论谐振过电压产生原因及防治
- 格式:doc
- 大小:25.50 KB
- 文档页数:6
厂用电谐振过电压分析及预防(一)摘要:在中性点不接地电力系统中,由于电磁式电压互感器激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压,影响电气设备安全运行。
为此,从两起典型的6kV厂用电谐振过电压入手,分析计算产生谐振过电压的条件及其现象。
最后,阐述了解决谐振过电压问题所采取的措施。
关键词:厂用电;谐振;过电压;电压互感器;分析;措施1谐振过电压产生条件、特点和危害在中性点不接地电力系统中,由于电磁式电压互感器(TV)激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压。
特别是遇有激磁特性不好(易饱和)的TV及系统发生单相对地闪络或接地时,更容易引发谐振过电压。
轻者令到TV的熔断器熔断、匝间短路或爆炸;重者则发生避雷器爆炸、母线短路、厂用电失电等严重威胁电力系统和电气设备运行安全的事故。
2两起谐振过电压及其分析2.1铁心饱和过电压这种过电压最常见于投空母线时,由于系统电压偏高致使激磁特性差的TV饱和,当TV电抗降至和系统对地容抗相等时便引发谐振过电压。
现在由于采取一系列技术手段这一现象已很少发生,但其它形式谐振过电压却还时有发生,应引起我们注意,请看下面实例。
2.1.1事发经过1998年10月8日8时58分,6kVⅢ段工作电源开关632甲、632乙跳闸,3号炉甲、乙送风机和3号机循环水泵跳闸,备用电源开关630甲、乙联动,6kVⅢA和ⅢB段母线电压表无指示,3号炉甲、乙送风机强送未成功,发电机组与电网解列。
事后检查发现6kVⅢ段母线有电压,判断是TV保险熔断,使带有低压保护设备跳闸,恢复TV保险后,3号机组于当天9时55分重新并网。
2.1.2原因分析事故发生时,与6kVIIIA段相联的输煤I段上有停3号炉除渣泵电动机的操作,由于6kVⅢ段的2台TV的熔断器三相均熔断,因而初判发生了三相谐振过电压。
6kVⅢA、ⅢB和输煤Ⅰ段上三台TV均是JDZJ-6型干式电压互感器。
电力系统中谐振过电压的产生与解决对策摘要:除了家电之外,在日常生活中会因为电磁感应产生的振动导致一些细部用电仪器出现损坏以及运作时令的问题,与此同时在一些大型的电力供给、传输运作以及发电上都会有这种问题的出现,所有出现的这种问题都被称作谐振过电压。
本文对电力系统中谐振过电压的产生进行了分析和探讨,并且有针对性的将有效的解决问题的措施提了出来,希望能够对大家有所帮助。
关键词:谐振过电压问题策略引言电路当中如果有电流通过就会产生磁场,在生产电力上电与磁的互相转化使人类的生活得到了极大地帮助。
然而在我国的电力工作当中因为这类问题的出现从而造成了很多的损失,其不仅严重的危害到了国家的财产安全,甚至会经常性的造成人员伤亡状况的出现。
我国的电力专家为了促进过电压危害这一问题的有效解决,对其中的很多方法进行了总结,本文具体的介绍了谐振过电压的现象,并且将有效的解决措施提了出来,供大家参考。
一、谐振过电压概述造成电网过电压现象在电力系统中出现的原因有很多,如果过于频繁的出现谐振过电压等现象,就会产生很大的危害性。
一旦出现过电压现象,就会烧毁以及损坏电气设备,在严重的情况下还会导致停电事故的发生。
由于时间较长的谐振过电压作用。
但是却不可以采用避雷器的方式进行限制,所以在实施保护的这一方面具有相当大的困难。
由铁心电感元件,包括消弧线圈、电抗器、电压互感器、变压器以及发电器等,还有一些系统的电容元件,包括电容补偿器以及输电线路等共同促成了共谐条件的形成,导致谐振过电压在系统当中产生[1]。
二、产生谐振的原因以及将其激发出来的条件作为一个复杂的电力网络,电力系统具有十分重要的作用,有很多的电容元件以及电感元件,特别是铁磁谐振现象经常会出现在不接地系统当中,严重的威胁到了设备的安全运行。
有以下条件会将电压谐振激发出来:①突然投入的电压互感器;②发生单相接地的线路;③突然改变的系统运行方式以及投切的电气设备;④发生较大波动的系统负荷;⑤出现波动的电网频率;⑥不平衡变化的负荷[2]。
浅谈10kV系统产生谐振过电压原因及控制对策摘要在10kV配电网中,常常发生电磁式电压互感器烧毁的现象,其原因都是因为某些故障或者不正常运行致使电压互感器内的铁芯饱和,诱发铁磁谐振的产生,致使电压互感器内部产生过电压,过电流,严重威胁电力系统的安全运行。
本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象与机理,产生的条件,提出了控制谐振过电压的措施,与大家交流学习。
关键词铁磁谐振;过电压;防范措施引言长期以来,电力系统铁磁谐振过电压严重威胁着电网的安全运行,在10kV 系统中,电磁式电压互感器引发的铁磁谐振过电压导致的设备事故时有发生。
这种过电压持续时间长,对系统的安全运行构成很大威胁,轻者可导致电压互感器烧损,高压熔丝熔断及匝间短路或爆炸;重者发生避雷器爆炸、母线短路等事故。
