求最大公因数、最小公倍数练习题①(最新整理)
- 格式:pdf
- 大小:254.50 KB
- 文档页数:5
寻找最大公因数、最小公倍数、约分、通分练习题【原创】练题 1已知两个数的最大公因数为12,最小公倍数为36,求这两个数。
解答:设两个数分别为a和b,则有以下等式:a = 12xb = 12y其中x和y为正整数。
又知最小公倍数为36,即:a*b = 36xy代入之前的等式,得到:12x * 12y = 36xy化简得:x * y = 9根据乘积的因数,可以得到如下两种情况:1. x=1,y=9;2. x=3,y=3;所以,两个数可能为:1. a=12,b=108;2. a=36,b=36。
练题 2已知一个分数的分子为16,分母为24,请将该分数约分至最简形式。
解答:要将分数约分至最简形式,需要找到分子和分母的最大公因数,然后将分子和分母同时除以最大公因数即可。
首先,求分子16和分母24的最大公因数。
分别列举出16和24的因数,然后找到它们的公共因数,再从公共因数中找出最大的一个。
16的因数有:1、2、4、8、16。
24的因数有:1、2、3、4、6、8、12、24。
其中,2和4是16和24的公因数,而4是最大的其中一个公因数。
将分子16和分母24同时除以4得:16 ÷ 4 = 424 ÷ 4 = 6所以,分数16/24约分至最简形式为4/6。
练题 3已知两个分数的分母分别为6和12,请将这两个分数通分。
解答:要将两个分数通分,需要找到它们的最小公倍数作为新的分母,然后将分子按比例调整即可。
首先,求6和12的最小公倍数。
6的倍数有:6、12、18、24、30、36、42、48...12的倍数有:12、24、36、48、60、72...可以看出,它们的最小公倍数为12。
对应的分子和分母分别为:6 × 2 = 1212 × 1 = 12所以,通分后的两个分数为2/12和1/12。
练题 4已知一个分数的分子为9,分母为15,请将该分数约分至最简形式并转化为小数表示。
解答:要将分数约分至最简形式,需要找到分子和分母的最大公因数,然后将分子和分母同时除以最大公因数。
最大公因数与最小公倍数应用题及练习题最大公约数与最小公倍数练习题姓名:一、填空题:1、如果自然数a除以自然数b商是17,那么a与b的最大公因数是(),最小公倍数是()。
2、最轻质数与最轻合数的最小公因数就是(),最轻公倍数就是()。
3、能够被5、7、16相乘的最轻自然数就是()。
4、(1)(7、8)最小公因数(),[7,8]最轻公倍数()(2)(25,15)最小公因数(),[25、15]最轻公倍数()(3)(140,35)最小公因数(),[140,35]最轻公倍数()(4)(24,36)最小公因数(),[24、36]最轻公倍数()(5)(3,4,5)最小公因数(),[3,4,5]最轻公倍数()(6)(4,8,16)最小公因数(),[4,8,16]最轻公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个已连续自然数的最轻公倍数就是60,这三个数就是()、()和()。
9、被2、3、5除,结果都余1的最轻整数就是(),最轻三位整数就是()。
10、一筐苹果4个4个拎,6个6个拎,或者8个8个拎都刚好拎回去,这筐苹果最少存有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个13、自然数m和n,n=m+1,m和n的最小公因数就是(),最轻公倍数就是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m=()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
最大公因数和最小公倍数是小学数学中的重要内容,对于学生来说,掌握这两个概念不仅可以帮助他们更好地理解数学知识,还能在解决数学问题时起到关键作用。
下面将为大家提供一些五年级下册最大公因数和最小公倍数题目,希望能对大家的学习有所帮助。
1. 求下列各组数的最大公因数和最小公倍数:(1)24和36;(2)18和30;(3)32和48;(4)40和60;(5)56和72。
解析:当我们求两个数的最大公因数和最小公倍数时,可以先将这两个数分解质因数,然后根据分解质因数的结果来求解。
