×===<==×=× 不满足 选双肢φ6@170的箍筋1,min 228.3 1.430.001330.240.240.00127250170270sv t sv sv yv nA f bs f ρρ×===<==×=× 满足 b. 先选箍筋,再算弯筋先按构造要求并满足最小配箍率选双肢φ6@170的箍筋,1,min 228.3 1.430.001330.240.240.00127250170270sv t sv sv yv nA f bs f ρρ×===>==×=× 满足要求。
混凝土结构斜截面承载力计算1.矩形、T形和I形截面受弯构件的受剪截面应符合下列条件:当hw∕b≤4时V≤O.25βc f c bh o(63.1-1)当hw∕b≥6时V≤O.2βc fcbho(6.3.1-2)当4<hw/b<6时,按线性内插法确定。
式中:V——构件斜截面上的最大剪力设计值;βc——混凝土强度影响系数:当混凝土强度等级不超过C50时,氏取1.0;当混凝土强度等级为C80时,氏取0.8;其间按线性内插法确定;b——矩形截面的宽度,T形截面或I形截面的腹板宽度;ho一截面的有效高度;h w一截面的腹板高度:矩形截面,取有效高度;T形截面,取有效高度减去翼缘高度;I形截面,取腹板净高。
注:1对T形或I形截面的简支受弯构件,当有实践经验时,公式(63.1-1)中的系数可改用03;2对受拉边倾斜的构件,当有实践经验时,其受剪截面的控制条件可适当放宽。
2、计算斜截面受剪承载力时,剪力设计值的计算截面应按下列规定采用:1支座边缘处的截面(图6.3.2a、b截面1-1);2受拉区弯起钢筋弯起点处的截面(图6.3.2a截面2-2、3-3);图6.3・2斜截面受剪承载力剪力设计值的计算截面M支座边缘处的斜截面;2-2、3T受拉区弯起钢筋弯起点的斜截面;4・4艇筋截面面积或间距改变处的斜截面3箍筋截面面积或间距改变处的截面(图6.3.2b截面4-4);4截面尺寸改变处的截面。
注:1受拉边倾斜的受弯构件,尚应包括梁的高度开始变化处、集中荷载作用处和其他不利的截面;2箍筋的间距以及弯起钢筋前一排(对支座而言)的弯起点至后一排的弯终点的距离,应符合本规范第9.2.8条和第9.2.9条的构造要求。
3、不配置箍筋和弯起钢筋的一般板类受弯构件,其斜截面受剪承载力应符合下列规定:V≤0.7j⅛∕l6⅛0(6.3.3-1)A=(警)" (6.3.3-2)式中:βh——截面高度影响系数:当ho小于800mm时,取800mm;当h0大于2000mm时,取2000mm o4、当仅配置箍筋时,矩形、T形和I形截面受弯构件的斜截面受剪承载力应符合下列规定:V≤v w÷vμ(6.3.4-1)Ya=a cv∕t6⅛0÷∕yv生儿(6.3.4-2)Vμ=0.05N p0(6.3.4-3)式中:Vcs——构件斜截面上混凝土和箍筋的受剪承载力设计值;V P-由预加力所提高的构件受剪承载力设计值;Okv—斜截面混凝土受剪承载力系数,对于一般受弯构件取0.7;对集中荷载作用下(包括作用有多种荷载,其中集中荷载对支座截面或节点边缘所产生的1.75剪力值占总剪力的75%以上的情况)的独立梁,取C(CV为λ+l,人为计算截面的剪跨比,可取入等于Who,当人小于1.5时,取1.5,当人大于3时,取3,α取集中荷载作用点至支座截面或节点边缘的距离;Asv—配置在同一截面内箍筋各肢的全部截面面积,即∩Asv∣,此处,n为在同一个截面内箍筋的肢数,ASVl为单肢箍筋的截面面积;s——沿构件长度方向的箍筋间距;fyv——箍筋的抗拉强度设计值,按本规范第4.2.3条的规定采用;Npo—计算截面上混凝土法向预应力等于零时的预加力,按本规范第10∙L13条计算;当NPO大于O.3fcAo时,取O.3fcAo,此处,Ao为构件的换算截面面积。
分别写出建筑工程与桥梁工程中的斜截面承载力计算公式。
在建筑工程和桥梁工程中,斜截面承载力的计算可是相当重要的哟!这就好比我们做饭时掌握食材和调料的比例,要是弄错了,这“菜”可就不好吃啦。
先来说说建筑工程中的斜截面承载力计算公式。
对于受弯构件,斜截面受剪承载力由混凝土和箍筋共同承担。
其计算公式为:$V\leqV_{cs}+V_{sb}$ ,其中 $V_{cs}$ 是混凝土和箍筋共同抗剪承载力,$V_{sb}$ 是弯起钢筋抗剪承载力。
$V_{cs}=0.7f_{t}bh_{0}+1.25f_{yv}\frac{A_{sv}}{s}h_{0}$ ,这里面,$f_{t}$ 是混凝土轴心抗拉强度设计值,$b$ 是截面宽度,$h_{0}$ 是截面有效高度,$f_{yv}$ 是箍筋抗拉强度设计值,$A_{sv}$ 是配置在同一截面内箍筋各肢的全部截面面积,$s$ 是沿构件长度方向的箍筋间距。
就拿我曾经参与的一个住宅项目来说吧。
那是一个多层的住宅楼,在计算某一梁的斜截面承载力时,我们就得严格按照这个公式来。
当时,我和同事们拿着尺子在现场仔细测量截面的宽度和高度,一丝一毫都不敢马虎。
回到办公室,对着一堆数据,反复核算。
就怕一个不小心,算错了,那可会影响整个建筑的安全性呐!再看看桥梁工程中的斜截面承载力计算公式。
对于矩形、T 形和工字形截面的受弯构件,其斜截面抗剪承载力的计算公式为:$V_{d}\leq V_{c}+V_{s}$ ,其中 $V_{d}$ 是考虑承载能力极限状态下的剪力组合设计值,$V_{c}$ 是混凝土提供的抗剪能力,$V_{s}$ 是箍筋和弯起钢筋提供的抗剪能力。
$V_{c}=0.45\times 10^{-3}\beta_{c}f_{cu,k}b_{h_{0}}$ ,这里的$\beta_{c}$ 是有关混凝土强度影响的系数,$f_{cu,k}$ 是混凝土立方体抗压强度标准值。
记得有一次在参与一座小型桥梁的建设时,为了算出准确的斜截面承载力,我们在施工现场顶着烈日,对桥梁的各个关键部位进行测量和记录。