本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象,产生的条件及防范措施,总结了针对此类故障采取防范措施的一些运行经验。
1 铁磁谐振过电压产生的机理[1-2]目前,我国企业在35kV或者是其以下的配电网,有许多都是采用中性点和不接地的方式进行运行的,因此其中的很大一部分选用的都是比较传统的消线圈完成接地。
因此在其具体进行运行的问题可以看出,中性点的不接地系统,会受到电压的互感器铁心饱和使得铁磁谐振过的电压相对多一些。
中性点不接地运行方式的电力系统单相接地后,两相电压瞬时升高,三相铁心受到不同的激励而呈现不同程度的饱和,电压互感器各相感抗发生变化(各相电感值不同),中性点位移,产生零序电压。
由于线路电流持续增大,导致电压互感器铁心逐渐磁饱和,其电感值迅速减小,当满足ωL=1/ωC时,产生谐振过电压。
在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。
如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,可造成电压互感器烧损。
电力系统中存在着许多非线性感性元件,如发电机、变压器、电压互感器等,这些感性元件和系统中存在的分布电容组成复杂的LC振荡回路,有可能激发铁磁谐振产生过电压。
浅谈电力系统中的铁磁谐振过电压及消除方法摘要:本文简要分析了电力系统中铁磁谐振产生的原因、现象及对电气设备的危害,并介绍了消除铁磁谐振过电压的常用方法。
关键词:电力系统;铁磁谐振;过电压;电容;电感1 引言电力系统中有许多的电感、电容元件,如变压器、互感器、电抗器、消弧线圈、发电机等的电感,输电线路的对地电容及相间电容,以及各种高压设备的电容。
这些电感,电容元件在特定的参数配合条件下构成振荡回路,当系统进行操作或发生故障时形成谐振现象,从而产生谐振过电压,导致系统中某些电气设备出现严重的过电压而损坏,影响电力系统的安全运行。
2铁磁谐振过电压产生的原因电力系统内,一般的回路都可简化成电阻R、感抗、容抗的串联和并联回路。
铁磁谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
正常运行条件下,感抗大于容抗,即>,此时电路运行在感性工作状态,不具备线性谐振条件,回路保持稳定状态。
铁磁谐振回路的容抗在频率不变的情况下基本上是个不变的常数,而感抗一般是由带铁芯的线圈产生的,铁芯饱和时感抗会变小。
当电源电压有所升高或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值随之减小,当=时,即满足串联谐振条件,于是发生铁磁谐振[4]。
电力系统运行参数具有随机性,其运行方式灵活,构架比较复杂,容易使系统参数发生变化。
在进行操作或者发生故障的条件下,电力系统中的电容和电抗元件很容易形成振荡回路,尤其是主变压器,电压互感器等有绕组及铁芯的设备在一定的激励条件下,最容易产生电磁耦合现象,进而产生串、并联谐振,引发铁磁谐振过电压。
35kV、10kV系统大多采用中性点不接地方式运行,电网结构相对薄弱,加上电力系统操作频繁,运行方式又多变,很容易导致铁磁谐振过电压。
据有关统计,铁磁谐振过电压导致故障概率高达50% ~ 55%。
铁磁谐振过电压导致故障的严重性可见一般。
铁磁谐振过电压本质上是由于非线性励磁电感与电力系统对地电容所构成的铁磁谐振所引发的电网中性点不稳定现象。
关于谐振过电压及预防的技术措施摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。
在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。
关键词:谐振过电压;预防;技术措施1.谐振的危害性在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。
多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。
由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。
为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。
目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。
从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。
2.产生谐振过电压的因素2.1互感器铁磁谐振过电压的因素电压互感器伏安特性的影响。
铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。