对于上面的题目,我们可以先将24和36分解质因数,得到24=2*2*2*3,36=2*2*3*3,然后比较两个数的质因数,取每个质因数的最小次数,即可求得它们的最大公因数和最小公倍数。
2. 小华和小明站在操场上,小华每隔7步跳一下,小明每隔8步跳一下。
问:他们同时跳到起点的第一个位置是在哪一步?解析:这道题目可以通过求小华和小明的最小公倍数来解决。
小华每隔7步跳一下,小明每隔8步跳一下,他们同时跳到起点的第一个位置就是他们两个步数的最小公倍数。
我们只需要求出7和8的最小公倍数即可得出答案。
3. 甲乙两家各自搬家,甲家每隔6天打扫一次卫生,乙家每隔9天打扫一次卫生。
问:多少天后两家同时打扫卫生?解析:对于这道题目,我们可以通过求两个数的最小公倍数来解决。
甲家每隔6天打扫一次卫生,乙家每隔9天打扫一次卫生,他们同时打扫卫生的时间就是他们两个周期的最小公倍数。
我们只需要求出6和9的最小公倍数即可得出答案。
4. 求下列各组数的最大公因数:(1)21和28;(2)35和49;(3)45和81;(4)63和84;(5)75和105。
解析:这些题目要求求各组数的最大公因数,同样可以通过分解质因数的方法来求解。
将每组数分解质因数,并比较其质因数,取每个质因数的最小次数,即可得出它们的最大公因数。
5. 某学校有540名学生,安排运动会,要求各班同学分别用3人一组、4人一组、5人一组排成若干组,每组人数要一样。
求最大公因数、最小公倍数、约分、通分练习题一、用短除法求几个数的最大公因数12和30 24和3639和78 72和84 36和60 45和60 45和75 42、105和56 24、36和48二、给下面的分数约分2718108754524162035801651173624三、用短除法求几个数的最小公倍数。
25和3024和3039和78 60和84 18和20 126和60 45和75 12和24 12和14 45和6076和8036和60 27和72 42、105和56 24、36和48四、将下列各组分数通分。
12785和352143和6597和五. 判断题。
1. 互质的两个数必定都是质数。
( )2. 两个不同的奇数一定是互质数。
( )3. 最小的质数是所有偶数的最大公约数。
( )4. 有公约数1的两个数,一定是互质数。
( )5. a 是质数,b 也是质数,ab 一定是质数。
( ) 六、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和806、12和247、21和498、12和36七. 填空题。
1. 都是自然数,如果ba =10 , 的最大公约数是( ),最小公倍数是( )。
2. 甲=2×3×3 ,乙=2×3×5 ,甲和乙的最大公约数是( )×( )=( ),甲和乙的最小公倍数是( )×( )×( )×( )=( )。
3. 所有自然数的公约数为( )。
4. 如果m 和n 是互质数,那么它们的最大公约数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是( )。
277185和95153913和3310229和15752和21472和5110172和5432和3241和97103和5432和7. 两个连续自然数的和是21,这两个数的最大公约数是(),最小公倍数是()。
(完整版)最大公因数与最小公倍数应用题练习1、有一些糖果,分给8个人或分给10个人,正好分完,这些糖果最少有多少粒?解:【8,10】=402、有一包糖,不论分给8个人,还是分给10个人,都能正好分完。
这包糖至少有多少块?解:【8,10】=40(人)3、一个数被2除余1,被3除余2,被4除余4,被6除余5,此数最小是几?解:【2,3,4,6】=12 12-1=114、五年级学生参加植树活动,人数在30~50之间。
如果分成3人一组,4人一组,6人一组或者8人一组,都恰好分完。
五年级参加植树活动的学生有多少人?解:【3,4,6,8】=24(人)24×2=48(人)5、利用每一小块长6公分,宽4公分的长方形彩色瓷砖在墙壁上贴成正方形的图案。
问:拼成的正方形的面积最小是多少?解:【6,4】=12(公分)12×12=144(CM2)6、有一堆苹果,每8千克一份,9千克一份,或10千克一份,都会多出3千克,这堆苹果至少有多少千克?解:【8,9,10】=360 360+3=363kg7、学校合唱队排练时,如果7人一排就差2人,8人一排也差2人,合唱队至少有多少人?解:【7,8】=56(人) 56-2=54(人)8、把37支钢笔和38本书,平均奖给几个学习成绩优秀的学生,结果钢笔多出一支,书还缺2本,最多有几个学习成绩优秀的同学?解:37-1=36(本) 38+2=40(本)(36,40)=4(人)9、有24个苹果,32个梨,要分装在盘子里,每盘的苹果和梨的相同,最多可以装多少盘?每个盘子里苹果和梨各多少?解:(24,32)=8(盘)24÷8=3(个)32÷8=4(个)10、阜沙市场是20路和21路汽车的起点站。
20路汽车每3分钟发车一次,21路汽车每5分钟发车一次。
这两路汽车同时发车以后,至少再过多少分钟又同时发车?解:【3,5】=15(分钟)11、中心小学五年级学生,分为6人一组,8人一组或9人一组排队做早操,都刚好分完。
最大公因数与最小公倍数应用题及练习题最大公约数与最小公倍数练题姓名:一、填空:1、如果自然数A除以自然数B商是17,那么A与B的最大公因数是(),最小公倍数是()。
2、最小质数与最小合数的最大公因数是(),最小公倍数是()。
3、能被5、7、16整除的最小自然数是()。
4、(1)(7、8)最大公因数(),[7,8 ]最小公倍数()2)(25,15)最大公因数(),[25、15 ]最小公倍数()3)(140,35)最大公因数(),[140,35 ]最小公倍数()4)(24,36)最大公因数(),[24、36 ]最小公倍数()5)(3,4,5)最大公因数(),[3,4,5 ]最小公倍数()6)(4,8,16)最大公因数(),[4,8,16 ]最小公倍数()5、5和12的最小公倍数减去()就等于它们的最大公因数。
91和13的最小公倍数是它们最大公因数的()倍。
6、已知两个互质数的最小公倍数是153,这两个互质数是()和()。
7、甲数=2×3×5×7,乙数=2×3×11,甲乙两数的最大公因数是(),最小公倍数是()。
8、3个连续天然数的最小公倍数是60,这三个数是()、()和()。
9、被2、3、5除,结果都余1的最小整数是(),最小三位整数是()。
10、一筐苹果4个4个拿,6个6个拿,或者8个8个拿都恰好拿完,这筐苹果最少有()个。
11、三个连续偶数的和是42,这三个数的最大公因数是()。
12、三个13、天然数m和n,n= m+1,m和n的最大公因数是(),最小公倍数是()。
14、把自然数a与b分解质因数,得到a=2×5×7×m,b=3×5×m,如果a与b的最小公倍数是2730,那么m =()。
15、(273,231,117)最大公因数(),[273,231,117]最小公倍数()16、三个数的和是312,这三个数分别能被7、8、9整除,而且商相同。
公因数和公倍数练习题公因数和公倍数练习题公因数和公倍数是数学中的基础概念,它们在解决实际问题中起着重要的作用。
下面我将给大家提供一些公因数和公倍数的练习题,希望能够帮助大家更好地理解和掌握这两个概念。
练习题一:求两个数的公因数和最大公因数问题描述:求出30和45的公因数,并确定它们的最大公因数。
解题思路:首先列出30和45的所有因数,然后找出它们的公因数,最后确定最大公因数。
解答过程:30的因数有:1、2、3、5、6、10、15、3045的因数有:1、3、5、9、15、45两个数的公因数有:1、3、5、15最大公因数为15。
练习题二:求两个数的公倍数和最小公倍数问题描述:求出12和18的公倍数,并确定它们的最小公倍数。
解题思路:首先列出12和18的倍数,然后找出它们的公倍数,最后确定最小公倍数。
解答过程:12的倍数有:12、24、36、48、60、72、84、96、108、120、...18的倍数有:18、36、54、72、90、108、126、144、162、180、...两个数的公倍数有:36、72、108、144、180最小公倍数为36。
练习题三:找出一组数的公因数和最大公因数问题描述:找出12、18和24的公因数,并确定它们的最大公因数。
解题思路:首先列出12、18和24的所有因数,然后找出它们的公因数,最后确定最大公因数。
解答过程:12的因数有:1、2、3、4、6、1218的因数有:1、2、3、6、9、1824的因数有:1、2、3、4、6、8、12、24三个数的公因数有:1、2、3、6、12最大公因数为12。