谐振过电压产生及防止措施一、释义35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
谐振过电压指电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。
二、谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等。
操作过电压和谐振过电压的区别:操作过电压和谐振过电压都属于内部过电压。
操作过电压,顾名思义,是操作高电压大电感-电容元件(比如合/分空载长线路、变压器、并联电容器、高压感应电动机等)以及故障线路跳闸/重合闸等产生的过度过程。
防止操作过电压的措施根据操作的对象不同而有所不同,一般采用重击穿概率低的断路器或设置金属氧化物避雷器限制操作过电压。
谐振过电压,因系统的电感、电容参数配合不当而引起的各类谐振现象及电压升高。
所以防止谐振过电压的措施即破坏谐振条件,使参数配合避开谐振区,需要对系统有整体的参数预测,从而调整电网参数。
三、分类(1) 线性谐振过电压:谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
(2) 铁磁谐振过电压:谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。
论谐振过电压产生原因及防治作者:李成来源:《中国科技博览》2013年第20期[摘要]谐振过电压在电力系统中屡见不鲜,但在实际运行中,很多人员对谐振过电压的了解很片面。
谐振过电压对电网造成危害极大.诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加深对其认识,并加强防治措施非常必要。
[关键词]谐振过电压产生原因分类中图分类号:TM 文献标识码:A 文章编号:1009-914X(2013)20-265-01在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
l.产生谐振过电压的原因目前,我国配电网,大部分仍采用中性点不接地方式运行,其中有少部分采用老式的消弧(消谐线圈接地。
从电网的运行实践证明.中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取不少限制谐振过电压的措施,如:消谐灯、消谐器、Tv高压中性点增设电阻或单只Tv等,但始终没有从根本上得到解决.Tv烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流易大幅度增加,单相接地时接地电弧不能自动熄火必然产生电弧电电压,一般为3~5倍相电压甚至更高.致使电同中绝缘薄弱的地方放电击穿,并会发展为相问短路造成设备损坏和停电事故。
而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。
并需要手动调节分接头.然而此时却不能随电网,对地电容电流的变化及时将电压调整到最佳的工作位置,影响功能发挥,也不适应电网无人值班变电所的需要。
电力系统谐振过电压产生的原因及防范措施摘要电力系统中,厂站因过电压引起故障甚多,特别是谐振过电压,对设备甚至系统安全稳定运行影响大。
分析原因,找出问题,提出防治措施很有必要。
关键词谐振过电压;PT;铁芯饱和;防范措施0 引言我国电力系统分为不同电压等级,35kV及以下配电网采取中性点不接地和经消弧线圈接地方式;110kV及以上配电网采取中性点直接接地方式。
过电压种类多,主要有谐振、雷电和操作过电压;其中谐振过电压较常见,作用时间长、次数频繁、危害大,须采取措施预防。
1 谐振过电压产生原因电网运行中,正常时中性点不接地系统PT铁芯饱和易引起谐振过电压;中性点不接地方式发生单相故障可引起谐振过电压。
运维人员操作或事故处理方法不当亦会产生谐振过电压。
另外设备设计选型、参数不匹配也是谐振过电压产生原因。
2 铁磁谐振为满足电网测量、保护需要,电力系统中配置大量电感电容元件,如:互感器、电抗器等电感元件;电容器、线路对地电容等电容元件。
当进行设备操作或系统故障时,电感电容元件构成振荡回路,在一定条件下产生谐振,损坏设备影响系统。
2.1 原因分析图1某水厂单串接线图,采用接线,110kV系统中性点直接接地,变压器、PT等分相运行,变压器、PT高压绕组接成Y0,该厂多次发生铁磁谐振过电压。
原因:图1 某水电站单串接线图1)故障时产生谐振过电压。
当系统发生单相故障时,因整个电网系统中电感电容元件参数不匹配,两者共同作用,为谐振产生创造条件,最终导致铁磁谐振过电压发生;2)操作时产生谐振过电压。
110kV开关为双断口且并联均压电容,停送电操作时,先拉5012、5013,再拉50126,其他刀闸均接通。
110kV环网通过开关断口电容构成带电磁式PT空母线产生谐振。