练习题四:找出一组数的公倍数和最小公倍数问题描述:找出6、8和10的公倍数,并确定它们的最小公倍数。
解题思路:首先列出6、8和10的倍数,然后找出它们的公倍数,最后确定最小公倍数。
解答过程:6的倍数有:6、12、18、24、30、36、42、48、54、60、...8的倍数有:8、16、24、32、40、48、56、64、72、80、...10的倍数有:10、20、30、40、50、60、70、80、90、100、...三个数的公倍数有:24、48、72最小公倍数为24。
最大公因数与最小公倍数练习题(解题方法)引言最大公因数和最小公倍数是数学中常见的概念,在解题过程中需要掌握它们的计算方法。
本文将给出一些练题,并提供解题方法。
练题1. 求下列两个数的最大公因数和最小公倍数:a) 12和18b) 24和36c) 15和252. 求下列两个数的最大公因数和最小公倍数:a) 42和56b) 60和84c) 72和1083. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48b) 54和72c) 90和120解题方法1. 方法一:列举法首先,列举出两个数的所有因数,然后找出它们的共同因数,最大公因数即为共同因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
2. 方法二:因数分解法先将两个数进行因数分解,然后找出它们的所有公因数,最大公因数即为公因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
答案1. 求下列两个数的最大公因数和最小公倍数:a) 12和18- 最大公因数:6- 最小公倍数:36b) 24和36- 最大公因数:12- 最小公倍数:72c) 15和25- 最大公因数:5- 最小公倍数:752. 求下列两个数的最大公因数和最小公倍数:a) 42和56- 最大公因数:14- 最小公倍数:168b) 60和84- 最大公因数:12- 最小公倍数:420c) 72和108- 最大公因数:36- 最小公倍数:2163. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48- 最大公因数:12- 最小公倍数:144b) 54和72- 最大公因数:18- 最小公倍数:216c) 90和120- 最大公因数:30- 最小公倍数:360结论通过练题中的解题方法,我们可以求出两个数的最大公因数和最小公倍数。
这些概念在数学中具有重要的作用,并在实际问题中起到指导作用。
最大公因数与最小公倍数练习1含答案------------------------------------------作者xxxx------------------------------------------日期xxxx最大公因数与最小公倍数(练习1)1. 求下列每组数的最大公因数12和32 18和24 146和152 12和8和14(12,32)=4 (18,24)=6 (146,152)=2(12,8,14)=22. 求下列各组数的最小公倍数24和48 6和7 8和9 24和32 84和56 []=487,642 []729,8= ,2448 []=[]9656,84=24=[]168,323. 五年级2班运动会时进行方阵表演,在排练时变化队形的过程中,每排5人或6人都能形成长方形方阵,方阵前有一名领操员,则六年级二班参加表演的最少为多少人?[]306,5=(人)4. 一个数既能被5整除,也能被8整除,这个数最小为多少?[5,8]=405. 甲数是36,甲乙两数的最小公倍数是252,最大公因数是4,则乙数为多少?252×4÷36=286.把1米3分米5厘米长、1米5厘米宽的长方形纸,裁成同样大小的正方形,至少能裁多少块?1米3分米5厘米长=135厘米1米5厘米=105厘米(135,105)=15(厘米)135×105÷(15×15)=63(个)或7×9=63(个)7.一块长45厘米、宽30厘米的长方形木板,把它锯成若干块正方形而无剩余,所锯成的正方形的边长最长是多少厘米?(45,30)=15(厘米)8.将一块长80米、宽60米的长方形土地划分成面积相等的小正方形,小正方形的面积最大是多少?(80,60)=20(米)20×20=400(平方厘米)。