2.2 等值电路图该厂输出线路发生单相接地故障,瞬时A相线路产生接地电流,因避雷器参数不匹配,构成谐振回路而产生谐振过电压。
图2 简化电路图如图2,L1是1B一次侧电感,L2是2B一次侧电感,Lm是PT一次侧电感,C0是空长线路对地电容,RL是电阻,k为故障点。
牵引变电所倒闸操作引起谐振过电压原因及对策摘要:电网运行过程中产生的谐振过电压,严重影响了电力系统的安全运行。
本文叙述了铁路牵引变电所在运行过程中出现的谐振过电压的产生及其危害性,对一例倒闸运行过程中出现的谐振过电压造成的设备故障进行了较详尽的分析,并对其产生的原因进行了阐述,同时还介绍了多种预防谐振过电压的方法。
关键词:变电所;谐振;操作谐振过电压;对策引言:在电力系统中,因开关负荷输入或移除、故障等因素,使系统内部状态或参数产生改变,从而使系统中的电磁能量发生传递或转化,从而产生电压升高,这就是所谓的内部谐振过电压,给设备带来了严重的损害。
铁路牵引变电所中的变压所、电压互感器、电抗器以及牵引变电所中的电力机车都是传感装置。
并联用于变电所的并联接有接地电容的空载线是一种电容装置,该电路由电感与电容构成一共振环,在正常运行时,其电感、电容均不产生共振,当倒闸开关运行时,部分线路将被拆分、重装,使传感器、电容式能量存储单元的工作状态改变,在一定的激发条件下,电磁波的能量振荡会出现共振现象,从而引起工作谐振过电压。
一、变电所操作谐振过电压的原因分析(一)分合空载线路引起的谐振过电压油田配电网中,以泵电机和泵井为主的三相负载为主,但因其负载特点,不能实现自动启动和关闭。
断电后,电动机的负荷需要人工起动,如果在起动前给配电网提供电源或者重合闸切断,将造成“空载断线”现象,从而引起系统的共振过压。
在排出并转入无负荷状态时,产生谐振过电压的原因是由于电弧的重复燃烧所致。
一是断路器的灭弧性与接点间的还原电压,二是接点上的剩余电压;由于系统中存在较高频率的振荡,会造成空载线路的谐振过电压。
(二)弧光接地谐振过电压在电网运行过程中,单相接地故障较为普遍。
在大部分单相接地情况下,均为弧线接地,流经弧线的IJD电流等于地电容正常值的总和。
通常情况下,由于导热系数过小,不能产生稳定的弧光,导致熄火与重燃弧交替运行的非稳定工况。
论谐振过电压产生原因及防治
[摘要]谐振过电压在电力系统中屡见不鲜,但在实际运行中,很多人员对谐振过电压的了解很片面。
谐振过电压对电网造成危害极大.诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加深对其认识,并加强防治措施非常必要。
[关键词]谐振过电压产生原因分类
中图分类号:tm 文献标识码:a 文章编号:1009-914x(2013)20-265-01
在电力生产和电力运行的中低压电网中,故障的形式和操作方式是多种多样的,谐振性质也各不相同。
因此,应该了解各种不同类型谐振性质与特点,掌握其振荡的性质和特点,制订防振和消振的对策与措施。
l.产生谐振过电压的原因
目前,我国配电网,大部分仍采用中性点不接地方式运行,其中有少部分采用老式的消弧(消谐线圈接地。
从电网的运行实践证明.中性点不接地系统中一方面由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取不少限制谐振过电压的措施,如:消谐灯、消谐器、tv高压中性点增设电阻或单只tv等,但始终没有从根本上得到解决.tv烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定时间,一般为2h不致于引起用户断电,但随着中低压电网的扩大,
出线回路数
增多、线路增长,中低压电网对地电容电流易大幅度增加,单相接地时接地电弧不能自动熄火必然产生电弧电电压,一般为3~5倍相电压甚至更高.致使电同中绝缘薄弱的地方放电击穿,并会发展为相问短路造成设备损坏和停电事故。
而采用老式消弧线圈接地方式的系统由于结构的限制,只能运行在过补偿状态,不能处在全补偿状态,所以脱谐度整定的比较大,约在20%~30%,对弧光过电压无抑制效果。
并需要手动调节分接头.然而此时却不能随电网,对地电容电流的变化及时将电压调整到最佳的工作位置,影响功能发挥,也不适应电网无人值班变电所的需要。
2.电力系统谐振过电压的分类
电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路_在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压这一现象叫电力系统谐振过电压。
谐振过电压分为以下几种:
2.1线性谐振过电压
谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。
2.2铁磁谐振过电压
谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。
因铁芯电感元件的饱和现象使回路的电感参
数是非线性的这种含有非线性电感元件的回路在满足一定的谐振
条时会产生铁磁谐振。
2.3参数谐振过电压
由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在kd—kq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化.不断向谐振系统输送造成参数谐振电压。
3.中压电网谐振过电压的抑制措施
中压电网(35kv、10kv,6kv)的中性点接地方式采用经消弧线圈小电流接地已运行多年,但近几年有部分区域采用中性点经小电阻接地方式。
前者的供电可靠性大大高于后者,但也存在以下问题:当系统发生接地时,由于接地点残流很小.零序过流、零序方向保护无法检测出已接地的故障线路。
在运行中不能根据电网电容电流的变化及时进进行调节,出现弧光不能自灭及过电压问题。
我国已研制生产出微机自动跟踪消弧装置,有效的解决了中性点经消弧线圈接地方式的电网长期难以解决的技术问题。
该装援的z 型结构接地变压器,具有零序阻抗小.损耗低,并可带二次负荷;微机控制单元是实现自动跟踪检测、调节、选线的核心;系统的响应时间9。
有载开关在预调方式下工作,消弧线圈调谐是由微机控制器自动控制的。
建议目前需要改造的老式消弧线圈采用新型自动调谐消弧线圈方式。
消弧线圈选用有载调匝式调节方式.正常运行采用过补偿方式,消弧线圈接地回路串接阻尼电阻,控制部分采用
微机控制自动消谐装置进行自动补偿:能自动检测电网对地电容参数的变化,自动和手动调整消弧线圈的分接头,使其运行在最佳的工作点,保证残流能降低到可靠熄弧的程度;并能远程遥控、遥信、遥测和遥调,以适应变电站无人值班的需要。
对由电压互感器铁芯饱和引起的铁磁谐振过电压的限制必须使
系统参数发生较大的变化才能将谐振过电压抑制住。
如果在系统的中性点上接人消弧线圈破坏它的谐振条件,pt的励磁感抗比较大(千欧至兆欧级).而消弧线圈的感抗(百欧级)比较小,这样谐振条件∞l=1∞c很难满足,谐振就不会发生。
有了消弧线圈后,电容对小感抗放电,pt中电流祝很小而不会烧毁了。
所以在中性点接人消弧线圈,对于由电压互感器铁芯饱和引起的铁磁谐振过电压具有很好的限制作用。
自动跟踪消弧线圈及接地选线装置的不断完善和推广应用,为中压电网中性点经消弧线圈接地提供了技术保障。
为此,在我国采用中性点经消弧线圈接地力式是我国中压电网的发展方向。
4.高压谐振过电压的防治措施
鉴于110kv及以上有效接地系统的pt饱和铁磁谐振过电压在各站已多次发生,其谐振过电压的激发是具有随机性的,严重时,母线pt损坏坏,甚至导致pt爆炸.危及二次保护没备。
因此.高压谐振过电压的防治应注意以下儿点:
4.1严格执行调度规程
在运行方式上和倒闸操作过程中,防止断路器断口电容器与空载
母线及母线胛构成串联谐振回路,以防止因谐振过电压损坏没备。
它包括两个方面:—是应避免用带断口电容器的断路器切带电磁式电压互感器的空载母线;二是避免用带断口电容器的回路的刀闸对带电磁式电压互感器的空载母线进行合闸操作。
具体可采用下述方式来实现:在切空母线时,先拉开电压互感器,对母线断电;在投空母线时,先断开被送电母线pt对母线送电.再合母线电压互感器。
4.2避免操作过电压
在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振时,应立即合上带断口电容器的断路器.切除回路电容,终止谐振,防止隐患发展形成事故。
4.3采取适当的中性接地点
增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由此而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用电容式电压互感器。
在进行变电站更换电压互感器时,也应尽量选取电容式电压互感器。
4.4加强继电保护措施
针对具体事故发生的情况,如在变电站母线发生单相接地,母差保护动作,母联开关跳闸后,如果主变开关先于线路开关动作,将不会引发谐振。
因此,建议将只带一条出线(线路开关动作抢在主变开关前动作的可能性较大),同时该出线为不带电源的负载线路
时.母线母差保护动作次序调整为:母联开关首先开断后.先跳主变开关.再跳出线开关。
4.5提高变电运行人员素质
加强对变电运行人员的培训,掌握了解一些系统过电压产生的条件及特征,在系统发生异常时,及时采取正确的措施,避免系统异常发展成为事故。
结语:电力供电系统或者说在电力供电电网上,过电压现象十分普遍。
如果没有防范措施.随时都可能发生。
引起电网过电压的原因很多.但以谐振过电压出现最为频繁,危害性也更大。
因此,有必要采取有效措施对谐振过电雎加以防治。
参考文献:
[1]刘长生.浅谈谐振过电压攀枝花学院学报(综合版)2005(6).
[2]冀东晨谐振过电压的分析及预防措施电力学学报 2007(3)
[3]孙增杰,王铁强,王海求.电力系统铁磁谐振分析电力设备2007(11)。