最大公因数和最小公倍数练习题(1)最大公因数和最小公倍数是数学中常见的概念。
下面分别介绍几个例子。
例1:有三根铁丝,长度分别为18米、24米和30米。
现在要把它们截成同样长的小段,每段最长可以有多少米?一共可以截成多少段?解:首先求出它们的最大公因数,即6米。
然后分别将每根铁丝截成6米长的小段,可以得到每根铁丝可以截成3、4、5段。
因此,一共可以截成12段。
例2:一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?解:首先求出它的最大公因数,即12厘米。
然后将长方形纸分别截成12厘米长和12厘米宽的小长方形,可以得到每个小长方形的面积是432平方厘米。
因此,正方形的边长为12厘米,能截成15个正方形。
例3:用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?解:首先求出它们的最大公因数,即24朵花。
然后将红玫瑰花和白玫瑰花分别每24朵一束,可以得到最多可以做4个花束。
每个花束里至少要有4朵红玫瑰花和3朵白玫瑰花。
例4:公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?解:首先求出它们的最小公倍数,即300分钟。
然后分别计算每路车需要等待的时间,第一路车需要等待295分钟,第二路车需要等待290分钟,第三路车需要等待294分钟。
因此,三路汽车最少需要过290分钟再同时发车。
例5:某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,各道工序每小时至少安排几个工人最合理?解:首先分别求出每个工序的最小公倍数,分别为60、12和15.然后分别计算每个工序需要多少个工人,第一道工序需要至少20个工人,第二道工序需要至少5个工人,第三道工序需要至少4个工人。
精心整理
最大公因数和最小公倍数练习(一)
一、基本概念:?
公因数:两个或多个数都有的因数叫做公因数
???1
数。
???
2、公倍数和最小公倍数?
???几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。
? ???例如:12的倍数有12,24,36,48,60,72,…????
18的倍数有18,36,72,90,…?
12和18的公倍数有:36,72…
其中36是12和?18的最小公倍数。
?
???一般地,我们用[a,b]表示自然数,a,b的最小公倍数,如[12,18]=36。
求最大公因数、最小公倍数习题
一、用短除法求几个数的最大公因数
12和3024和3639和7872和8436和60
45和
25和
126
76和
45和
6、
15
9和
30
7和
1和
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是
九.
45和
42、
三.
2
1。
2
3
4、(1
(2
(3
(4)(24,36)最大公因数(),[24、36]最小公倍数()
(5)(3,4,5)最大公因数(),[3,4,5]最小公倍数()
(6)(4,8,16)最大公因数(),[4,8,16]最小公倍数()
五、写出下列各数的最大公因数和最小公倍数
(1)4和6的最大公因数是;最小倍数是;
(2)9和3的最大公因数是;最小公倍数是;
(3)9和18的最大公因数是;最小公倍数是;
(4)11和44的最大公因数是;最小公倍数是;
(5)8和11的最大公因数是;最大公倍数是;
(6)1和9的最大公因数是;最小公倍数是;
(7)
(8)
(9)
能被5整除
六.
例1
例2
例3
例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?
例5、某厂加工一种零件要经过三道工序。
第一道工序每个工人每小时可完成3个;第二道工序每个工人每小时可完成12个;第三道工序每个工人每小时可完成5个。
要使流水线能正常生产,
各道工序每小时至少安排几个工人最合理?
例7、公路上一排电线杆,共25根。
每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需要移动?
例8、两个数的最大公因数是4,最小公倍数是252,其中一个数是28,另一个数是多少?。